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Abstract content can be disseminated through the network in a
reliable way. However, when some nodes decide not to
Ad hoc networks rely on nodes forwarding each other’s play by the rules, the characteristics of the dissemination
packets, making trust and cooperation key issues foras well as the reliability of the content being forwarded
ensuring network performance. As long as all nodes might change. We refer to any kind of message placed
in the network belong to the same organization and in the network as a result of malicious behaviorspam
share the same goal (in military scenarios, for example), as these unsolicited messages serve only the interest of the
it can generally be expected that all nodes can be malicious node(s) and waste the already limited resourncesi
trusted. However, as wireless technology becomes morghe network. We use the term malicious node and spammer
commonplace, we can foresee the appearance of venjinterchangeably.
large, heterogeneous networks where the intentions of This paper studies the effect of having misbehaving
neighboring nodes are unknown. Without any security nodes in the network that compromise the integrity of
measures in place, any node is capable of compromisingthe data being disseminated and the measures that can be
the integrity of the data it forwards. Our goal in this paper taken to counter act such malicious behavior. Since we
is to ensure the integrity of the data being disseminated are dealing with large-scale networks, our intention is to
without resorting to complex and expensive solutions. Wedevelop effective solutions that scale easily. Therefore,
achive this by discouraging malicious behavior in two we favor simplicity and the use of local interactions and
ways: a) enforcing integrity checks close to the source decisions only.
and b) refusing to communicate with obviously malicious
nodes. We find that by havi_ng nodes sample thgir tra_\f_fic-rhe Cost of Guaranteeing Data Integrity The
folr corrupted messages, malicious nqdes can be 'd.ent'f'edconventional approach to ensuring the integrity of a
with hlgh accuracy, in _effect transforming our collectioh o message is to require that the message be signed by its
nodes into a self-policing network. creator. By verifying the digital signature on the message,
the receiver can be assured of its integrity. However, this
procedure is computationally expensive. In a wireless ad
1 Introduction hoc network, where nodes act themselves as routers, a
message may have travelled several hops before reaching
Given the dynamic nature, often unreliable links and lack its destination. Due to the lack of a trusted infrastructure
of a central authority that characterize ad hoc networks, for routing, the message might have become corrupted
giving any hard guarantees regarding their performance is aalong the way. If that is the case, and the receiver verifies
difficult task. The situation becomes even more complex if this with an integrity check, the cost incurred due to the
we envision very large networks of heterogeneous nodes. Incorrupted message is not just limited to the verification of
this scenario, not only would we have to deal with the issue the signature, but it also includes the cost of routing. This
of scale, but also with the fact that we cannot be certain of situation could be avoided by executing integrity checks at
the willlingness of all nodes to cooperate towards a commonevery hop. As a result, data integrity would be guaranteed
goal. The lack of a central authority to oversee the good and malicious nodes could be easily detected.
behavior of nodes is a clear disadvantage. The downside of this approach is the heavy
A common assumption is that nodes adhere to executingcomputational load inflicted on the nodes, as each node
the chosen communication protocol. Under this condition, would have to check every message it forwards. Therefore,



even at times when no malicious nodes are present, thenisbehaved neighbor. In Section 4, we analyze (through
nodes in the network would be wasting resources checkingsimulations) the damage caused by malicious nodes in
valid messages. terms of the amount of corrupted content they are able

to place in the network. Section 5 describes the method

Contribution  Our work strives to find a middle ground We propose to identify malicious nodes. An experimental
with regard to the workload imposed on nodes to guaranteeevaluation ba.sed on Simu|ati0ns iS presented. We ConC|ude
the integrity of data in the network. First, we present a in Section 6.

