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Abstract—Application fingerprinting is crucial in network
management and security to provide the best Quality of Service
(QoS). To generate fingerprints for applications, we use an
automata learning algorithm to observe the temporal order
among destination-related features of network traffic and create
a language as a fingerprint. We label fingerprints through
machine learning classifiers. We propose our approach in a
framework called ML-NetLang for fingerprinting mobile appli-
cations from encrypted network traffic. Our evaluation achieves
an average accuracy of 95% for Android and iOS applications.
ML-NetLang outperforms comparable state-of-the-art techniques
using behavioral-based, correlation-based, and machine-learning
solutions.

Index Terms—Fingerprinting, Traffic Classification, Automata
Learning, Machine Learning

I. INTRODUCTION

Identifying active applications on a (desktop or mobile)
device is currently a central topic in computer science [1].
It is essential in network management, security, and intrusion
detection to provide high Quality of Service (QoS) and prevent
unusual behavior [2]. Several methods exist to identify active
applications without installing intrusive monitoring agents on
each device that observes network traffic. Traditional ap-
proaches are mainly based on port-based classification [3]
and payload-based classification [4]. They are inefficient be-
cause of the wide usage of dynamic port assignment and
encrypted traffic, respectively. Researchers apply machine
learning, correlation-based, and behavioral classification to
tackle these limitations. Machine Learning (ML) classification
methods rely on statistical features of traffic on either a packet-
level [5] or flow-level [6]. ML methods generally use too many
redundant features [2]. Correlation-based classification meth-
ods focus on finding the correlation between flows. Although
correlation-based methods avoid feature redundancy as ob-
served in ML approaches, they have high computational com-
plexity [2]. FLOWPRINT [7] is a correlation-based tool that
finds temporal correlations among destination-related features
and extracts maximal cliques from these correlations, using
them as application fingerprints. Behavioral methods [8, 9]
observe behavioral aspects in the traffic (such as IP address,
used protocol, and port number) to identify active applications.
Although behavioral methods are robust against encryption,
their classification results are unsatisfactory [2]. We propose an
approach combining the behavioral method based on automata
learning and machine learning.
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Our approach leverages the framework of NetLang [10] to
generate and classify automata models of applications based
on the destination features of network flows. Netlang uses
automata learning techniques to derive behavioral models of
each application’s network traffic as k-Testable languages in
the Strict Sense (k-TSS) [11]. K-TSS are a class of regular
languages characterized by the sets of all prefixes and suffixes
of length k − 1 and substrings of length k appearing in the
words of the language. It models applications as a formal
language, where traffic traces produced by the application
are interpreted as words whose letters consist of individual
traffic flows. Using these observed words, it derives the formal
language, which, in turn, is used to identify applications.
In other words, it transforms the application identification
problem by classifying traffic traces into an application based
on a distance function between the application’s language and
the language derived from a single trace. The symbols of the
languages are a set of related sequential packets that are mostly
observed together in a flow. By using flows as the basis for
symbols instead of packets, the approach is more robust to
noise.

In NetLang, the set of alphabets are derived through a
time-consuming pre-processing step by breaking up flows
using timing and statistical features of packets. Instead, to
speed up the approach and improve its accuracy, we modify
and redesign NetLang’s component for extracting automata
alphabets. To extract alphabets of the learned languages, we
consider destination-related features (such as IP and port
number, or TLS certificate) as symbols of alphabets, inspired
by FLOWPRINT. In this way, we consider the temporal order
of communication flows as the fingerprint of an application,
instead of the ordering of packets. This temporal ordering
distinguishes our approach from FLOWPRINT which uses the
static maximal clique among destinations. We also redesign the
machine-learning models of NetLang’s classification compo-
nent with features that are compatible with the new symbols
of the learned language. This redesign significantly improves
detection accuracy and reduces training time (see Table II
in Section IV-F1). Our approach is applicable to datasets
containing only a single sample trace for each application
which means it can split the sample for train and testing.
We extract our classifier features based on the learned formal
language model of applications.

Our experiments show that a well-designed combination
of automata and machine learning, outperforms NetLang



even though the symbols are selected in terms of minimal
information of flows. We have implemented our approach
in a framework called Machine Learning Network Traffic
Language learner, ML-NetLang. We evaluate the performance
of our approach using different public datasets under various
conditions, and show that it outperforms correlation-based
and statistics-based approaches. In summary, we make the
following contributions:

• We leverage both behavioral and machine learning ap-
proaches by using k-TSS and ML algorithms in applica-
tion identification.

• We implemented our method in a framework named
ML-NetLang, which is robust in identifying encrypted
network traffic.

• We show that our method identifies applications with
an accuracy of 95% for both Android and iOS appli-
cations, while outperforming the state-of-the-art tools
FLOWPRINT [7], AppScanner [12], and NetLang [10].
It also reduces time complexity by generating a single
fingerprint for each application.

II. BACKGROUND ON AUTOMATA LEARNING

The aim of automata learning, also called grammar infer-
ence or regular inference, is to find the smallest automaton that
accepts positive samples (in our case traces from a specific
application) and rejects negative samples (i.e., traces from
other applications) [13]. In our method, we benefit from
algorithms for learning k-Testable Languages in the Strict
Sense, called k-TSS [14]. The purpose of k-TSS is to find
the smallest deterministic finite automata (DFA) by observing
only positive samples. A k-TSS language is defined by a finite
set of substrings, each with a length of k, that are allowed to
appear in the words of the language [15].

