
Enforcing Data Integrity in Very Large Ad Hoc Networks

Daniela Gavidia
Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

daniela@cs.vu.nl

Maarten van Steen
Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

steen@cs.vu.nl

Abstract

Ad hoc networks rely on nodes forwarding each other’s
packets, making trust and cooperation key issues for
ensuring network performance. As long as all nodes
in the network belong to the same organization and
share the same goal (in military scenarios, for example),
it can generally be expected that all nodes can be
trusted. However, as wireless technology becomes more
commonplace, we can foresee the appearance of very
large, heterogeneous networks where the intentions of
neighboring nodes are unknown. Without any security
measures in place, any node is capable of compromising
the integrity of the data it forwards. Our goal in this paper
is to ensure the integrity of the data being disseminated
without resorting to complex and expensive solutions. We
achive this by discouraging malicious behavior in two
ways: a) enforcing integrity checks close to the source
and b) refusing to communicate with obviously malicious
nodes. We find that by having nodes sample their traffic
for corrupted messages, malicious nodes can be identified
with high accuracy, in effect transforming our collection of
nodes into a self-policing network.

1 Introduction

Given the dynamic nature, often unreliable links and lack
of a central authority that characterize ad hoc networks,
giving any hard guarantees regarding their performance is a
difficult task. The situation becomes even more complex if
we envision very large networks of heterogeneous nodes. In
this scenario, not only would we have to deal with the issue
of scale, but also with the fact that we cannot be certain of
the willlingness of all nodes to cooperate towards a common
goal. The lack of a central authority to oversee the good
behavior of nodes is a clear disadvantage.

A common assumption is that nodes adhere to executing
the chosen communication protocol. Under this condition,

content can be disseminated through the network in a
reliable way. However, when some nodes decide not to
play by the rules, the characteristics of the dissemination
as well as the reliability of the content being forwarded
might change. We refer to any kind of message placed
in the network as a result of malicious behavior asspam,
as these unsolicited messages serve only the interest of the
malicious node(s) and waste the already limited resources in
the network. We use the term malicious node and spammer
interchangeably.

This paper studies the effect of having misbehaving
nodes in the network that compromise the integrity of
the data being disseminated and the measures that can be
taken to counter act such malicious behavior. Since we
are dealing with large-scale networks, our intention is to
develop effective solutions that scale easily. Therefore,
we favor simplicity and the use of local interactions and
decisions only.

The Cost of Guaranteeing Data Integrity The
conventional approach to ensuring the integrity of a
message is to require that the message be signed by its
creator. By verifying the digital signature on the message,
the receiver can be assured of its integrity. However, this
procedure is computationally expensive. In a wireless ad
hoc network, where nodes act themselves as routers, a
message may have travelled several hops before reaching
its destination. Due to the lack of a trusted infrastructure
for routing, the message might have become corrupted
along the way. If that is the case, and the receiver verifies
this with an integrity check, the cost incurred due to the
corrupted message is not just limited to the verification of
the signature, but it also includes the cost of routing. This
situation could be avoided by executing integrity checks at
every hop. As a result, data integrity would be guaranteed
and malicious nodes could be easily detected.

The downside of this approach is the heavy
computational load inflicted on the nodes, as each node
would have to check every message it forwards. Therefore,

1

even at times when no malicious nodes are present, the
nodes in the network would be wasting resources checking
valid messages.

Contribution Our work strives to find a middle ground
with regard to the workload imposed on nodes to guarantee
the integrity of data in the network. First, we present a
probabilistic data verification scheme, which dynamically
adapts the workload of each individual node according
to the threat of malicious nodes in its surroundings, in
essence reducing the amount of work required by nodes
that are not in the vicinity of malicious nodes. As a
result, the overall workload in the network is kept low and
it concentrates around the malicious nodes. Second, we
take a proactive approach to enforcing data integrity in the
network by having the nodes constantly monitor the good
behavior of their neighbors. In addition, we show that the
immediate neighbors of malicious nodes are able to detect
their suspicious behavior with high accuracy, enabling them
to take measures to prevent further corruption of data.

