
Dynamically Adapting Tuple Replication for Managing
Availability in a Shared Data Space

Giovanni Russello1, Michel Chaudron1, Maarten van Steen2

1 Eindhoven University of Technology
2 Vrije Universiteit Amsterdam

Abstract. With its decoupling of processes in space and time, the shared data
space model has proven to be a well-suited solution for developing distributed
component-based systems. However, as in many distributed applications, func-
tional and extra-functional aspects are still interwoven in components. In this
paper, we address how shared data spaces can support separation of concerns. In
particular, we present a solution that allows developers to merely specify perfor-
mance and availability requirements for data tuples, while the underlying middle-
ware evaluates various distribution and replication policies in order to select the
one that meets these requirements best. Moreover, in our approach, the middle-
ware continuously monitors the behavior of application and system components,
and switches to different policies if this would lead to better results. We describe
our approach, along with the design of a prototype implementation and its quan-
titative evaluation.

1 Introduction

The shared data space model has proven to be a useful abstraction for the development
of distributed applications. Notably its support for decoupling processes in space and
time makes it attractive for distributed systems that require dynamic configuration of
applications by the insertion and removal of components at runtime. This dynamic con-
figuration is possible when components encapsulate functionality that has been coded
independent of any runtime environment. When extra-functional requirements have
been addressed (such as those for performance), widespread component deployment
becomes more difficult. In essence, we are facing the problem of separating various
concerns when developing and deploying components in distributed systems.

One solution to address this separation is exploiting the underlying middleware. In
particular, we believe that the middleware should provide the mechanisms for specify-
ing and enforcing extra-functional concerns. For example, if replication is required, the
middleware should ideally offer mechanisms that would allow the application devel-
oper to select from different replication policies that can be subsequently enforced at
runtime. If necessary, new policies can be developed and deployed as well, independent
of the basic functionality implemented by legacy components.

Somewhat surprisingly, research on shared data spaces has been largely ignoring the
support for this separation of concerns. A plethora of solutions have been proposed to
distribute data items, without giving the application developer a choice onhow, where,



andwhendata should be distributed or replicated. To solve this problem, we have pro-
posed an extension of the shared data space model with a mechanism for separating the
distribution (and replication) of data items from their strict functional usage by appli-
cation components. Moreover, by monitoring the behavior of application components,
we have been able to dynamically adapt data distribution to the needs of an application.
We have thus effectively created a closed feedback-control system, now often popularly
coined as a self-managing or autonomic system.

So far, we have considered adaptation for performance, focusing on metrics such
as application-perceived latency and consumed network bandwidth. For this paper, we
concentrate on data availability. Assuming that components may unpredictably fail, par-
ticular care has to be taken for shared data items to remain available to other compo-
nents. Similar issues arise when an application is deployed on mobile nodes. In such an
environment, a node’s connectivity may be highly unpredictable and a set of data items
may unexpectedly disappear when a node disconnects.

A well-know solution to this problem is data replication. By replicating data on
several nodes, the system can statistically guarantee that a data item is available even if
the node where the item was inserted is no longer connected (or has failed). However,
replicating for availability may conflict with replicating for performance. For example,
high performance requirements may dictate that only weak data consistency can be
supported, whereas high availability generally requires that updates are carried out on
all replicas simultaneously.

Such tradeoffs generally require application-specific solutions. However, instead of
imposing a single solution, we propose a framework that offers to the application devel-
oper a suite of replication policies. Each policy incurs costs with respect to performance,
availability, consistency, etc. In our approach, a developer is offered a simple means to
weigh these different costs such that the system can automatically choose the policy that
meets the various (and often conflicting) objectives best. Moreover, through continous
monitoring of the environment the system can dynamically and automatically switch to
another policy if it turns out that this would reduce overall costs.

We make the following contributions. First, we provide a simple mechanism that
allows for separating concerns regarding performance and availability in shared data
space systems. Second, we demonstrate how possibly conflicting objectives can be dealt
with in these systems, such that the selection of a best policy can be done dynamically
and in a fully automated fashion. Third, we show that the input needed from an applica-
tion developer to support these optimal adaptations can be kept to a minimum, allowing
the developer to concentrate on the design and implementation of functionality.

This paper is organized as follows. In Section 2 we present our proof-of-concept
called GSpace, and mechanisms that drive GSpace decisions. To prove the soundness of
our framework we conducted some experiments, of which the outcomes are discussed
in Section 3. Section 4 focuses on related work. We conclude in Section 5 and give
directions for future research.