probabilistic data verification scheme, which dynamically

adapts the workload of each individual node according 2 System Model

to the threat of malicious nodes in its surroundings, in

essence reducing the amount of work required by nodes \we focus on store-and-forward systems where nodes

that are not in the vicinity of malicious nodes. As a deyote a limited amount of space to store messages.
result, the overall workload in the network is kept low and e refer to this space as the nodemche The

it concentrates around the malicious nodes. Second, We.ommunication medium is wireless and, therefore,
take a proactive approach to enforcing data integrity in the messages are disseminated through the network in a

network by having the nodes constantly monitor the good yyytj-hop fashion. We assume that nodes forward a batch
behavior of their neighbors. In addition, we show that the of messages at a time.

immediate neighbors of malicious nodes are able to detect cgpcerns regarding authentication and integrity are
their suspicious behavior with high accuracy, enablingthe - 54gressed through conventional security measures. Nodes
to take measures to prevent further corruption of data.  hat publish information are required to digitally signithe
Nodes make their own decisions to regulate traffic messages. Consequently, all messages in the network have
according to perceived adherence to good behavior by gigital signature and are subject to integrity checks. We
their neighbors. As a consequence, suspicious behaviopssyme that executing an integrity check for every message
is penalized and the malicious nodes are faced with thegceivedis prohibitively expensive for a node.
decision of adhering to the rules or be isolated. Wireless gossip networks fall under these assumptions.
The goal of these networks is to achieve reliable, robust
Related Work In our work, discovery of malicious and scalable data dissemination. To this end, nodes are
nodes is made possible by statistical analysis of incomingrequired to engage in communication with their neighbors
messages. Unlike reputation-based systems [2] whereon a regular basis. Executing integrity checks under
nodes rely on second-hand reputation reports (which couldthese conditions would be too expensive and undesirable.
be false) to determine if a neighbor is misbehaving, our With this in mind, we propose a probabilistic solution for
approach avoids issues of trust by relying only on first- integrity verification. Using wireless gossip networks as
hand observations to asses the behavior of a neighbor. Iran example platform, we evaluate the effectiveness of our
that sense, our work lies closer to [1], which avoids issues proposed data integrity enforcement solution.
of trust by relying only on first-hand observations to build
the reputation of a node. Other efforts to alleviate the 2.1 Example: Gossip-based News
problem of malicious behavior by enforcing cooperation
include payment systems [3] which assume that a node can  The Gossip-based News Service, as introduced in [5],
be swayed away from his selfish behavior through economicserves as the experimental platform to evaluate the data
Incentives. integrity enforcement measures described in this paper. Th
From the data integrity point of view, our work is service is provided by a mesh backbone made up of a
closely related to the efforts to counteract content paliut  |arge number of wireless routers that communicate through
in peer-to-peer networks [8]. A related problem due to gossiping. Owners of the routers running the service are
malicious behavior is index poisoning [6], which could lead gple to publismews itemsf interest to mobile users, which
to effective DDOS attacks [7]. are gossiped through the mesh backbone. The users carry
portable mobile devices capable of connecting to the mesh
Roadmap The reminder of this paper is structured as backbone to retrieve news items. By informing a nearby
follows. In the next section, we describe the system modelrouter of their preferences, users are able to receive only
for our data integrity enforcement mechanism, specifying relevant news items in their portable devices. A detailed
the assumptions we make and describing the platform usecdevaluation of the service can be found in [5].
for testing. Section 3 details the type of attack expected At the router level, the news service uses a gossip
from malicious nodes, as well as its effect on well-behaved protocol to disseminate news items. News items are
nodes and the clues that could help a node identify apropagated through the network in the form eftries



While an item is a piece of information, an entry network. By making nodes self-aware with respect to
is the representation of the item in the network and malicious behavior in the network (in particular, corrupt
for each item several entries may exist, since entriesmessages being disseminated), small aedjustments to local
are replicated during gossiping. Figure 1 shows the behavior can be made. The result of these adjustments
skeleton of this push-pull epidemic protocol. Nodes is that security measures are applied where needed, while
gossip periodically, initiating an exchange (active tilea nodes in safe areas keep their work to a minimum (but
once everyround (fixed gossiping interval). Three always maintaining a watchful eye).