Nodes make their own decisions to regulate traffic
according to perceived adherence to good behavior by
their neighbors. As a consequence, suspicious behavior
is penalized and the malicious nodes are faced with the
decision of adhering to the rules or be isolated.

Related Work In our work, discovery of malicious
nodes is made possible by statistical analysis of incoming
messages. Unlike reputation-based systems [2] where
nodes rely on second-hand reputation reports (which could
be false) to determine if a neighbor is misbehaving, our
approach avoids issues of trust by relying only on first-
hand observations to asses the behavior of a neighbor. In
that sense, our work lies closer to [1], which avoids issues
of trust by relying only on first-hand observations to build
the reputation of a node. Other efforts to alleviate the
problem of malicious behavior by enforcing cooperation
include payment systems [3] which assume that a node can
be swayed away from his selfish behavior through economic
incentives.

From the data integrity point of view, our work is
closely related to the efforts to counteract content pollution
in peer-to-peer networks [8]. A related problem due to
malicious behavior is index poisoning [6], which could lead
to effective DDOS attacks [7].

Roadmap The reminder of this paper is structured as
follows. In the next section, we describe the system model
for our data integrity enforcement mechanism, specifying
the assumptions we make and describing the platform used
for testing. Section 3 details the type of attack expected
from malicious nodes, as well as its effect on well-behaved
nodes and the clues that could help a node identify a

misbehaved neighbor. In Section 4, we analyze (through
simulations) the damage caused by malicious nodes in
terms of the amount of corrupted content they are able
to place in the network. Section 5 describes the method
we propose to identify malicious nodes. An experimental
evaluation based on simulations is presented. We conclude
in Section 6.

2 System Model

We focus on store-and-forward systems where nodes
devote a limited amount of space to store messages.
We refer to this space as the node’scache. The
communication medium is wireless and, therefore,
messages are disseminated through the network in a
multi-hop fashion. We assume that nodes forward a batch
of messages at a time.

Concerns regarding authentication and integrity are
addressed through conventional security measures. Nodes
that publish information are required to digitally sign their
messages. Consequently, all messages in the network have
a digital signature and are subject to integrity checks. We
assume that executing an integrity check for every message
received is prohibitively expensive for a node.

Wireless gossip networks fall under these assumptions.
The goal of these networks is to achieve reliable, robust
and scalable data dissemination. To this end, nodes are
required to engage in communication with their neighbors
on a regular basis. Executing integrity checks under
these conditions would be too expensive and undesirable.
With this in mind, we propose a probabilistic solution for
integrity verification. Using wireless gossip networks as
an example platform, we evaluate the effectiveness of our
proposed data integrity enforcement solution.

2.1 Example: Gossip-based News

The Gossip-based News Service, as introduced in [5],
serves as the experimental platform to evaluate the data
integrity enforcement measures described in this paper. The
service is provided by a mesh backbone made up of a
large number of wireless routers that communicate through
gossiping. Owners of the routers running the service are
able to publishnews itemsof interest to mobile users, which
are gossiped through the mesh backbone. The users carry
portable mobile devices capable of connecting to the mesh
backbone to retrieve news items. By informing a nearby
router of their preferences, users are able to receive only
relevant news items in their portable devices. A detailed
evaluation of the service can be found in [5].

At the router level, the news service uses a gossip
protocol to disseminate news items. News items are
propagated through the network in the form ofentries.

While an item is a piece of information, an entry
is the representation of the item in the network and
for each item several entries may exist, since entries
are replicated during gossiping. Figure 1 shows the
skeleton of this push-pull epidemic protocol. Nodes
gossip periodically, initiating an exchange (active thread)
once every round (fixed gossiping interval). Three
methods,selectPeer(), selectItemsToSend()
andselectItemsToKeep() represent the core of the
protocol:

• selectPeer(): Select a neighbor randomly

• selectItemsToSend(): Randomly select s
entries from the local cache and send a copy of those
entries (buff send) to the selected peer.