Logger

Cost Computation
Module

Adapt-Comm
Module

Transition
Policy

RPCM

Adaptation Subsystem

Network

Availability
Sensor

Group
 Generator

GSpace Kernel

Operation
Processing
Subsystem

Application Component

Adaptation
Module

Node

Fig. 1. Internal stucture of a GSpace kernel deployed on a node.

2 GSpace

In this section, we first provide some background information on the shared data space
model. Thereafter, we concentrate on our implementation of a shared data space, called
GSpace. We describe the internal modules that compose GSpace.

2.1 Data Space Basic Concepts

The data space concept was introduced in the coordination language Linda [3]. In Linda,
applications communicate by inserting and retrieving data through a data space. The
unit of data in the data space is calledtuple. Tuples are retrieved from the data space by
means oftemplates, using an associative method. An application interacts with the data
space using three simple operations:put, read andtake. The data space is similar to a
multisetof data, where multiple instances of the same data item can co-exist.

2.2 Architectural Design

A typical setup of GSpace consists of severalGSpace kernelsinstantiated on several
networked nodes. Each kernel provides facilities for storing tuples locally, and for dis-
covering and communicating with other kernels. GSpace kernels collaborate with each
other to provide to the application components a unified view of the shared data space.
Thus the physical distribution of the shared data space across several nodes is trans-
parent to the application components, preserving the simple coordination model of the
shared data space.

In GSpace tuples are typed. This allows the system to associate different replication
policies with different tuple types.

Figure 1 shows a GSpace kernel deployed on a networked node. A GSpace kernel
consists of two subsystems: theOperation Processing Subsystem (OPS)and theAdap-
tation Subsystem (AS).

The OPS provides the core functionality necessary for a node to participate in a
distributed GSpace: handling application component operations; providing mechanisms



for communication with kernels on other nodes; and monitoring connectivity of other
GSpace nodes that join and leave the system; and maintaining the information about
other kernels. Finally, the OPS provides the infrastructure to differentiate distribution
strategies per tuple type. The internal structure of the OPS is described in more detail
elsewhere [9].

The adaptation subsystem is an optional addition to GSpace that provides the func-
tionality needed for dynamic adaptation of policies. The AS communicates with the
co-deployed OPS for obtaining information about the status and actual usage of the
system. In particular theLoggeris responsible for logging all the space operations exe-
cuted on the local kernel. When the number of operations for a particular type reaches
a threshold, the logger notifies its localAdaptation Module (AM). The AM is the core
of each AS. The AM coordinates the different phases of theadaptation mechanism.
The code of the AMs on all nodes is identical. However, for each tuple type in the sys-
tem one AM operates as amasterand all the others asslaves. The master AM takes
decisions concerned which replication policy should be applied to a tuple type. The
slaves AM follow the decisions of the master. TheCost Computation Module (CCM)
andReplication Policy Cost Models (RPCM)are responsible for computing the costs
incurred by the replication policies for a given set of operation logs. TheTransition
Policy prescribes how to handle legacy tuples in order for them to be placed at loca-
tions where the new replication policy expects to find them. TheAdapt-Comm Module
(ACM) provides communication channels between the ASes on different nodes in the
system.

The new modules that we added for dealing with availability are the following:

Availability Sensor: This module is responsible for measuring the availability of the
node in which it is deployed. This is done by periodically writing timestamps in a
file. When a failure occurs, this time-stamp is used to compute the duration that the
node was not available.

Group Generator: Generating groups of nodes is the task of this module. Once the
availability values for all the nodes have been collected the master AM passes
this information to its local Group Generator. The Group Generator will aggre-
gate nodes following some given strategy. For instance, in the experiments that we
discuss in section 3 the Group Generator selects the best 3 nodes in term of avail-
ability. The group that the Group Generator creates is then passed to the replication
policies.

In the following section we describe in more detail how the different modules in the
AS contribute to the mechanism that allows GSpace to select the replication policy that
best suits the application behavior.

2.3 Autonomic Behavior in GSpace

This section describes the mechanism that allows GSpace to dynamically evaluate and
select the replication policy that fits best the needs of the application.

In a distributed system such as GSpace, tuples are often stored and accessed re-
motely. Since nodes may fail or get disconnected, part of the shared data space could



not be reachable. A common solution to this problem is the use of replication. By repli-
cating tuples across several nodes we increase the probability of accessing a tuple even
if some nodes are down. However, replication requires consumption of extra resources,
such as extra memory for storing tuple replicas and bandwidth for exchanging infor-
mation needed for keeping the replicas in a consistent state. Also, keeping replicas
consistent comes at the price of global synchronization when updates occur.

