
Canning Spam in Wireless Gossip Networks
Daniela Gavidia

Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

Email: daniela@cs.vu.nl

Gian Paolo Jesi
University of Bologna

Mura Anteo Zamboni 7
40127 Bologna, Italy

Email: jesi@cs.unibo.it

Chandana Gamage
Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

Email: chandag@cs.vu.nl

Maarten van Steen
Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

Email: steen@cs.vu.nl

Abstract— Once a problem associated only with email, spam
is now affecting other media, such as instant messaging, blogs,
newsgroups and mobile phone messaging. As wireless networks
become more commonplace, we can expect that spam will find
its way into upcoming wireless communication services. This
paper studies the threat posed by malicious nodes inserting
spam in a wireless network using gossiping as a method for
information dissemination. We identify the security mechanisms
needed to protect our gossip network against the proliferation of
spam, reducing the problem to a matter of finding and removing
corrupted messages. Finally, we propose a probabilistic method
of integrity checking to contain the spread of spam which we
evaluate through extensive simulations.

I. I NTRODUCTION

Being an extremely robust and scalable communication
model, gossiping appears to be an ideal solution for
information dissemination in highly dynamic environments,
such as wireless networks. The simplicity and distributed
nature of gossiping has already sparked interest for its use
in wireless environments, ranging from sensor networks to
MANETs. However, while gossip networks are often described
as being robust to failures, their ability to cope with malicious
behavior is rarely addressed. They can gracefully handle the
departure of more than half of their members, but this strength
would not be as impressive if a few malicious insiders could
cause serious damage.

The effectiveness of gossiping is based on the collective
effort by the nodes in the network, which results in
the workload (and responsibility) being divided among the
collection of nodes. With every node playing an equal role
in the network, adhering to the agreed code-of-conduct is
essential. However, assuming that every node will behave
appropriately would be naive. It can be expected that the
introduction of malicious nodes will disturb the balance in
the gossip network. The extent of the disruption is the focus
of this study.

In this paper, we explore the effect of having malicious
nodes in a wireless gossip network used for information
dissemination. The attack of choice for these malicious nodes
is spamming. In the broadest sense of the word, spam
is defined asunsolicited email. While spam often refers
to unrequested emails of commercial nature that are sent
in bulk, the term is also used to describe irrelevant or
inappropriate messages in newsgroups or message boards,
as well as non-commercial emails (religious, political, etc.)
or junk mail. Nowadays, spam is not restricted to email

anymore. It has made its way into other media, such as instant
messaging, blogs, newsgroups, p2p networks and mobile
phone messaging. For the purpose of this paper, we refer to any
kind of message placed in the network as a result of malicious
behavior as spam.

For the most part, nodes in a wireless network have limited
resources compared to the average wired workstation making
spam a serious threat and not just a nuisance. As our network
is being used to disseminate information, it is only naturalthat
selfish nodes would try to exploit the system by overloading it
to suit their needs. The intent of these malicious nodes may be
to achieve maximum exposure or even to destroy the system
by polluting it with junk. Regardless of their motivation,
our interest lies in determining the extent of the threat and
minimizing the damage as much as possible without resorting
to expensive and complex solutions.

A. The Problem with Spam in Wireless Gossip Networks

Gossiping as a method for information dissemination relies
strongly on information being forwarded through randomly
chosen paths. At each step, information is passed along to
another peer selected on-the-go, making it virtually impossible
to anticipate the path that a piece of information will travel.
This random movement of information works in favor of
dissemination as it ensures that information will find its way
to all peers with certain probabilistic guarantees.

The problem with spam in a gossip network is intrinsically
related to the dissemination properties of gossiping. As has
been noted before [1], once a piece of information is gossiped
it is extremely hard to remove it from the network unless
special mechanisms for removal are in place. This makes
the spam problem much more severe in a gossip network
than spam email on the internet, from a theoretical point of
view. Gossip networks used for data dissemination reduce the
amount of work for the spammer to the bare minimum of
injecting the spam and then sit back and watch as all other
peers collaborate to deliver the spam. There is no need for
the spammer to go through the process of trying to collect the
addresses of potential targets. Knowing only one node in the
network is enough for the spammer to start operating. After
all, all other nodes will make sure that his/her message is
delivered.