methods, sel ect Peer (), sel ectltensToSend() Discouraging malicious behavior in the network involves

andsel ect | t ensToKeep() represent the core of the two steps: a) executing probabilistic verification and
protocol: b) updating the checking probabilitineck for the next

round. PsreckiS a local parameter and its value is updated

e sel ect Peer () : Select a neighbor randomly according to the observations made during the probalilisti

verification stage. The dynamic nature of ad hoc networks

e sel ectitensToSend(): Randomly selects . yeqitnecessary to continuously adjust the valReraf

entries from the local cache and send a copy of those

entries buf f _send) to the selected peer. 2.3 Verifying the Integrity of Data in a

e sel ect |t ensToKeep() : Probabilistically verify Dynamic Environment
data integrity. Add received entriesb{f f _r ecv)
to the local cache and remove repeated entries. If the We define the level ofpollution in a collection
number of entries exceedsremove entries amongthe ©Of messages as the fraction of corrupted messages.

ones that were previously sent (unless they were alsoNodes get an insight into the pollution levels in their
in buf f _r ecv) until the cache containsentries. neighborhood during the probabilistic verification phase.

When participating in a gossip exchange, a nBdeceives
In bold we highlight the added measure to enforce datas entries from a neighbo®. These entries are subject to
integrity as nodes disseminate data through the network. Inchecking their integrity with a probabilitfcheck resulting
the remainder of the paper we examine the effect of addingin a fraction of thes entries being checked. Since the
these measures to the protocol for a wireless gossipingneighbor selected trsentries at random fromits cache, this
network where a number of malicious nodes compromise sample gives node an estimate of the level of pollution in
the integrity of messages. the neighbor’s cache. Nodrecan then use this information

to updateP;neckfor the next round in the following manner:

2.2 Probabilistic Verification :
PchechH =(1- cx)Pcheclg +aP

Upon receiving a set of messages from a neighbor, nodes

execute integrity checks by verifying a digital signature P = %imoll/e;
on each received message with probabiltyec If the numt.hecke
message is valid, then it is marked afecked and P’ is the level of pollution calculated after checking

stored in the node’s cache. Otherwise, the message islumCheckedtems in the probabilistic verification phase.
discarded. We call this procegsobabilistic verificaton =~ NumRemoved the number of items that did not pass the
As introduced in [4], probabilistic verification proves te b integrity test and were removed. The valuePgfeckfor the
an effective method for reducing the amount of corrupted Next round Beneck, ;) is updated as a weighted sum of its
content and restricting its spread. previous value Reheck) @nd the level of pollutio®. The
While [4] proved that probabilistic integrity checks could Parameten determines the sensitivity of parameRheck
reduce the impact of spam in the network, the nodesto Changes in the poIIution levels in the neighborhood.
did not have a role in determining the strength of the In general, nodes are bound to have more than one
measures taken against malicious nodes. The probabilityneighbor. For this reason, each node should maintain a
of checking an entryPseck Was a fixed network-wide —different Peneck for each neighbor. In essence, for each
parameter, chosen at the beginning of each experiment. As &eighbori nodeP maintains &cnecki] -
result, nodes had to do the same amount of work regardless
of the conditions in their surroundings (being flooded with 2.4 Experimental Setup
corrupted messages or not).
In this paper, nodes are given the autonomy to apply All nodes in the network start gossiping with no
probabilistic verification on an individual basis, in effec knowledge of their environment besides the identity ofithei
transforming our collection of nodes into a self-policing immediate neighbors. Since nodes have no preconceptions
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/1l Runs periodically every T time units /1 Runs when contacted by anot her node

Q = sel ect Peer () recei ve buff recv fromany P
buf f send = sel ectltenmsToSend() buf f send = sel ectltenmsToSend()
send buff_send to Q send buff_send to P

recei ve buff recv fromQ cache = sel ectltensToKeep()

cache = sel ectltensToKeep()