Instead of proposing a one-size-fits-all solution, our approach sets flexibility as its
primary goal. We included in GSpace a suite of replication policies each with its own
tradeoff between provided availability, resource consumption, and performance. In this
paper, we ignore performance issues, allowing the application developer to specify only
the availability requirements for the tuple types used by the application. The problem is
now shifted to finding the replication policy that (a) minimizes resource consumption
while (b) fulfilling the availability requirements. These conditons are generally in con-
flict with each other. As we will show, our simple mechanism is able to deal with such
conflicting situations in a fully automated fashion.

As the environment’s conditions change over time, a static assignment of replication
policy to tuple type could eventually fail to provide the required performance of the
system. As a solution to this issue, we monitor the environment. Application patterns are
detected by logging each data space operation. Moreover, to guarantee that availability
requirements are fulfilled, sensors are placed in each node to measure node availablity
in real-time. By combining these data, our mechanism can automatically detect when
to switch to another replication policy if it turns out that availability is at risk, or when
resource consumption can be improved.

We identify three phases in our mechanism, that we explain in turn.

– monitoring phase
– evaluation phase
– adaptation phase

Monitoring PhaseDuring the first phase GSpace collects statistical data regarding its
environment. This data consists of information about the availability of nodes and the
usage profile of application components.

For collecting information on node availability, the GSpace kernel is instrumented
with a sensor that monitors the availability of the node where it is running. Before diving
into implementation details, we introduce the basic math behind the measurements that
our sytem performs. The formula for calculating the availability of a single node is as
follows:

Availability =
Mean Time To Failure

Mean Time To Failure + Mean Time To Recover
(1)

It is important to understand what exactlyMean Time To Failure(MTTF) andMean
Time To Recover(MTTR) mean. With MTTF we indicate the average time that the node
is continuosly operating, i.e. the average time between the end of one failure and the
beginning of the next. With MTTR we address the average time necessary for the node
to recover from an experienced failure.

Figure 2 sketches the time line of a node that experiences some failures. When a
failure i occurs we indicate withs fi ande fi respectively the time when the failurei



starts and ends. We assume that the starting time of the node (the very first time that
the node is activated) is equivalent toe f0 (end of failure 0). Figure 2 also provides a
graphical representation of MTTF and MTTR that helps to understand how to compute
those values. For instance, the availability value after then-th failure is obtained by the
following fromula:

Availability = ∑n
i=1(s fi−e fi−1)

∑n
i=1(s fi−e fi−1)+ ∑n

i=1(e fi−s fi)
(2)

For computing (2) we need to collect the starting and ending times of a failure.
When the system is started for the first time, the sensor writes into a file the starting
time of the system. Periodically, the sensor is actived and writes timestamps into the
same file. Actually, a timestamp is just the time at which the sensor is active. After a
node experiences a failure, at re-booting time the sensor detects that the system was
down (since the timestamp file is stored persistently). The starting time of a failure then
is considered as the time at which the last timestamp was written whereas the time at
which the system is up again is considered as the end-of-failure time. GSpace simply
calculates the down time as the difference between the new starting time and the time
of the last executed timestamp.

For collecting information about the application behavior, we employ the same
method as described in our previous work [11]. Each data-space operation that ap-
plication components execute is logged and stored per tuple type. Figure 3 shows the
message sequence chart during the operation logging. The data that is logged contains:

– Operation type: the space operation executed (either aread, take or put)
– Tuple type: the type of the tuple or template passed as argument with the operation
– Location: the address of the GSpace kernel (i.e., node) where the operation is exe-

cuted
– Tuple ID: a unique id provided to each tuple that enters the shared data space
– Tuple size: the size of the tuple inserted through aput operation or returned by a

read or take operation
– Template size: the size of the template passed as argument of aread or a take

operation
– Timestamp: the time when the operation is executed

When the number of executed operations on a node reaches a given threshold the
system starts the next phase.

Starting
Time

Failure
 Start i

Failure
 End i

Failure
 Start i+1

Failure
End i+1

MTTFMTTR

Failure i Failure i+1

Failure
 End 0

Time

Fig. 2.The time line of a node that experiences some failures.



Store the info
in the run time

structs

Signal when the
threshold is

reached
Send the message
that the threshold is

reached

Pass the info of the
actual

executed operation

Availability
Sensor

Application
Component

Controller Logger
Adaptation

Module

Slave
Adaptation

Module

Master

Read,Put,Take
Periodically

write
timestamps

into a file

Fig. 3.The MSC of operation logging.