As for accountability, the spammer is in an enviable
position. In gossip networks, the nodes themselves act as
routers for the delivery of data. As a result, nodes can not be

 0
 20
 40
 60
 80
 100

 0 5 10 15 20 25 30 35 40 45 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 20
 40
 60
 80

 100
spam

x

y

spam

 0
 20
 40
 60
 80
 100

 0 5 10 15 20 25 30 35 40 45 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 20
 40
 60
 80

 100
spam

x

y

spam

 0
 20
 40
 60
 80
 100

 0 5 10 15 20 25 30 35 40 45 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 20
 40
 60
 80

 100
spam

x

y

spam

after 5 rounds after 50 rounds after 450 rounds

Fig. 1. Spread of spam after 5, 50 and 450 rounds of gossiping.Nodes are arranged in a 50 x 50 grid with 1% of nodes being spammers. The level of
pollution of their caches is indicated by the height and brightness of the surface.

held accountable for the data they deliver. This makes tracking
down the source of the spam (or any other piece of data for
that matter) very difficult. In addition, gossip networks are
often promoted on the merits of being decentralized (no central
authority) and robust (being able to deal with nodes coming
and going gracefully). This works in favor of a malicious node
too, as there is no central authority to keep track of its behavior
and its sudden joining or leaving will not disrupt the network
or be seen as suspicious.

B. Motivating example

The magnitude of the damage that can be caused by a few
malicious nodes in a gossip network can best be illustrated
through an example. Consider a collection of nodes arranged
in a grid, gossiping with their four neighbors to the North,
South, East and West. They gossip according to the shuffle
protocol, which will be explained in detail later on. For now,
the most important observation to make is that any two nodes
that engage in a shuffle essentiallyswap a number of data
entries from their caches. In doing so, they not only preserve
the data that are collectively stored in the network, but also
“move” these data around in a seemingly random fashion.
The underlying idea is that by randomly shuffling data entries
between nodes, all nodes will be able to see all data eventually.

Nodes gossip periodically, swapping half of the contents of
their caches with a randomly chosen neighbor. In our scenario
shown in Figure 1, after nodes have been shuffling for some
time (50 cycles or rounds), malicious nodes appear. These
spammers account for 1% of the network, but the effect of their
actions is devastating to the network. Instead of forwarding
the messages from their peers, they drop them and replace
them with spam. Figure 1 shows how the caches of the nodes
become polluted with spam. In just 5 rounds their presence
can be felt. Gradually, they replace valid items with their own,
filling up the network with spam. Eventually, the network will
be saturated with spam at 100% and all valid items will have
been lost.

C. Contribution

Our contribution is twofold. First, we show that wireless
gossip networks are highly vulnerable to the proliferationof
spam. In fact, we claim that without any security mechanisms,

spammers could easily take advantage of the dissemination
properties of gossiping to overwhelm the network, consuming
valuable resources (storage space, bandwidth and processor
cycles) at the same time. Second, by means of well-established
security measures, we reduce the spam problem to a matter
of integrity checking. Additionally, we propose a probabilistic
solution for verifying the integrity of messages which succeeds
not only in reducing the amount of spam in the network, but
also in restricting its dissemination.

The remainder of this paper is organized as follows. In
the next section, we describe the system model for our
gossip network, specifying the assumptions we make and
describing the gossip protocol used. Section III details the
basic mechanisms that need to be in place to establish a line
of defense against malicious nodes. In Section IV, the method
of attack by malicious insiders is explained, as well as the
obvious (and more expensive) ways to counter the attack.
Section V describes the probabilistic solution we propose as
a way to fight malicious insiders. An experimental evaluation
based on simulations is presented in Section VI. Related work
is discussed in Section VII followed by conclusions and future
work in the last two sections.