• selectItemsToKeep(): Probabilistically verify
data integrity . Add received entries (buff recv)
to the local cache and remove repeated entries. If the
number of entries exceedsc, remove entries among the
ones that were previously sent (unless they were also
in buff recv) until the cache containsc entries.

In bold we highlight the added measure to enforce data
integrity as nodes disseminate data through the network. In
the remainder of the paper we examine the effect of adding
these measures to the protocol for a wireless gossiping
network where a number of malicious nodes compromise
the integrity of messages.

2.2 Probabilistic Verification

Upon receiving a set of messages from a neighbor, nodes
execute integrity checks by verifying a digital signature
on each received message with probabilityPcheck. If the
message is valid, then it is marked aschecked and
stored in the node’s cache. Otherwise, the message is
discarded. We call this processprobabilistic verification.
As introduced in [4], probabilistic verification proves to be
an effective method for reducing the amount of corrupted
content and restricting its spread.

While [4] proved that probabilistic integrity checks could
reduce the impact of spam in the network, the nodes
did not have a role in determining the strength of the
measures taken against malicious nodes. The probability
of checking an entryPcheck was a fixed network-wide
parameter, chosen at the beginning of each experiment. As a
result, nodes had to do the same amount of work regardless
of the conditions in their surroundings (being flooded with
corrupted messages or not).

In this paper, nodes are given the autonomy to apply
probabilistic verification on an individual basis, in effect
transforming our collection of nodes into a self-policing

network. By making nodes self-aware with respect to
malicious behavior in the network (in particular, corrupt
messages being disseminated), small aedjustments to local
behavior can be made. The result of these adjustments
is that security measures are applied where needed, while
nodes in safe areas keep their work to a minimum (but
always maintaining a watchful eye).

Discouraging malicious behavior in the network involves
two steps: a) executing probabilistic verification and
b) updating the checking probabilityPcheck for the next
round. Pcheck is a local parameter and its value is updated
according to the observations made during the probabilistic
verification stage. The dynamic nature of ad hoc networks
makes it necessary to continuously adjust the value ofPcheck.

2.3 Verifying the Integrity of Data in a
Dynamic Environment

We define the level ofpollution in a collection
of messages as the fraction of corrupted messages.
Nodes get an insight into the pollution levels in their
neighborhood during the probabilistic verification phase.
When participating in a gossip exchange, a nodeP receives
s entries from a neighborQ. These entries are subject to
checking their integrity with a probabilityPcheck, resulting
in a fraction of thes entries being checked. Since the
neighbor selected thesentries at random from its cache, this
sample gives nodeP an estimate of the level of pollution in
the neighbor’s cache. NodeP can then use this information
to updatePcheckfor the next round in the following manner:

Pcheckt+1 = (1−α)Pcheckt + αP′

P′ =
numRemoved
numChecked

P′ is the level of pollution calculated after checking
numCheckeditems in the probabilistic verification phase.
numRemovedis the number of items that did not pass the
integrity test and were removed. The value ofPcheckfor the
next round (Pcheckt+1) is updated as a weighted sum of its
previous value (Pcheckt) and the level of pollutionP′. The
parameterα determines the sensitivity of parameterPcheck

to changes in the pollution levels in the neighborhood.
In general, nodes are bound to have more than one

neighbor. For this reason, each node should maintain a
different Pcheck for each neighbor. In essence, for each
neighbori nodeP maintains aPcheck[i].

2.4 Experimental Setup

All nodes in the network start gossiping with no
knowledge of their environment besides the identity of their
immediate neighbors. Since nodes have no preconceptions

/*** Active thread ***/ /*** Passive thread ***/
// Runs periodically every T time units // Runs when contacted by another node
Q = selectPeer() receive buff recv from any P
buff send = selectItemsToSend() buff send = selectItemsToSend()
send buff send to Q send buff send to P
receive buff recv from Q cache = selectItemsToKeep()
cache = selectItemsToKeep()

Figure 1. Skeleton of the gossip protocol for a News service.