Evaluation PhaseThe evaluation phase consists of collecting data from all nodes and
comparing the cost of different replication policies.

Figure 4 shows the message sequence chart of the evaluation phase. The master AM
requests all slave AMs to send their local data (logs and node availability). This data is
combined and the costs incurred by each replication policy are calculated by means of
simulation.

For capturing the performance of the different distribution policies we use acost
function. Our cost function is a linear combination of various parameters. The values of
these parameters are combined in an abstract value that quantifies the tradeoff between
performance versus resource usage for a given replication policy. The parameters are
defined in such a way that a lower value indicates lower costs (and thus better behavior).
The replicationion policy that leads to the lowest costs represents the best policy for a
given application.

In this work, we apply the same method as described in [11] but with the focus on
data availability. Therefore, we use a different cost function:bu represents the band-
width usage;murepresents the accumulative memory usage; andda represents thede-
rived availability. The latter is calculated as follows:

da(p) =
{

100−availability(p) if availability(p)≥ required availability,
MaxValue if availability(p)< required availability

In this way, if the availability provided by a replication policyp does not satisfy the
user’s requirements then the value forda is set toMaxValueso that the calculated costs
will become very high and the system will automatically reject this policy. The cost
function is defined as follows:

CFp = w1∗bu(p)+w2∗mu(p)+w3∗da(p) (3)

The weightswi tune the relative contribution of each parameter to the overall cost.
Once the costs are calculated for each replication policy, they are passed to the AM

that selects the best replication policy. The AM checks whether the current policy is



Send the local logs
and availability of

the node Calculate the costs for
each policy using the

respective model

Pass the logs and the group to the Cost
Computation Module

Pass the predicted costs for
each policy to the Adaptation

Module

Generate the predicted
costs for each metric

Compare the CF
that each policy
produces and

select the one that
minimizes the CF

Policy Table

Master
Adaptation

Module

Check if the actual
policy is the best pocily

Ask all slaves to
send their local

information

Group
 Generator

Cost Computation
Module

RPCM

Pass the availability
values of the nodes

Pass the generated
group of nodes

Fig. 4.The MSC of the evaluation phase.

still the best one. If this is the case, no furhter actions are undertaken. Otherwise, the
AM starts the phase described next.

Adaptation PhaseDuring this phase the system switches replication policy and adapts
the data space content accordingly. In Figure 5 the actions executed during this phase are
presented in a message sequence chart. The master AM freezes application operations
for the given tuple type in all nodes. Afterwards, the each kernel takes care of updating
its own data structure and redistributes the tuples still in the space according to the new
replication policy. When this transition period is finished the master AM resumes the
operations in all nodes.

3 Implementation and Experiments

This section describes the experiments that we performed using a simulator of GSpace.
The experiments model a distributed system with 10 nodes connected via a LAN.

Our previous experiments were concerned with distributed systems in which appli-
cation components can dynamically join and leave a system during execution (but in
which the nodes were always available). In [10] we showed that there is no single dis-
tribution policy that is best for this dynamic type of application behavior. Furthermore,
in [11] we showed that dynamically adapting the distribution policy outperforms the
use of any static policy.

In this paper we do not only consider changes in the application behavior, but also
in the underlying hardware infrastructure. In particular, we consider that the availability
characteristic of nodes in the network may change. This occurs, for instance, in ad-hoc
networks where devices join and leave a network.



Master
Adaptation

Module
Policy Table

Slaves

Adaptation
Module

Freeze the local
operations for the tuple

type

Transition
Policy

Freeze operations in all slaves
for the tuple type

Send to all slaves the new
policy for the tuple type

Unfreeze operations in all
slaves for the given tuple type

Select the transition
policy to reinsert the

legacy tuples according
to the new policy

Select the transition policy
to reinsert the legacy tuples
according to the new policy

Unfreeze the local
operations for the tuple type

Reinsert the tuples

Set the best policy
as the actual policy

Fig. 5.The MSC of the policy adaptation phase.

We show the impact of changing infrastructure on sustaining a level of availablity:
without adaptation, no single static policy is able to sustain a given level of availability.
Moreover, we show that the dynamic adaptation of the policy provides a better level
of availability in the case of changing infrastructure. Furthermore, we show that the
adaptation mechanism can handle situations where both the infrastructure as well as the
application behavior change dynamically.