II. SYSTEM MODEL

A. General Description

We focus on a system where a heterogeneous mix of fixed
and mobile nodes, ranging from mobile devices such as PDAs
and smart phones to PCs with internet access, collaborate by
volunteering storage space for the creation of a collectivedata
space. Users in the system are able to publish events, which we
call items, of interest to other users. The nodes in the system
devote a limited amount of space, which we refer to as their
caches, to store items. The collection of caches of all nodes
in the network makes up acollective data space.

The caches are updated periodically using the gossip
protocol first introduced in [2]. As a result, the items in
a node’s cache are in transit, which means that they could
be exchanged for other items at any moment. Items are not
purposefully routed. Once published, they become part of the
collective data space, replicating themselves (the numberof
replicas is dictated by the storage capacity of the network)and

/*** Active thread ***/ /*** Passive thread ***/
// Runs periodically every T time units // Runs when contacted by another node
Q = selectPeer() receive buff recv from any P
buff send = selectItemsToSend() buff send = selectItemsToSend()
send buff send to Q send buff send to P
receive buff recv from Q cache = selectItemsToKeep()
cache = selectItemsToKeep()

(a) (b)

Fig. 2. Skeleton of an epidemic protocol.

moving freely through the network (geographic restrictions for
the dissemination of items are also possible).

Taking part in gossip exchanges results in a node populating
its cache with a collection of items. As the cache size is
limited, the contents of a cache constitute a sample of the
totality of items available in the network.

Users of the system can discover items of interest by
going through the items in the local cache. Depending on
the number of items in the network, the local cache may not
contain all items of interest to a user at a particular time.
Nevertheless, previous experiments have shown that all items
of interest can be discovered after participating in enough
gossip exchanges [3]. Items of interest can then be stored
separately in the node’s private data store.

B. Assumptions

Items can be published by any user of the system and
are propagated through the network in the form ofentries.
While an item is a piece of information, an entry is the
representation of the item in the network and for each item
several entries may exist. The dissemination of entries occurs
between neighboring nodes that exchange entries. As entries
are gossiped, replication may occur naturally if a node has
available storage space to keep a copy of an entry. As a result,
after an item is published and gossiped, many entries for this
item may be present in the network, The number of entries
per item is dictated by the capacity of the network and the
number of items published, as explained in [3].

A unique id is associated with each node. The entries that
a node inserts into the network can be uniquely identified by
a combination of the node id and a sequence number. In its
most basic form, an entry contains a unique id, a timestamp
and a time-to-live. There may be other fields of information
depending on the application. A limited number of these
entries can be stored by each node in its localcache. A node
can store, at most,c entries in its cache. For our experiments,
all nodes have the same cache sizec. Nodes in the network
gossip periodically, exchanging the entries in their caches. We
define around as a gossiping interval in which each node
initiates an exchange once.

C. The Shuffle Protocol

The data exchange between nodes follows a predefined
structure, with each node initiating an exchange once

per round. Figure 2 shows the skeleton of the push-
pull epidemic protocol we use for communication. Three
methods,selectPeer(), selectItemsToSend() and
selectItemsToKeep() represent the core of the protocol.
By implementing different policies in these methods,
various epidemic protocols, each with its own distinctive
characteristics, can be instantiated.

In the shuffle protocol, each node agrees to keep the entries
received from a neighbor for the next round. This might seem
trivial, but given the limited storage space available in each
node, keeping the entries received during an exchange implies
discarding some entries that the node has in its cache. By
picking the entries to be discarded from the ones that have
been sent to the neighbor, we ensure the conservation of
data in the network. The policies for the shuffle protocol are
summarized as follows:

• selectPeer(): Select a neighbor randomly
• selectItemsToSend(): Randomly selects ≤ c

entries from the local cache and send a copy of those
entries (buff send) to the selected peer.

• selectItemsToKeep(): Add received entries
(buff recv) to the local cache and remove repeated
entries. If the number of entries exceedsc, remove
entries among the ones that were previously sent (unless
they were also inbuff recv) until the cache contains
c entries.