Figure 1. Skeleton of the gossip protocol for a News service.

about their neighbors, they start gossiping with little These malicious nodes, which we also cglammersare
caution. This means that they apply a low level of checking randomly placed in the network and execute a slightly
att = 0. For the experiments presented in the upcoming different version of the shuffle protocol. Their basic dttac
sections,Peheck i} = Peheck,, = 0.05 for all nodes and  model is to corrupt entries before forwarding them to the
all neighborsi.  Peheck,, iS also the lower bound for nodes they communicate with. A spammer may deviate
Peheck A lower bound forPseckis necessary, since some from the normal behavior of the general population in the
checking is needed to monitor any changes in the behaviorfollowing ways:

of neighbors. The implications of this are that there is a

minimum workload imposed on the network, even in the ® Corrupt outgoing . entries -_(in
absence of malicious nodes, and that there is a reactiontime ~ Sl €ct I temsToSend()) with a probability
upon appearance of malicious nodes during whigheck Pspam(also referred to aspamming ratg

does not match the amount of spam being received.

In our experiment, nodes are arranged in a square grid
topology, with 50 nodes on each side, over an area of
50x 50 units. Each of the 2500 nodes has a range of 1Although the most effective attack appears to be spamming
unit, making communication possible with its immediate with Pspam= 1, we will show later that a high spamming rate
neighhbors to the North, South, East and West. Fromis actually counter productive. In Section 4, we illustrate
this collection of nodes, 250 are selected to be maliciousthrough simulation results that the only way for a malicious
at the beginning of each experiment. The selection is node to place more spam in the network is by spamming
random, resulting in malicious nodes being placed atless (i.e. “behaving better”).
random locations in the grid. For all experiments, nodes

have a cache size of = 100 and during each gossip 3.2 Can Malicious Nodes Be Identified?
exchange they exchange- 50 entries.

e Fail to execute any integrity checks (in
sel ectltensToKeep()).

This section describes the expected composition of the
3 Enforcing Data Integrity by Discouraging cache of a node that properly applies our spam removal
Malicious Behavior algorithm and how that could help differentiate well-
behaved nodes from malicious ones.

We define malicious behavior as the execution of a
variation of the gossip protocol with the intent of gaining 3.2.1 Cache Contents of a Well-behaved Node
an unfair advantage in the use of a shared resource. In ou
system, the shared resource is storage space. By deviatin
o e it el i i e s BrloC et o e prbbilty wih whih a roce’sneghtor
. . ' forwards spam to the node. For a nd@evith a neighboi
can increase its share of storage space. The method usedl .+ forwards a corrupted entry with a probabilly the

by a malicious node to place large quantities of its own o T ;
tent in th work i sing the data intearit probability of a corrupted entry making its way in@s
g??hznm:anssaeense't\l\f/g: ;Sr d(;omprom|smg € data Integnly cache can be expressed in term$Po&ind the probability
gesitiorw ' of Q checking an entry received from a neighbdPchecqil:

The probability of having a corrupted entry after the
grobabilistic verification phaseRspamin_cache iS directly

3.1 Attack Model Pspamin_cache{i] =h (1 - Pcheck[i]) (1)

In order to test the effectiveness of the proposed method In a similar way, we can determine the probability®@f
for enforcing data integrity, we assume that a relatively marking an entry ashecked and placing it into its cache,
small number of nodes in the network are malicious. Peheckedin_cache DY Calculating the probability that an entry



neighbor_0 marked aschecked by a neighbor and the test fails, the
/ neighbor identifies itself as a spammer. Therefore, it is
unlikely that a malicious node would send spam marked
aschecked. We can expect corrupted entries to arrive as

spam/

, filter
checked ,

spam = S
checked spam neighbor_1 unchecked.
D E :""l D The shuffle protocol specifies that entries to shuffle are
iﬁz?k';d\/ selected at random from a node’s cache. Therefore, given
that a well-behaved node has a similar amount of spam and
\ ' checked entries in its cache, we can reasonably expect to
neighbor i receive a similar amount of corrupted entries and checked
entries when engaging in a gossip exchange with a well-
Figure 2. If a node applies probabilistic behaved neighbor. A significant difference between the two
verification properly, the amount of spam and should raise concerns. the spammer detection mechanism
checked items in its cache should be similar. (introduced later on) is built on this principle.