about their neighbors, they start gossiping with little
caution. This means that they apply a low level of checking
at t = 0. For the experiments presented in the upcoming
sections,Pcheckt=0[i] = Pcheckmin = 0.05 for all nodes and
all neighborsi. Pcheckmin is also the lower bound for
Pcheck. A lower bound forPcheck is necessary, since some
checking is needed to monitor any changes in the behavior
of neighbors. The implications of this are that there is a
minimum workload imposed on the network, even in the
absence of malicious nodes, and that there is a reaction time
upon appearance of malicious nodes during whichPcheck

does not match the amount of spam being received.
In our experiment, nodes are arranged in a square grid

topology, with 50 nodes on each side, over an area of
50× 50 units. Each of the 2500 nodes has a range of 1
unit, making communication possible with its immediate
neighhbors to the North, South, East and West. From
this collection of nodes, 250 are selected to be malicious
at the beginning of each experiment. The selection is
random, resulting in malicious nodes being placed at
random locations in the grid. For all experiments, nodes
have a cache size ofc = 100 and during each gossip
exchange they exchanges= 50 entries.

3 Enforcing Data Integrity by Discouraging
Malicious Behavior

We define malicious behavior as the execution of a
variation of the gossip protocol with the intent of gaining
an unfair advantage in the use of a shared resource. In our
system, the shared resource is storage space. By deviating
from the data exchange rules defined in the shuffle protocol
that the majority of nodes are executing, a malicious node
can increase its share of storage space. The method used
by a malicious node to place large quantities of its own
content in the network is compromising the data integrity
of the messages it forwards.

3.1 Attack Model

In order to test the effectiveness of the proposed method
for enforcing data integrity, we assume that a relatively
small number of nodes in the network are malicious.

These malicious nodes, which we also callspammers, are
randomly placed in the network and execute a slightly
different version of the shuffle protocol. Their basic attack
model is to corrupt entries before forwarding them to the
nodes they communicate with. A spammer may deviate
from the normal behavior of the general population in the
following ways:

• Corrupt outgoing entries (in
selectItemsToSend()) with a probability
Pspam(also referred to asspamming rate).

• Fail to execute any integrity checks (in
selectItemsToKeep()).

Although the most effective attack appears to be spamming
with Pspam= 1, we will show later that a high spamming rate
is actually counter productive. In Section 4, we illustrate
through simulation results that the only way for a malicious
node to place more spam in the network is by spamming
less (i.e. “behaving better”).

3.2 Can Malicious Nodes Be Identified?

This section describes the expected composition of the
cache of a node that properly applies our spam removal
algorithm and how that could help differentiate well-
behaved nodes from malicious ones.

3.2.1 Cache Contents of a Well-behaved Node

The probability of having a corrupted entry after the
probabilistic verification phase,Pspamin cache, is directly
related to the probability with which a node’s neighbor
forwards spam to the node. For a nodeQ with a neighbori
that forwards a corrupted entry with a probabilityPi , the
probability of a corrupted entry making its way intoQ’s
cache can be expressed in terms ofPi and the probability
of Q checking an entry received from a neighbori, Pcheck[i]:

Pspamin cache[i] = Pi (1−Pcheck[i]) (1)

In a similar way, we can determine the probability ofQ
marking an entry aschecked and placing it into its cache,
Pcheckedin cache, by calculating the probability that an entry

neighbor_0

neighbor_1

neighbor_i

.

.

.

spam/
checked

spam/
checked

spam/
checked

spam
checked

≈

filter

cache

Figure 2. If a node applies probabilistic
verification properly, the amount of spam and
checked items in its cache should be similar.

received byQ is selected to be checked and is not corrupted.
The probability of this occuring is:

Pcheckedin cache[i] = Pcheck[i] (1−Pi) (2)

Assuming that nodeQ is executing the probabilistic
verification properly,Pcheck[i] should approximatePi, the
probability that a received entry is corrupted. Therefore,
we can expect that when dealing with neighbori the
percentage of spam sent byi that makes it intoQ’s cache
roughly approximates the percentage of entries marked as
checked by Q and placed inQ’s cache. This comes as
a result of (1) and (2) being approximately the same when
Pcheck[i] ≈ Pi .