An example of an application of the shuffle protocol is
presented in our earlier work on anews servicefor wireless
mesh networks [3]. The service is provided by a mesh
backbone composed of a large number of wireless routers
which communicate through gossiping. Users in charge of
the routers running the news service are able to publish
events, which we callnews items, of interest to other (mobile)
users. These mobile users carry aroundclients, which are
portable devices (such as smart phones, laptops or PDAs)
capable of connecting to the mesh backbone to retrieve news
items. Essentially, the clients poll the routers for news items
matching the interests of users. By specifying their preferences
in advance and communicating them to a nearby router, users
are able to receive in their portable devices only relevant news
items.

III. PREPARING FOR THE FIGHT

Securing a gossip-based system like the one we propose
against malicious nodes requires 1) regulating the entry

of nodes into the system (access control), 2) being able
to accurately identify the source of an item (source node
authentication) 3) ensuring the integrity of messages and 4)
enforcing fair use of the system (rate control).

A. Access Control

To ensure that only authorized nodes can join the network,
issuingcredentialsfor these nodes is required. One possible
solution is to have aCertification Authority (CA)certify a
public key for each node. This procedure would only take
place once, establishing the identity of each node and allowing
nodes to refuse communication with outsiders.

B. Source Node Authentication

By the time an item arrives at a particular node’s cache, it
has most likely been shuffled around several times by other
nodes. As a result, when a node receives an item from a
neighbor, it can not make any assumptions about the item’s
origin. In order to be able to identify the source of a item, it
is necessary for the item to be digitally signed by the original
node who published it.

C. Integrity

Given that most likely an item has been forwarded several
times before reaching an interested user, the item has to be
protected against malicious insiders who may want to modify
its contents. By having the source sign the item, a user can
check if the item has been modified along the way.

An ideal solution for preserving the integrity of items in the
network would be to verify the integrity of each item at every
hop. This would require that every node executes a public key
signature verification operation for every item it receivesfrom
a neighbor. The computational workload of such a solution
could be prohibitive. Another more effective way of ensuring
the network remains free of forged items is for every node to
do a batch verification of the signatures on items received from
a neighbor. Verifying multiple signatures in batches is less
expensive than verifying each signature at a time. We elaborate
more on this and propose our own solution for ensuring the
integrity of items in Sections IV and V, respectively.

D. Rate Control

The shuffle protocol ensures that, on average, each item
has the same number of entries in the network (this and other
properties of the shuffle protocol are explained in detail in[3]).
Given that the collective storage space is limited, a larger
number of different items in the network results in a smaller
number of entries per item. Therefore, a node producing an
excessive number of items would occupy a large portion of
the storage space with its items reducing the number of entries
that other nodes can place. To ensure that nodes do not abuse
the system by flooding the network with their own items, a
mechanism for rate control is needed.

This flooding of items by a node is a form of a denial-
of-service attack. As shown in [3] , the dissemination speed
of items through the network is inversely proportional to the

number of items published. It follows that the insertion of
excessive amounts of items by one node has a negative effect
on the performance of the system, given that dissemination
speed is sensitive to the amount of items in the network.
In essence, more items in the network (due to one node’s
excessive publishing) result in the dissemination speed of
all items slowing down. For this reason, it is necessary to
prevent a node from publishing an excessive number of items.
Otherwise, a single “overactive” node could cause the service
to slow down to the point of not being useful anymore.

Rate control can be enforced by restricting the id space of
items per node. This way, a node would be allowed to have
at mostx items in the network at any point in time, where
x is the size of the id space of items per node. For example,
the id space of items per node could be restricted ton bits
resulting in 2

n items. After a node has published2n items
with different ids, the next published item will have the same
id as one of the previously published items. Since nodes are
only allowed to hold one entry per item based on the item id,
the more recently published item will overwrite the older item
in the network resulting in an upper bound for the amount of
storage space occupied by a node’s items. Withd published
items in the network, a node could only occupy at mostx/d
of the collective storage space.