4 Effect of Spammers on the Network
received byQ is selected to be checked and is not corrupted.

The probability of this occuring is: This section shows the extent of the damage caused by
spammers in terms of the amount of spam they can place in
Pcheckedin_cache{i] = Pchecl{i] (1 - PI) (2) the network.

Assuming that node) is executing the probabilistic 4.1 The Effect of Alpha
verification properly,Perecdi] should approximatd, the
probability that a received entry is corrupted. Therefore, The parametea, introduced in Section 2.3, determines
we can expect that when dealing with neighbothe the sensitivity of the integrity enforcement mechanism to
percentage of spam sent byhat makes it intdQ’s cache the current levels of pollution observed. In esserce;
roughly approximates the percentage of entries marked ag0,1] controls the speed with whicRehecdi] adjusts to
checked by Q and placed inQ's cache. This comes as the pollution levels observed in the link corresponding to
a result of (1) and (2) being approximately the same whenneighbori.

Penecdi] = P. Figure 3 shows the effect af on the proliferation of

As a general case, nod@ has many neighbors and corrupted entries through the network. For this experiment
each neighbor may forward a different amount of spam. 250 malicious nodes corrupt entries with a probability
For example, neighboA may be malicious and send Pspam= 0.50. Itis important to point out that the parameter
many corrupted messages, whik: may pass along a o has no effect on the final amount of spam in the network.
few corrupted messages sporadically. Nevertheless, thdt only affects the speed at which the level of spam
interaction with each neighbor should result in similar stabilizes. The level to which spam converges is dictated by
amounts of spam and checked entries arriving e the number of malicious nodes and the rate at which they
cache. Therefore, neighbd may be responsible for a place spam in the network.
large number of corrupted and checked entrig@'scache,
while neighborB, which rarely forwards spam, is only 4.2 Varying Spamming Rates
responsible for a few corrupted and checked entries. As
a result, if nodeQ is properly filtering the content received Whenever a node exchanges entries with a malicious
from its neighborsQ's cache should have similar amounts node, the malicious node has the opportunity to send spam.
of corrupted and checked entries. Figure 2 illustrates thisThe amount of spam included in the collection of entries
scenario. sent by the malicious node is regulated by the parameter
Pspam Which is the probability that an entry sent by a
spammer is corrupted.

Figure 4 shows the amount of corrupted content in
When exchanging entries with a malicious node, spam maythe network over time, after the appearance of spammers.
come in two forms: as checked entries or as uncheckedThe results of six independent experiments, each with a
entries. Marking a corrupted entry akecked is a big different spamming rate, are shown. In each experiment,
risk as it effectively proves that the neighbor is indeed 250 spammers (10% of the network) at random positions
misbehaving. If a node runs an integrity check on an entry start generating spam at round 50. Prior to that moment,

3.2.2 Expected Incoming Traffic
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wf E e n PIPANZ0STY rinae produced by malicious nodes. The strength of the filtering

is proportional to the amount of corrupted entries observed
This explains the inability of spammers to disseminate
corrupt data when using a very high spamming rate. In
essence, the large amounts of spam produced are being
filtered out after a hop or two.