As a general case, nodeQ has many neighbors and
each neighbor may forward a different amount of spam.
For example, neighborA may be malicious and send
many corrupted messages, whileB may pass along a
few corrupted messages sporadically. Nevertheless, the
interaction with each neighbor should result in similar
amounts of spam and checked entries arriving intoQ’s
cache. Therefore, neighborA may be responsible for a
large number of corrupted and checked entries inQ’s cache,
while neighborB, which rarely forwards spam, is only
responsible for a few corrupted and checked entries. As
a result, if nodeQ is properly filtering the content received
from its neighbors,Q’s cache should have similar amounts
of corrupted and checked entries. Figure 2 illustrates this
scenario.

3.2.2 Expected Incoming Traffic

When exchanging entries with a malicious node, spam may
come in two forms: as checked entries or as unchecked
entries. Marking a corrupted entry aschecked is a big
risk as it effectively proves that the neighbor is indeed
misbehaving. If a node runs an integrity check on an entry

marked aschecked by a neighbor and the test fails, the
neighbor identifies itself as a spammer. Therefore, it is
unlikely that a malicious node would send spam marked
aschecked. We can expect corrupted entries to arrive as
unchecked.

The shuffle protocol specifies that entries to shuffle are
selected at random from a node’s cache. Therefore, given
that a well-behaved node has a similar amount of spam and
checked entries in its cache, we can reasonably expect to
receive a similar amount of corrupted entries and checked
entries when engaging in a gossip exchange with a well-
behaved neighbor. A significant difference between the two
should raise concerns. the spammer detection mechanism
(introduced later on) is built on this principle.

4 Effect of Spammers on the Network

This section shows the extent of the damage caused by
spammers in terms of the amount of spam they can place in
the network.

4.1 The Effect of Alpha

The parameterα, introduced in Section 2.3, determines
the sensitivity of the integrity enforcement mechanism to
the current levels of pollution observed. In essence,α ∈
[0,1] controls the speed with whichPcheck[i] adjusts to
the pollution levels observed in the link corresponding to
neighbori.

Figure 3 shows the effect ofα on the proliferation of
corrupted entries through the network. For this experiment,
250 malicious nodes corrupt entries with a probability
Pspam= 0.50. It is important to point out that the parameter
α has no effect on the final amount of spam in the network.
It only affects the speed at which the level of spam
stabilizes. The level to which spam converges is dictated by
the number of malicious nodes and the rate at which they
place spam in the network.

4.2 Varying Spamming Rates

Whenever a node exchanges entries with a malicious
node, the malicious node has the opportunity to send spam.
The amount of spam included in the collection of entries
sent by the malicious node is regulated by the parameter
Pspam, which is the probability that an entry sent by a
spammer is corrupted.

Figure 4 shows the amount of corrupted content in
the network over time, after the appearance of spammers.
The results of six independent experiments, each with a
different spamming rate, are shown. In each experiment,
250 spammers (10% of the network) at random positions
start generating spam at round 50. Prior to that moment,

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

%
 o

f s
pa

m

rounds

alpha = 0.1
alpha = 0.3
alpha = 0.5
alpha = 0.7
alpha = 0.9

Figure 3. Percentage of corrupted entries in
the network over time for different values of
α.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

%
 o

f s
pa

m

rounds

Pspam = 0.1
Pspam = 0.2
Pspam = 0.5
Pspam = 0.6
Pspam = 0.9
Pspam = 1.0Pspam = 0.5

Pspam = 0.6

Pspam = 0.2

Pspam = 0.1

Pspam = 0.9

Pspam = 1.0

Figure 4. Amount of corrupted entries in the
network over time, for different spamming
rates.

all nodes in the network are checking the traffic in each of
their links at the minimum level ofPcheckmin = 0.05. The
appearance of spammers is followed by a fast increase in
the amount of spam in the network. However, in all cases
the amount of spam stabilizes after the initial period of
growth. An important observation is that the value to which
the amount of spam converges is not proportional to the
spamming rate of the malicious nodes. In fact, a closer look
reveals that spamming at a high rate is actually detrimental
to the spammer’s ability to place corrupted entries in the
network. By measuring the value to which the amount of
spam converges (by averaging the last 200 rounds), we can
observe its relationship to the spamming ratePspam more
clearly. Starting from a low spamming rate, we observe
that initial increases ofPspam yield positive results for the
malicious nodes. However, after reaching the mid-point
of Pspam= 0.5, increasing the spamming rate turns counter
productive.