The goal of the experiments is to show that our system can adapt the policy it uses
to changes in the availability characteristics of the nodes in the network. As a result,
it can maintain a level of availability of tuples while the availability of nodes in the
underlying network varies.

The results of this simulation are now being incorporated in an our distributed im-
plementation of GSpace. Previous experience with the simulation [11] shows that the
accuracy of the simulation is in the order of 5 percent. Hence the simulation provides
fairly accurate predications about actual system behavior.

In the following, we first describe the set-up of the experiments. Thereafter, we
describe the replication policies used for the experiments. We conclude discussing two
interesting cases.

3.1 Set-up of the Experiments

The experiments are based on the simulation of the deployment of GSpace in a network
of 10 nodes connected via a LAN. We control the simulation experiment through the
following parameters:

– Application behavior: the operations that the application components execute using
GSpace.



The simulation contains a library of different application usage patterns. A pattern
consists of a series of read, put and take operations. Arun of an experiment con-
sists of the concatenation of a number of patterns. The patterns in a run may be of
the same type, or they may be of different types. The approach we follow for the
synthesis of application behavior is described in [11].

– Node availability behavior: the availability characteristics of the physical nodes
where GSpace is deployed; including its change over time.
The availability behavior of nodes during execution can be set to one of the follow-
ing:
• constant
• increasing from a given value to a max value by increments of a givenδ
• decreasing from a given value to a min value by increments of a givenδ
• alternating between a min and max value by increments of a givenδ

During the simulation, data about performance parameters is collected and passed
to the Adaptation Manager. Using this data the Adaptation Manager evaluates the cost
function, and determines which replication policy to use in the next phase.

3.2 Replication Policies

The set of replication policies for GSpace is extensible. For the experiments in this
paper, we use the following set of replication policies:

– Full Replication. This policy puts a copy of every tuple on every node in the system
(as soon as a tuple is inserted)

– Fixed Replication. This policy replicates tuples to a fixed number of nodes (as
soon as the tuple is inserted). When awareness of node availability is enabled, the
Group Generator provides the nodes where tuples should be replicated.

– Dynamic Consumer Replication. This policy replicates tuples to all nodes that
host an application component that is a consumer of this type of tuple. In case
the availability of the group that hosts consumer components can not provide the
required availability the policy includes in the group nodes provided by the Group
Generator.

– Dynamic Producer Replication. This policy replicates tuples to all nodes that host
an application component that is a produced of this type of tuple. Nodes provided
by the Group Generator might be included in the group of producer nodes whenever
this group can not sustain the required availability.

For maintaining consistency among the nodes where replicas are stored, the replica-
tion policies collaborate using a Group Communication Protocol. The nodes on which
tuples are replicated are joined in a group where the operations are executed atomi-
cally. Moreover, the Group Communication Protocol takes care of consistency issues
that could arise from the failure of some of the nodes in the group.

The availability that a given replication policy can sustain is determined by the
availability of the group of nodes that is used for replicating tuples to. In particular, a
group of nodes is considered available if at least one node of the group is available.



Memory Usage

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Evaluation Cycles

M
em

o
ry

 in
 K

b
yt

es


DCR

DPR

FxR 

FR

Fig. 6.Memory Usage measured for the different replication policies.

Then, the group availability,GA, equals 1 minus the probability that all nodes within
the group fail:

GA = 1−Pall nodesdown (4)

We assume that failures of nodes are independent. Then the probability that all nodes
fail is equal to the product of the probabilities of failurefi of the individual nodes:

Pall nodesdown =
n

∏
i=1

fi (5)

3.3 Adding Awareness of Node Availability to Policies

In this section we introduce replication policies that base their decisions on the avail-
ability of nodes. The experiments in this section show that by constantly monitoring the
underlaying infrastructure, the GSpace system improves sustainability of the required
availability requirements despite the unpredictable behavior of the nodes.

For the experiments in this section, we assume the application behavior is fixed ac-
cording to the following pattern. All the application components act both as consumers
and producers.

For this application behavior, both Dynamic-Consumer and Dynamic-Producer poli-
cies replicate the tuples in all nodes. This means that the memory usage is the same as
that for the Full Replication policy, as Figure 6 shows. Instead, the memory footprint of
the Fixed Replication policy is smaller than that of the other policies since this policy
replicates tuples on a smaller number of nodes.

First we consider the case when the availability monitoring is disabled. The re-
quired availability for the tuple type used in the experiments is 70%. The Fixed Repli-
cation policy is defined to use the three nodes that provide the highest availability at
the moment the system is started. However, the availability behavior of these nodes is
programmed to decrease from 90 to 10 in steps of 5 (percent).