IV. SPAMMING THROUGH THECORRUPTION OFMESSAGES

The shuffle protocol ensures fairness, meaning that each
node can use up the same fraction of collective storage space
for its items. As a result, a malicious node can insert only so
much spam under its own identity. In order to place more spam
in the network, a malicious node would have to utilize the ID
space of items per node assigned to other nodes. Analogous
to the way an email spammer uses false email identities to
increase the likelihood that his spam makes its way into our
inboxes, a malicious node in our gossip network can place
more spam by corrupting the content of the entries that pass
through its cache. In essence, a malicious node would be
replacing the content of other nodes’ entries with its own
while keeping the entries’ metadata (ID, signatures, ...) intact.
This way, the spammer can steal the storage space of other
nodes and create more instances of its messages. The spam
problem then becomes a problem of preserving the integrity
of messages.

A. The threat of malicious insiders

With the measures to prevent unauthorized nodes from
infiltrating the network in place, being able to cope with
attacks from malicious insiders becomes the biggest challenge.
Our gossip network obtains its desirable properties from the
periodic execution of a specific gossip protocol at every node.
Having nodes in the network behave differently can pose a
major threat to the system.

Unlike fixed networks, wireless networks rely on nodes
forwarding messages for their neighbors. Without a trusted
routing infrastructure available, a great deal of responsibility
is placed on the forwarding nodes to deliver a message.

Assuming that malicious nodes are present, at every hop
there is a chance that the message might be tampered with.
In addition to this, we are dealing with a gossiping system
which relies heavily on randomness to forward its messages.
The combination of these two aspects result in malicious
insiders having plenty of opportunities to corrupt the content
of messages and be safe from detection due to the random
nature of gossiping.

B. Checking all messages at every hop

A conventional approach to security can be applied to
ensure the integrity of items. Under this scheme, all entries
in the network are required to be signed by their publisher
and are subject to integrity checks. Integrity checks can be
used to fight attacks based on replays of old entries and
modification of entries, as the checks would discover that
the content of the entry has been tampered with. However,
given that in our system items are constantly being gossiped,
verifying all entries received during a gossip exchange would
be computationally very expensive. In essence, an entry would
have to be verified at every hop. Even though doing this
would permit the identification of malicious nodes as soon
as they appear, the cost of following this approach would be
prohibitive.

C. Batch Verification

An alternative to verifying the signatures of the entries
received one-by-one is to do a batch verification [4]. Verifying
multiple digital signatures simultaneously, instead of verifying
each one individually, can be done at lower costs with different
schemes for fast verification of digital signatures in batches.
These schemes test the validity of all signatures in a batch
and the test would succeed only if all signatures are valid.
The drawback is that batch verification does not identify which
signatures are invalid in the batch. This is, however, not critical
since discovering any invalid signature in the batch would
be enough to conclude that we have come in contact with
a malicious node.

Having all nodes do batch verification of signatures after
receiving items from a neighbor would allow nodes to discard
any invalid batch and take measures against the neighbor who
forwarded the dubious entries. However, the benefits of using
batch verification are only evident when a large number of
signatures are tested. Therefore, unless nodes are exchanging
a large number of items at a time, batch verification could
still be expensive. Furthermore, it is necessary to use a digital
signature scheme where its batch verification algorithm allows
a batch of signatures from different signers.

V. PROBABILISTIC VERIFICATION

As an alternative solution to checking all entries at every
hop, we propose a more flexible and cost efficient approach
to combating malicious nodes. Our solution is based on a
probabilistic selection of the entries to be checked.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 it

em
s

rounds

nodes do NOT check for spam
nodes check for spam (p=5%)
nodes check for spam (p=10%)
nodes check for spam (p=20%)
nodes check for spam (p=30%)

Fig. 3. Number of corrupted entries in the network when 1% of nodes are
malicious.

A. Selection of entries to verify

The verification phase is incorporated into our gossip
protocol in the following way:

• In selectItemsToKeep(), each node decides how
to merge the entries in its cache with the entries received
from the selected peer. Before merging, a probabilistic
verification phase is executed.

• Each of the received entries is checked with a probability
Pcheck. The integrity of an entry is checked by verifying
its digital signature. If the entry is valid, then it is marked
aschecked. Otherwise, the entry is discarded.

• The entries that were not selected for checking and the
ones that passed the check are merged into the local
cache.