After an initial period of adjustment following the
apperance of spammers, well-behaved nodes tune their

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 o

f s
pa

m

Pspam

spam

Figure 5. Average number of corrupted
entries in the network for different spamming
rates.

filters to the actual amounts of spam observed through each
of the links to their neighbors. Consequently, neighbors of
spammers create a barrier that filters out corrupt messages
produced by malicious nodes. The strength of the filtering
is proportional to the amount of corrupted entries observed.
This explains the inability of spammers to disseminate
corrupt data when using a very high spamming rate. In
essence, the large amounts of spam produced are being
filtered out after a hop or two.

In contrast, a somewhat lower spamming rate results in
neighbors lowering their checking, allowing more spam into
the network. The key to understanding this behavior lies in
equation (1). In the stable state, where nodes have adjusted
their filters (Pcheck[i] = Pi), the percentage of spam in a well-
behaved node’s cache is dictated by the value ofPcheck[i],
peaking whenPcheck[i] = 0.5 and reaching 0 at the extremes
(Pcheck[i] = 0 andPcheck[i] = 1).

4.3 Workload Caused By Spammers

The previous sections have established that nodes
regulate the amount of checks they perform according to
the amount of corrupted content they observe. Since the
nodes’ wireless transceivers have a limited range, nodes
that are in physical proximity of spammers are more
likely to receive corrupt entries and, therefore, execute
more integrity checks. This causes some nodes to have a
higher workload than others with regard to data integrity
enforcement.

The amount of checking done by a node is dictated
by the values ofPcheck on its incoming links. Using the
average value ofPcheck per node as a metric, Figure 6
shows the imbalance in the workload placed on the nodes
in the network. While the majority of nodes has a low
averagePcheck(with a high number doing only the minimum
amount of checking,Pcheckmin = 0.05), a considerable

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 n

od
es

average Pcheck

nodes

Figure 6. Histogram of average values of
Pcheckfor every node in the network (malicious
nodes excluded). 250 malicious nodes insert
corrupted entries with Pspam= 0.90.

number checks more than a quarter of their incoming
traffic. Even a few nodes check up to 50% or more of
the entries they receive. These nodes are directly affected
by having malicious nodes as neighbors. Even though
their work prevents malicious nodes from disseminating
corrupted entries, the malicious nodes succeed at disrupting
the network by wearing out their neighbors by increasing
their workload. For this reason, it is not enough to monitor
and reduce the amount of corrupted entries, but also to take
active measures towards isolating misbehaving nodes.

5 Detecting Malicious Behavior

Identifying a neighbor as a spammer boils down to being
able to differentiate between a node that actively corrupts
entries and one that simply forwards the corrupted content
received from somebody else. Since nodes do not check
100% of the entries they receive from a neighbor, they can
not assume that receiving spam from their neighbor makes
the neighbor a spammer. In fact, forwarding some spam is a
perfectly valid situation in our network. In a similar way,
the number of checked entries by itself is not enough to
determine if a neighbor is a spammer or not. In fact, nodes
doing minimal checking will forward very few checked
entries.

5.1 Detection Mechanism

The key to detecting a spammer lies not in the amount
of spam or the number of checked entries received, but in
the relationship between these two values. As explained
previously in Section 3.2, if a node is behaving properly,
there should be a balance between the amount of spam
and the number of checked entries it sends. With this in
mind, a node can monitor the behavior of its neighbors by

individually tracking the difference between the amount of
spam received and the number of checked entries for each
neighbor.