Using these three nodes the Fixed Replication policy initially satisfies the availabil-
ity threshold. However, during execution, the nodes that are used by the Fixed Replica-
tion policy experience an increasing number of failures. Hence, the availability of the



(a) (b)

Availability

70

75

80

85

90

95

100

105

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Evaluation Cycles

M
ea

su
re

d
 A

va
ila

b
ili

ty
 (

%
)

DCR

DPR

FxR 

FR 

Cost Function

150

160

170

180
190

200

210

220

230

240

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Evaluation Cycles

C
F

 V
al

u
es



DCR

DPR

FxR 

FR

Fig. 7. Availability and Cost Funciton values for the replication policies when availability awar-
ness is disabled.

nodes decreases and as a result, the availability that the Fixed Replication policy pro-
vides decreases. Figure 7(a) clearly shows this descreasing behavior. The other repli-
cation policies provide a fairly stable availability with minor fluctuations. This is due
to the fact that the changing availabiliy of three nodes out of 10 has a minor impact on
their overall availability.

The previous graphs were concerned with availability. Next, we look at the effect of
the replication policies on the cost function.

From Figure 8(b), we can conclude that as long as the availability requirements
are met, Fixed Replication is the best policy since it uses the least memory. However,
around the 10th evaluation cycle this policy can no longer sustain the required level of
availability. As a result, the cost function value increases dramatically.

Next, we re-execute the same sequence of operations but this time with the availabil-
ity monitoring enabled. The Fixed Replication policy still makes only a fixed number
of copies, but now it selects the three nodes that have the highest availability at the time
of evaluation1.

The memory usage graph is the same as the one shown in Figure 6 since the appli-
cation behavior is the same. However, now the system is able to select nodes based on
the measured availability of the nodes. At each evaluation, the system selects the three
nodes that have highest availability. Now, Figure 8(a) shows that Fixed Replication is
able to provide the required availability. Moreover, since the memory footprint is lower
than that of the other policies, Fixed Replication is always the best policy. This is shown
in the cost funtion graph on Figure 8(b).

3.4 Combinging Dynamic Application Behavior and Dynamic Node behaviour

In this section we analyze the case where both the application components change their
behavior and also the availability of nodes changes during execution. The results will

1 These nodes are provided by the Group Generator module



(a) (b)

Availability 

90

92

94

96

98

100

102

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Evaluation Cycles

M
ea

su
re

d
 A

va
ila

b
ili

ty
 (

%
)

DCR

DPR

FxR

FR 

Cost Function 

150

160

170

180

190

200

210

220

230

240

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Evaluation Cycles

C
F

 V
al

u
es



DCR

DPR

FxR 

FR

Fig. 8. Avaialbility and Cost Funciton values for the replication policies when availability awar-
ness is enabled.

Cost Function

160

170

180

190

200

210

220

230

240

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Evaluation Cycles

C
F

 V
al

u
es



DCR

DPR

FxR 

FR 

Fig. 9.Cost Function values when the application behavior changes.

show that our mechanism not only is able to select the replication policy that satisfies
the availability requirements but also it selects the policy that best suits the components’
behavior.

During these experiments the availability characteristics of nodes are measured
from the system and made available to GSpace. The application component behavior is
programmed to change during execution according to the following phases:

– Phase 1 (evaluation cycles 0–32): all application components act both as consumers
and producers;

– Phase 2 (evaluation cycle 32–64): only the application components deployed on
nodesn9 andn10 act as consumers, all the other components act as producers;

– Phase 3 (evaluation cycle 64–95): only application components on nodesn9 and
n10 act as producers, the other componets act as consumers.



Moreover, the availability of nodesn9 andn10 is programmed to oscillate between
10% and 90%. Therefore, the group formed by these two nodes is not always able to
sustain the required level of availability, which is fixed to 70%.

Let us begin analyzing the cost function values on Figure 9. During the first phase
of the execution, the best policy that can guarantee the availability requirements with
minimal memory usage is Fixed Replication.

Memory Usage

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Evaluation Cycles

M
em

o
ry

 in
 K

b
yt

es


DCR

DPR

FxR

FR 

Bandwidth

450

470

490

510

530

550

570

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Evaluation Cycles

B
an

d
w

id
th

 in
 K

b
yt

es


DCR

DPR

FxR

(a) (b)

Fig. 10.Measured Memory and Bandwidth Usage when the application behavior changes.