B. Attack model

To test the validity of probabilistic verification as a
technique to counter malicious behavior in the form of
corruption of entries, we assume that a small percentage of
the nodes in the network are malicious insiders while the rest
behaves according to our gossip protocol.

Malicious nodes execute a slightly different version of the
shuffle protocol. InselectItemsToSend(), the selected
entries are corrupted, with the exception of the entries marked
aschecked. The reason for this is that sending a corrupted
entry marked aschecked will raise suspicion if the receiving
node executes an integrity check on that entry. In this paper,
other nodes do not make an effort to detect malicious nodes
and take measures against them (this is the subject of current
study). Nevertheless, we assume that malicious nodes are
cautious. As malicious nodes do not want to be trivially
discovered, they will execute integrity checks with aPcheck

probability and will only corrupt entries that are not marked
as checked, thus avoiding direct responsibility for any
corrupted entry they have forwarded.

VI. EXPERIMENTAL RESULTS

The results presented in this section correspond to a network
of 2500 nodes with a cache size of 100. The nodes were
arranged in a square grid topology, with 50 nodes on each
side over an area of 50×50 units. The range of each node was

 0
 20
 40
 60
 80
 100

 0 5 10 15 20 25 30 35 40 45 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 20
 40
 60
 80

 100
spam

x

y

spam

 0
 20
 40
 60
 80
 100

 0 5 10 15 20 25 30 35 40 45 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 20
 40
 60
 80

 100
spam

x

y

spam

 0
 20
 40
 60
 80
 100

 0 5 10 15 20 25 30 35 40 45 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 20
 40
 60
 80

 100
spam

x

y

spam

Pcheck = 0.0 Pcheck = 0.05 Pcheck = 0.30

Fig. 5. Spread of spam after 450 rounds since the appearance of 25 spammers (1% of nodes in the network).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35

%
 o

f s
pa

m

probability of checking

25 malicious nodes
50 malicious nodes
125 malicious nodes

Fig. 4. The percentage of corrupted messages in the network decreases with
the probability of checking an entry,Pcheck.

set to 1 unit, making communication possible with the node’s
immediate neighbors to the North, South, East and West.
Nodes placed at random locations in the grid were selected
to be malicious. Experiments were conducted for different
concentrations of malicious nodes (1%, 2% and 5%).

A. Amount of Spam in the Network

Malicious nodes carry out a very simple attack: corrupt as
many entries that pass through as possible, taking into account
that some entries will need to be checked. In the absence of
any measures to counter the pollution of the network with
corrupted entries, this kind of attack is extremely effective.

Figure 3 shows the spread of corrupted entries through the
network over time. In the experiment, 50 malicious nodes (1%
of the network) appear at round 50 and from that moment
start corrupting entries. Entries do a random walk through the
network which leads to each item eventually visiting every
node in the network, including the malicious ones. As a result,
without any integrity checks, the number of corrupted entries
keeps increasing until all entries in the network are corrupted.
On the other hand, when nodes execute probabilistic checks,
the number of corrupted entries soon reaches an equilibrium
where the amount of spam generated matches the amount
of spam dropped by non-malicious nodes. Experiments with
50 and 125 malicious nodes (2% and 5% of the network,
respectively) show similar behavior, but converging to different
levels of spam. In all cases, spam spreads through the network

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

nu
m

be
r

of
 h

op
s

rounds

nodes do NOT check for spam
nodes check for spam (p=5%)
nodes check for spam (p=10%)
nodes check for spam (p=20%)
nodes check for spam (p=30%)

Fig. 6. Average distance (in hops) of corrupted entries fromtheir source
over time (in rounds) , with 1% of malicious nodes in the network.

after the appearance of malicious nodes, but after an initial
period of growth, the amount of spam settles at a level
inversely proportional toPcheck.