In a similar way as keeping track of the value ofPcheck

for every neighbor, a nodeQ can keep track of the number
of checked entries it receives from each neighbori. Node
Q does not do any additional checking, it just counts
the number of entries flagged aschecked. After every
exchange with neighbori, nodeQ updates its estimate of
the number of checked items received fromi:

checked[i]t+1 = (1−α)checked[i]t + α f ractionChecked

The fraction of checked entries for the next round
(checked[i]t+1) is updated as a weighted sum of its previous
value (checked[i]t) and the percentage of checked entries
found (f ractionChecked).

The spammer detection mechanism is based on
monitoring the difference betweenPcheck[i] (which is an
approximation of the amount of spam received from
neighbori) and checked[i] (which reflects the fraction of
checked entries expected from neighbori). An acceptable
difference is defined as the parameterδ. In every round,
nodeQ:

• Calculatesdiff = |Pcheck[i]−checked[i]|

• If diff ≤ δ, neighbori is behaving properly. Otherwise,
i is a suspected spammer.

Figure 7 shows the result of applying the proposed
detection method for different values ofδ, with Pspam set
to 0.5 (the value that allows for the most spam to be
placed in the network, as shown in Figure 5). The graphs
depict the number of spammers detected, as well as the
number of false negatives (spammers that avoid detection)
and positives (well-behaved nodes that are confused as
spammers). The results are counted per link, since nodes do
separate analyses for each of their neighbors. The threshold
δ affects the detection of spammers in the following ways:

• A small δ results in spammers being detected
quickly after their appearance, but could also lead
to well-behaved nodes being mistakenly identified as
spammers, i.e., false positives [see Figure 7(a)].

• With larger values ofδ, spammers can operate for
a longer period of time before being identified.
However, a largerδ prevents well-behaved nodes from
being confused with spammers, i.e., false negatives.

The initial period after the appearance of spammers is
characterized by well-behaved nodes struggling to adjust
their values ofPcheck for every neighbor to the appropriate
level. As a result, good nodes may store and forward
more corrupted entries than expected and could easily be
confused with spammers if the thresholdδ is too restrictive.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 60 80 100 120 140 160

nu
m

be
r

of
 n

od
es

rounds

detected spammers
false negatives
false positives

 0

 1000

 2000

 3000

 4000

 5000

 6000

 60 80 100 120 140 160

nu
m

be
r

of
 n

od
es

rounds

detected spammers
false negatives
false positives

(a) (b)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 60 80 100 120 140 160

nu
m

be
r

of
 n

od
es

rounds

detected spammers
false negatives
false positives

 0

 1000

 2000

 3000

 4000

 5000

 6000

 60 80 100 120 140 160

nu
m

be
r

of
 n

od
es

rounds

detected spammers
false negatives
false positives

(c) (d)

Figure 7. Results of applying the detection
algorithm over time for different values of δ:
a) δ = 0.05, b) δ = 0.10, c) δ = 0.15 and d) δ =
0.20.

5.2 Flying under the Radar

We say that a malicious node is “flying under the radar”
if the system consistently detects it as a false negative. As
seen previously, after a short initial period where nodes
adjust to the presence of spammers, spammers can be
accurately discovered given an appropriate value ofδ. In
order for a malicious node to fly under the radar, it needs
to modify its behavior enough to be confused with a well-
behaved node. We identify two possible strategies for a
malicious node to achieve this:

• Checking entries just as a normal node would do and
spamming with probabilityPspam in the unchecked
entries.

• ReducingPspam in the hopes of reducingdiff enough
so thatdiff ≤ δ.

Figure 8 shows the results of the first approach. The
experiment records statistical information fordiff (average
value and standard deviation) when the neighbor is a
spammer and when the neighbor is a normal node.
By executing integrity checks just like a well-behaved
node (nowselectItemsToKeep() is the same for
spammers and normal nodes), spammers can lower the
value ofdiff [see Figure 8(a)] to the point were some nodes
avoid detection [Figure 8(b)]. However, only a very small
number of nodes are not discovered as being malicious.
Moreover, this does not happen consistently.