% of spam

0 50 100 150 200 250 300 350 400 450 500

rounds In contrast, a somewhat lower spamming rate results in
neighbors lowering their checking, allowing more spam into
Figure 4. Amount of corrupted entries in the the network. The key to understanding this behavior lies in
network over time, for different spamming equation (1). In the stable state, where nodes have adjusted
rates. their filters Pehecdi] = P), the percentage of spam in a well-

behaved node’s cache is dictated by the valu€gdc{i],
peaking wherPhecdi] = 0.5 and reaching 0 at the extremes

all nodes in the network are checking the traffic in each of (Peneci] = 0 andPenecdi] = 1).

their links at the minimum level oPchecy,, = 0.05. The
appearance of spammers is followed by a fast increase ind-3 ~Workload Caused By Spammers
the amount of spam in the network. However, in all cases
the amount of spam stabilizes after the initial period of  The previous sections have established that nodes
growth. An important observation is that the value to which regulate the amount of checks they perform according to
the amount of spam converges is not proportional to thethe amount of corrupted content they observe. Since the
spamming rate of the malicious nodes. In fact, a closer looknodes’ wireless transceivers have a limited range, nodes
reveals that spamming at a high rate is actually detrimentalthat are in physical proximity of spammers are more
to the spammer’s ability to place corrupted entries in the likely to receive corrupt entries and, therefore, execute
network. By measuring the value to which the amount of more integrity checks. This causes some nodes to have a
spam converges (by averaging the last 200 rounds), we carmigher workload than others with regard to data integrity
observe its relationship to the spamming rRtgam more enforcement.
clearly. Starting from a low spamming rate, we observe  The amount of checking done by a node is dictated
that initial increases oPspamYield positive results for the  py the values ofPeeck 0N its incoming links. Using the
malicious nodes. However, after reaching the mid-point average value oPseck per node as a metric, Figure 6
of Pspam= 0.5, increasing the spamming rate turns counter shows the imbalance in the workload placed on the nodes
productive. in the network. While the majority of nodes has a low
After an initial period of adjustment following the averagd:neck(with a high number doing only the minimum
apperance of spammers, well-behaved nodes tune theimmount of checking,Peheck,, = 0.05), a considerable
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Figure 6. Histogram of average values of
Pcheckfor every node in the network (malicious
nodes excluded). 250 malicious nodes insert
corrupted entries with  Pspam= 0.90.

The fraction of checked entries for the next round
(checkedi]i+1) is updated as a weighted sum of its previous
value Checkedi];) and the percentage of checked entries
found (fractionCheckell

The spammer detection mechanism is based on
monitoring the difference betweePhecdi] (which is an
number checks more than a quarter of their incoming approximation of the amount of spam received from
traffic. Even a few nodes check up to 50% or more of neighbori) and checkedi] (which reflects the fraction of
the entries they receive. These nodes are directly affectedchecked entries expected from neighborAn acceptable
by having malicious nodes as neighbors. Even thoughdifference is defined as the paramederin every round,
their work prevents malicious nodes from disseminating nodeQ:
corrupted entries, thg malicious podgs succeed Qt dingpti o Calculatesiff = [Punecdi] — checked]|
the network by wearing out their neighbors by increasing
their workload. For this reason, it is not enough to monitor ~ ® If diff <&, neighboi is behaving properly. Otherwise,

and reduce the amount of corrupted entries, but also to take IS a suspected spammer.

active measures towards isolating misbehaving nodes. Figure 7 shows the result of applying the proposed
detection method for different values &f with Pspam set