The number of spammers present during an experiment
directly affects the amount of spam in the network, as we show
in Figure 4, which summarizes our experiments regarding the
amount of spam in the network. For each number of spammers
(25, 50 and 125) and value ofPcheck (from 5% to 35%,
with increments of 5), the level to which the amount of spam
converges was recorded (by averaging the last 200 rounds) in
order to show the relationship between the amount of spam in
the network and the probability of checking a received entry.
We observe that the amount of spam is inversely proportional
to Pcheck. As can be expected, it is also proportional to
the number of spammers in the network. This is due to
each spammer creating an independent “spam heap” in its
surroundings.

The effect of probabilistic verification is that corrupted
entries are restricted from spreading too far away from the
source, as they become more likely to be removed by a non-
malicious node with every hop. Figure 5 shows how spam
is contained within an area surrounding the spammer. The
snapshots, taken at round 500 for different values ofPcheck,
clearly illustrate the benefit of probabilistic verification not
only in reducing the amount of spam, but also in decreasing
its reach.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35

nu
m

be
r

of
 h

op
s

probability of checking

25 malicious nodes
50 malicious nodes
125 malicious nodes

Fig. 7. Average distance (in hops) of corrupted entries fromtheir source for
different values ofPcheck. Results for spammers accounting for 1%, 2% and
5% of nodes in the network are shown.

B. Reach of Spam in the Network

In the same way as the amount of spam reaches a particular
equilibrium point depending on the checking probability, the
average distance (in hops) from the source that spam travels
also reaches a stable state, as can be seen in Figure 6. In this
experiment, for each corrupted entry we record the distance
(in hops) from its source and calculate an average distance
at every round. This average distance serves as an indicator
of how far away spam travels before being discovered and
removed. After an initial period where corrupted entries find
their way into the caches of nodes in the vicinity of a spammer,
the corrupted entries start being dropped, preventing their
dissemination any further. Notice how the steady state to
which the average distance converges in Figure 6 is inversely
proportional to Pcheck. Experiments with 2% and 5% of
malicious nodes converge to very similar values.

By measuring the value to which the average distance
converges (by averaging the last 200 rounds), we can observe
its relationship with the checking probability as well as the
amount of spammers. Figure 7 shows the average number of
hops away from the source that spam travels with respect to the
probability of checking for 25, 50 and 125 malicious nodes.
An important observation depicted in this graph is that the
distance traveled by the spam is independent of the number of
malicious nodes present. In fact, the heaps of spam generated
by spammers may overlap, as seen previously in Figure 5.

Figure 8, which shows the number of spam entries that
have traveled a certain number of hops, summarizes the
effectiveness of probabilistic verification as a way of reducing
and containing spam. In this graph, we observe (after 500
rounds) the distribution of spam according to the distance from
the source for various values ofPcheck. It is evident from the
area covered by each curve that higher values ofPcheck reduce
the amount of spam in the network as well as reduce the area
affected by spam.

VII. RELATED WORK

Previous work has looked at malicious behavior in wireless
ad hoc networks as a problem of lack of cooperation and
selfish behavior (for example, not forwarding messages to save

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16 18

nu
m

be
r

of
 it

em
s

number of hops

nodes check for spam (p=5%)
nodes check for spam (p=10%)
nodes check for spam (p=20%)
nodes check for spam (p=30%)

Fig. 8. Distribution of corrupted entries according to their average distance
(in hops) from the source.

energy). Security in wireless environments has concentrated
mostly on the routing layer by modifying existing routing
protocols, such as DSR and AODV.

Efforts to alleviate the problem of malicious behavior
by enforcing cooperation include payment systems [5] and
reputation systems [6]. Payment schemes assume that a
node can be swayed away from his selfish behavior through
economic incentives, while reputation systems usually rely
on second-hand reputation reports (which could be false).
[7] avoids issues of trust by relying only on first-hand
observations to build the reputation of a node. In any case,
reputation systems aim to isolate the malicious node. In
our work, we are interested in reducing the effectiveness
of spamming instead of detecting the misbehaving node.
We believe that containing the dissemination of spam to
the malicious node’s neighborhood will discourage malicious
behavior in the network. By focusing on the authenticity of
the messages in the network (without judging other nodes),
our work is more closely related to the efforts to counteract
content pollution in peer-to-peer networks [8].