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140 160 180 200

di
ff

rounds

spammer neighbor (not checking)
spammer neighbor (checking)
normal neighbor

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 150 200 250 300

nu
m

be
r

of
 n

od
es

rounds

false negatives

(a) (b)

Figure 8. Spammers try to prevent being
discovered by executing integrity checks: a)
average value of diff ± σ for spammers and
normal nodes as neighbors (Pspam= 0.5, δ =
0.20), b) spammers that avoid detection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140 160 180 200

di
ff

rounds

spammer neighbor (not checking)
normal neighbor

 200

 300

 400

 500

 600

 700

 800

 900

 60 80 100 120 140 160

nu
m

be
r

of
 n

od
es

rounds

false negatives

(a) (b)

Figure 9. Spammers try to avoid detection by
lowering their spamming rate to 0.1.

The second approach is more effective in terms of
avoiding discovery. With a spamming rate of 0.1, the value
of diff for a considerable number of spammers falls below
the thresholdδ = 0.20, as can be seen in Figure 9(a). As a
consequence, many spammers are not discovered as such
[see Figure 9(b)]. However, atPspam= 0.1 the amount
of spam they can place in the network is low. And after
discovered spammers are removed, the amount of spam
will decrease even more. In addition, the spammers that
are not discovered are not always the same. Therefore, a
well-behaved node could identify spammers by taking as a
policy to stop communication with another node if the node
qualifies as a spammerx number of times over a period of
time.

6 Conclusions

In this paper, we explored the feasibility of ensuring data
integrity in very large ad hoc networks by means of a simple
and inexpensive solution based on probabilistic integrity
checks and traffic analysis. Our approach has proven to
be effective in containing the spread of corrupted content
without imposing a burden for all nodes in the network.
In fact, the workload placed on nodes is proportional to

the amount of corrupted content they receive, affecting
mostly nodes in the neighborhood of spammers. By keeping
track of their incoming traffic, nodes affected by malicious
neighbors can discover and isolate those misbehaving
nodes. We also explored to what extent a malicious node
can avoid detection. Although possible, avoiding detection
implies a considerable decrease in the level of malicious
behavior, lessening the impact of spammers in the network.

References

[1] S. Bansal and M. Baker. Observation-based cooperation
enforcement in ad hoc networks. Technical Report, 2003.

[2] S. Buchegger and J.-Y. Le Boudec. Self-policing mobile ad
hoc networks by reputation systems.IEEE Communications
Magazine, 43(7):101–107, July 2005.

[3] L. Buttyan and J.-P. Hubaux. Enforcing service availability in
mobile ad-hoc wans. InMobiHoc ’00: Proceedings of the 1st
ACM international symposium on Mobile ad hoc networking
& computing, pages 87–96, Piscataway, NJ, USA, 2000.
IEEE Press.

[4] D. Gavidia, G. P. Jesi, C. Gamage, and M. van Steen. Canning
Spam in Wireless Gossip Networks. InProceedings Fourth
Annual Conference on Wireless On demand Network Systems
and Services (WONS), Obergurgl, Austria, January 2006.

[5] D. Gavidia, S. Voulgaris, and M. van Steen. A gossip-based
distributed news service for wireless mesh networks. In
Proceedings 3rd IEEE Conference on Wireless On demand
Network Systems and Services (WONS), Les Menuires,
France, January 2006.

[6] J. Liang, N. Naoumov, and K. Ross. The index poisoning
attack in p2p file-sharing systems. InProceedings of IEEE
Infocom 2006, Barcelona, Spain, 2006.

[7] N. Naoumov and K. Ross. Exploiting p2p systems for ddos
attacks. InInfoScale ’06: Proceedings of the 1st international
conference on Scalable information systems, page 47, New
York, NY, USA, 2006. ACM Press.

[8] K. Walsh and E. G. Sirer. Fighting peer-to-peer spam and
decoys with object reputation. InProceedings of P2PECON
Workshop, Philadelphia, Pennsylvania, August 2005.