During the second phase of execution, Dynamic Consumer Replication is the best
policy. This is due to two factors. Firstly, only two nodes host application components
that act as consumers. Therefore, Dynamic-Consumer Replication uses a group of nodes
that is at most as large as the group used by Fixed Replication. This has a major impact
on the memory usage, as Figure 10(a) shows between evaluation cycles 32 and 64. In
fact, when the combined availability of noden9 andn10 is above the required availabil-
ity, Dynamic Consumer Replication has a smaller memory usage footprint than Fixed
Replication. However, sometimes those two nodes are not enough to guarantee the re-
quired availability. Thus, Dynamic Consumer Replication has to include other nodes
to sustain the required availability. This is done by adding a node that is selected by
the Group Generator module. The second factor is the reduced bandwidth usage that
Dynamic Consumer Replication incurs. This is shown in Figure 10(b).

The last phase of execution witnesses another change. Application components
switch behavior. In particular, after evaluation cycle 64, the application components
on nodesn9 andn10 start acting as producers. All the other components start to act as
consumers.

After a transition phase between cycles 64 and 70, where the components’ behaviour
stabilizes, the Dynamic Produred Replication becomes the best policy, as Figure 9
shows. This is mainly due to the same factors that we discussed for Dynamic Consumer
Replication. This is confirmed also by the graphs in Figure 10, after the stabilizzation
phase.



To conclude, we want to show that in all cases the availability sustained by the poli-
cies used in the different phases is always greater than the required value (Figure 11).
This is an improvement over the behaviour that is oblivious to changes in availability
of nodes, yet the adaptation happens transparently to the application.

Availability 

70

75

80

85

90

95

100

105

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Evaluation Cycles

M
ea

su
re

d
 A

va
lia

b
ili

ty
 (

%
)

DCR

DPR

FxR

FR

Fig. 11.Availability values when the application behavior changes.

4 Related Work

In this section we describe other approaches for realizing shared data space resilent to
failures.

PLinda [4] is a variant of Linda that addresses fault-tolerant applications. In PLinda
both data and processes are resilent to failures. In particular, by using a transaction
mechanism extended with a process checkpoint scheme, PLinda ensures that a com-
putation is carried out despite node failures. Compared to our approach, PLinda offers
more functionality since it is resilent against process failures. On the other hand, in
PLinda application developers have to explicity declare which part of their application
code should be executed in a fault-tolerant fashion. As a consequence, application code
is interwonen with concerns that are not relevant to the main functionality of the appli-
cation.

Another extension of Linda that provides support for fault tolerance is FT-Linda [1].
As for PLinda, FT-Linda supports a transaction mechanism that allows the recovery of
data and processes after a failure. However, FT-Linda requires the application develop-
ers to put extra effort in making their application resilent to failures. For instace, the
application developer has to program the appliation to take care of removing interme-
diate results after a failure. Again, this is clearly against separating different concerns
in the application design.

Although it was designed for taking adavantage of idle time of workstations for
running parallel applicaitons, Piranha [5] could be used for addressing fault-tolerant



applications as well. In Piranha, worker processes execute tasks on idle workstations.
As soon as a workstation becomes busy, a worker process has to stop its current com-
putation. The task has to be carried out by another Piranha worker on another idle
workstation. Therefore, a retreat as the same effect as a failure. The Piranha model as-
sumes that the execution of the task is carried out atomically despite the retreat. As for
the FT-Linda, the Piranha system requires the application developer to program the ap-
plication to clean-up intermediate results when a task has to retreat. Again, we see that
application code is interwonen with fault-tolerant concerns.

An alternative approach to transaction mechanism for building shared tuple space
resilents to fault tolerance is proposd in [8]. In this work, the author proposes exploit-
ing code mobility as a better mechanism for fault tolerance. By using code mobility,
the system can guarantee an operational semantics in which either all operations are
executed or none. The approach uses a run-time system that contains a checkpointing
mechanism. In this way, the application developer does not need to interweave fault-
tolerance code in her/his application since the run-time system will deal with this. To
address the removal of legacy data left by mobile agent that is no longer alive, the author
introduces the notion ofagent wills. The agent will is a small piece of code embedded
with the run-time system that describes what to do with data after the agent ceases ac-
tivity. This will-code is executed by the run-time system whenever it detects that the
respective agent crashed.

An evaluation of fault-tolerance methods for large scale distributed shared data
spaces is described in [13].