VIII. C ONCLUSIONS

In this paper, we explored the vulnerability of wireless
gossip networks to spamming attacks. We showed that the
probabilistic nature of information dissemination in gossip
networks makes these networks specially susceptible to the
proliferation of spam. In an effort to secure the network, we
proposed that only accredited nodes be allowed to gossip.
With only authorized nodes gossiping, our efforts focused
on dealing with malicious insiders, as these malicious nodes
could only spam by taking over the identity of other nodes.
This resulted in our proposal of probabilistic verificationof
messages as a way to fight spam. We evaluated this technique
through extensive simulations showing that the amount of
spam is effectively reduced and its spread restricted.

IX. FUTURE WORK

In the future, we intend to focus on doing a probabilistic
analysis of the messages received from a neighbor. With this
information, we expect to be able to dynamically adjust the
checking probability for each individual node and be able to

detect suspicious behavior which will allow us to take action
against suspicious nodes.

As mentioned earlier when describing the attack model,
malicious behavior could raise suspicion in neighboring nodes.
However, the current protocol does not include a mechanism to
react when faced with changes in the amount of spam received.
In that sense, the current protocol takes a proactive approach
to fighting spam. The problem with this approach lies in the
constant toll it takes on the nodes, requiring a fixed amount
of checks to be performed regardless of the threat.

It is clear that during periods when the threat is low, it
would be desirable to lower the amount of checks performed.
Likewise, when faced with heavy spamming, an increase
in the checking would be appropriate. Our current research
focuses on making this possible by observing the traffic from
neighbors. The goal of the study is to set the value of
Pcheck dynamically according to the changing conditions in
the network. To further refine the study, two approaches are
being tested: a) maintaining a differentPcheck a) for each node
and b) for each link in each node.

In each round, a node only checks a fraction of the entries
it receives. We use this sample to estimate the level of
pollution in the network. With this information, a new valueof
Pcheck is calculated based on its previous value and the level
of pollution. Preliminary results are encouraging, showing
that settingPcheck dynamically greatly reduces the overall
number of integrity checks performed in the network, with
the majority of the work being done by the nodes surrounding
the spammers. The burden on the neighbors of the spammers
can be high, so the logical next step for this work would be
to device a set of rules to identify a spammer and reduce (or
cut) communication with it.

REFERENCES

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” inProceedings of the 6th Annual ACM
Symposium on Principles of Distributed Computing (PODC ’87), August
1987, pp. 1–12.

[2] D. Gavidia, S. Voulgaris, and M. van Steen, “Epidemic-style monitoring
in large-scale wireless sensor networks,” Vrije Universiteit Amsterdam,
Tech. Rep. IR-CS-012.05, 2005.

[3] D. Gavidia, S. Voulgaris, and M. van Steen, “A gossip-based distributed
news service for wireless mesh networks,” inProceedings 3rd IEEE
Conference on Wireless On demand Network Systems and Services
(WONS), Les Menuires, France, January 2006.

[4] M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for modular
exponentiation and digital signatures.” inEUROCRYPT, 1998, pp. 236–
250.

[5] L. Buttyan and J.-P. Hubaux, “Enforcing service availability in mobile ad-
hoc wans,” inMobiHoc ’00: Proceedings of the 1st ACM international
symposium on Mobile ad hoc networking & computing. Piscataway, NJ,
USA: IEEE Press, 2000, pp. 87–96.

[6] S. Buchegger and J.-Y. Le Boudec, “Self-Policing MobileAd-hoc
Networks,” in P2PEcon 2004. CRC Press, 2004, p. 6, handbook on
Mobile Computing.

[7] S. Bansal and M. Baker, “Observation-based cooperationenforcement
in ad hoc networks. Technical Report,” 2003. [Online]. Available:
citeseer.ist.psu.edu/bansal03observationbased.html

[8] K. Walsh and E. G. Sirer, “Fighting peer-to-peer spam and
decoys with object reputation,” inProceedings of P2PECON
Workshop, Philadelphia, Pennsylvania, August 2005. [Online]. Available:
http://trust.eecs.berkeley.edu/pubs/59.html