5 Detecting Malicious Behavior to 0.5 (the value that allows for the most spam to be

placed in the network, as shown in Figure 5). The graphs

Identifying a neighbor as a spammer boils down to being depict the number of spammers detected, as well as the
able to differentiate between a node that actively corruptsnumber of false negatives (spammers that avoid detection)
entries and one that simply forwards the corrupted contentand positives (well-behaved nodes that are confused as
received from somebody else. Since nodes do not checksPammers). The results are counted per link, since nodes do
100% of the entries they receive from a neighbor, they canSeparate analyses for each of their neighbors. The thigtshol
not assume that receiving spam from their neighbor makes9 affects the detection of spammers in the following ways:

the neighbor a spammer. In fact, forwarding some spamisa o A small & results in spammers being detected
perfectly valid situation in our network. In a similar way, qu|ck|y after their appearance, but could also lead

the number of checked entries by itself is not enough to to well-behaved nodes being mistakenly identified as
determine if a neighbor is a spammer or not. In fact, nodes spammers, i.e., false positives [see Figure 7(a)].

doing minimal checking will forward very few checked )
entries. e With larger values ofd, spammers can operate for

a longer period of time before being identified.
However, a larged prevents well-behaved nodes from
being confused with spammers, i.e., false negatives.

5.1 Detection Mechanism

The key to detecting a spammer lies not in the amount  The initial period after the appearance of spammers is
of spam or the number of checked entries received, but incharacterized by well-behaved nodes struggling to adjust
the relationship between these two values. As explainedtheir values ofPheck fOr every neighbor to the appropriate
previously in Section 3.2, if a node is behaving properly, level. As a result, good nodes may store and forward
there should be a balance between the amount of spammore corrupted entries than expected and could easily be
and the number of checked entries it sends. With this in confused with spammers if the threshéls too restrictive.
mind, a node can monitor the behavior of its neighbors by
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5.2 Flying under the Radar
Figure 9. Spammers try to avoid detection by
We say that a malicious node is “flying under the radar”  lowering their spamming rate to 0.1.

if the system consistently detects it as a false negative. As
seen previously, after a short initial period where nodes

adjust to the presence of spammers, spammers can be The second approach is more effective in terms of
accurately discovered given an appropriate valué.ofn avoiding discovery. With a spamming rate of 0.1, the value
order for a malicious node to fly under the radar, it needs of diff for a considerable number of spammers falls below
to m0d|fy its behavior enough to be confused with a well- the threshold = 020, as can be seenin Figure g(a) As a
behaved node. We identify two possible strategies for aconsequence, many spammers are not discovered as such
malicious node to achieve this: [see Figure 9(b)]. However, @spam= 0.1 the amount
. L of spam they can place in the network is low. And after
e Checking entries just as a normal node would do and yiseoyered spammers are removed, the amount of spam
spamming with probabilityPspam in the unchecked i gecrease even more. In addition, the spammers that
entries. are not discovered are not always the same. Therefore, a
well-behaved node could identify spammers by taking as a
policy to stop communication with another node if the node
qualifies as a spamma&mumber of times over a period of
time.

e ReducingPspamin the hopes of reducindiff enough
so thatdiff <.

Figure 8 shows the results of the first approach. The
experiment records statistical information fiiff (average ]
value and standard deviation) when the neighbor is a6 Conclusions

spammer and when the neighbor is a normal node.

By executing integrity checks just like a well-behaved In this paper, we explored the feasibility of ensuring data
node (nowsel ectltensToKeep() is the same for integrity in very large ad hoc networks by means of a simple
spammers and normal nodes), spammers can lower the@nd inexpensive solution based on probabilistic integrity
value ofdiff [see Figure 8(a)] to the point were some nodes checks and traffic analysis. Our approach has proven to
avoid detection [Figure 8(b)]. However, only a very small be effective in containing the spread of corrupted content
number of nodes are not discovered as being malicious.without imposing a burden for all nodes in the network.

Moreover, this does not happen consistently. In fact, the workload placed on nodes is proportional to



the amount of corrupted content they receive, affecting
mostly nodes in the neighborhood of spammers. By keeping
track of their incoming traffic, nodes affected by malicious

neighbors can discover and isolate those misbehaving
nodes. We also explored to what extent a malicious node
can avoid detection. Although possible, avoiding detectio

implies a considerable decrease in the level of malicious
behavior, lessening the impact of spammers in the network.
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