Worthwhile to mention for the significance of their contributions, although not for
fault tolerance, are the following implementations of shared data space. JavaSpaces [2]
and TSpace [14] are commercial systems that have shown how the shared data space
paradigm can be successfully used for building distributed applications. WCL [7] ex-
tends the basic primitives of the shared data space with some new ones. These new
primitives allow the execution of operations that are impossible to achieve by the stan-
dard ones. For instance, the multiple read primitive returns copies of all tuples that
match with a given template. Finally, Lime [6] addresses the issues of coordination in a
distributed environment.

5 Conclusions and Future Work

In this paper we made the following contributions. First, we provide a simple mech-
anism that allows for addressing availability concerns in shared data space systems
separately from the functionality of applications. As a result, different policies can be
employed for achieving different availability characteristics without affecting the func-
tionality of the application.

Second, we demonstrate how possibly conflicting objectives (such as high availabil-
ity and low resource use) can be dealt with in a fully automated fashion through the use
of a cost-function.

Third, we show that the input needed from an application developer to support these
optimal adaptations can be kept to a minimum, allowing the developer to concentrate
on the design and implementation of functionality.



Finally, we showed the superior performance of dynamically adapting the replica-
tion policy that is used. The experiments showed that our mechanism is able to dynam-
ically adapt the replication policy to the availability characteristics of the infrastructure.
Moreover, the mechanism takes in consideration the application behavior and selects
the policy that suits best the application needs.

This work is an extension of earlier work where we studies seperation of extra-
functional concerns in shared dataspaces. In [11] we showed how resource use could
be treated as a separate policy and in [12] we studied the separation of real-time and
exception handling concerns. The next challenge is combining multiple concerns in
one architecture. Some of these concerns are inherently coupled, yet the challenge is
to find a way of combining these concerns in a single architecture that enables ease of
engineering and adaptability to changes in the usage profile.

References

1. D. E. Bakken and R. D. Schlichting. “Supporting Fault Tolerant Parallel Programming in
Linda.” IEEE Trans. on Parallel and Distributed System,1994.

2. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and practice.
Addison-Wesley, Reading, MA, USA, 1999.

3. D. Gelernter. “Generative Communication in Linda.”ACM Trans. Prog. Lang. Syst., 7(1):80–
112, 1985.

4. K. Jeong, D. Shasha. “PLinda 2.0: A Transactional/Checkpointing Approach to Fault Tol-
erant Linda.” Proc. 13th Symp. on Reliable Distributed Systems, 96–105, Dana Point, CA,
1994.

5. D. Kaminski. “Adaptive Parallelism in Piranha.” PhD Thesis, Yale University, Department
of Computer Science, 1994.

6. G. P. Picco, A. L. Murphy, and G.-C. Roman. “Lime: Linda Meets Mobility.” InProc. 21st
International Conference on Software Engineering (ICSE’99), ACM Press, ISBN 1-58113-
074-0, pp. 368-377, Los Angeles (USA), D. Garlan and J. Kramer, eds., May 1999.

7. A. Rowstron. “WCL: a Co-ordination Language for Geographically Distributed Agent.” In
Worl Wide Web Journal, Vol. 1, Issue 3, pp. 167–179, 1998.

8. A. Rowstron. “Using mobile code to provide fault tolerance in tuple space based coordination
languages.” InScience of Computer Programming, Vol. 46, Number 1-2, pages 137-162, Jan.
2003.

9. G. Russello, M. Chaudron, and M. van Steen. “Customizable Data Distribution for Shared
Data Spaces.” InProc. Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2003), June 2003.

10. G. Russello, M. Chaudron, M. van Steen. “Exploiting Differentiated Tuple Distribution in
Shared Data Spaces.”Proc. Int’l Conference on Parallel and Distributed Computing (Euro-
Par), 3149:579–586, Springer-Verlag, Berlin, 2004.

11. G. Russello, M. Chaudron, M. van Steen. “Dynamic Adaptation of Data Distribution Policies
in a Shared Data Space System.”Proc. Int’l Symp. On Distributed Objects and Applications
(DOA), 3291:1225–1242, Springer-Verlag, Berlin, 2004.

12. R. Spoor. “Design and Implementation of a Real-Time Distributed Shared Data Space.”
Master’s Thesis, Eindhoven University of Thechnology, Department of Computing Science,
2004.



13. R. Tolksdorf, A. Rowstron. “Evaluating Fault Tolerance Methods for Large-scale Linda-
like systems.” InProc. Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Vol. 2, pages 793-800, June 2000.

14. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. “T Spaces.”IBM System Journal,
37(3):454-474, 1998.