If a finite set Σ of symbols {α1, . . . , αn} is fixed, then a
word w = αi1 · · ·αik is a finite sequence of symbols. A k-
TSS language of a list of words is defined by all prefixes and
suffixes of length k − 1 of words and all substrings of words
of length k [15]. The set of prefixes, suffixes, and substrings
allowed to appear in words is listed in what McNaughton and
Papert [14] called a k-test vector. The following definitions
are taken from [14]:

Definition 1. (k-test vector): Let k > 0. A k-test vector
Z = ⟨Σ, I, F, T, C⟩ is a 5-tuple where:

• Σ is a finite alphabet,
• I ⊆ Σ(k−1) is a set of allowed prefixes of length k − 1,
• F ⊆ Σ(k−1) is a set of allowed suffixes of length k − 1,
• T ⊆ Σk is a set of allowed segments, and
• C ⊆ Σ<k contains all strings of length less than k

Definition 2. (k-TSS Language): Let Z = ⟨Σ, I, F, T, C⟩ be
a k-test vector, for some k > 0. Then Language L(Z) in the
strict sense (k-TSS) is computed as:

L(Z) = [(IΣ∗ ∩ Σ∗F )− Σ∗(Σk − T )Σ∗] ∪ C

In our problem, words are produced with a minimum length
of k. This means that C always is empty. Hence, we can

ignore C. A k-test vector of a language is constructed by
scanning the accepted word through a sliding window of size
k. For instance, if w = abba and window size equals 3, then
Σ = {a, b}, I = {ab}, F = {ba}, and T = {abb, bba}.

III. METHODS

The goal of ML-NetLang is to fingerprint a mobile appli-
cation using supervised methods based on the application’s
encrypted network traffic. FLOWPRINT [7] observed that a
mobile application is generally composed of various modules
that each communicate with a set of network destinations. We
focus on finding distinctive communication orders in different
mobile applications. Our fingerprints are based on (1) the
temporal order among network flows of monitored devices
and (2) the destinations these devices interact with. Exploiting
the Netlang framework, Figure 1 shows the overview of the
ML-NetLang methodology. We take network traffic as input
and create fingerprints that map to applications, which are
subsequently used for labelling new network traffic. We in-
troduce a novel Trace Generator module that extracts features
of traffic destinations from network traces, and then uses
these features to convert traces into a list of words. Next,
we feed these words into Netlang’s Language Learner, which
produces k-TSS languages. Finally, our classifier uses these
learned languages to generate fingerprints, and then label
network traffic with the help of machine-learning models and
classifiers.

Fig. 1. Overview of ML-NetLang

A. Trace Generator

The trace generator converts the network traffic of each
application into a list of words that are in the language of that
application. Let Π be the input for the trace generator, con-
taining network traffic of n applications {App1, . . . , Appn}.
Assume that each application has m associated traces. Then
the output is a set of word lists S = {W1, W2, W3, . . . ,Wn}
where Wi is a list of words belonging to Appi. We remark
that Wi = [w1, w2, w3, . . . , wm], where wj is the word
generated for the jth trace in Appi. To generate a word for
each trace from a single application, we proceed as follows:

1) We extract its network traffic flows.



2) For each flow, we extract the features timestamps, desti-
nation IP, destination port number, and TLS certificate1.

3) Flows are sorted by the timestamp of their first packet.
4) Flows are categorized based on either tuple of destina-

tions (IP, Port) or TLS certificates and given a symbol
based on their category.

5) We define a mapping function to attach symbols to
destination categories, concatenating “S” as the abbre-
viation of the symbols and a natural number j, which
shows this destination is the jth unique destination seen.
For instance, S6 represents the 6th destination seen
among all applications traces by the trace generator. The
symbols of categories of flows are used as the network
alphabets.

6) Flows are replaced by network alphabets to create their
corresponding symbolic traces. These traces represent
the temporal order among the destination addresses of
the various flows from a single application.

7) We can then create the list of words Wi = [w1, . . . , wm]

Fig. 2. Application of the Trace Generator module

To illustrate, consider Figure 2, showing a total of 14
packets. Since packets 1, 2, 3, and 4 are transmitted be-
tween the same source and destination in terms of IP, port,
and protocol, they are grouped into one flow. Likewise,
the other packets are grouped into flows leading to the
trace [(1, 2, 3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14)] after
which these flows are sorted by their first packet timestamp.
Each flow is then replaced by the network alphabet based on
its network destination. Thus, this trace is transformed into
S109 S6 S6 S6 S6 S166. All flows (5, 6), (7, 8), (9, 10), and

1For this paper, we assume that feature extraction is possible, implying,
for example, that we exclude the situation of traffic flowing through a VPN
tunnel, or redirected to a network proxy.

(11, 12) share the same destination address, so their alphabet
is the same.

B. Language Learner

The network traffic of an application is converted into a
list of words that are in the language of that application by
the trace generator. The k-testable language is then derived
by the language learner, taking the list of words as input. Our
language learner comes from the one used in NetLang [10].
A language is learned by sliding a window of length k over
an application’s trace, thereby identifying the k-test vector
Z = ⟨Σ, I, F, T ⟩. In this work, we set k = 3, which is the
recommended value in NetLang. A learned language is saved
in the k-TSS languages database. For the application trace
from Figure 2, the k-test vector is learned to be:

application word = S109 S6 S6 S6 S6 S166
Σ = {S109, S6, S166 }
I = {S109 S6 }
F = {S6 S166 }
T = {S109 S6 S6, S6 S6 S6, S6 S6 S166 }

C. Classifier

The language learner module learns the k-TSS language
of an application Appi by its associated words Wi as
L (Appi) = L(Wi) = [L(w1), . . . , L(wm)]. To derive this
language, we identify k-test vector for each word of L(Wi).
The k-test vector of L(Wi), i.e., Z(Wi), is represented
by [⟨Σ1, I1, F1, T1⟩, . . . , ⟨Σm, Im, Fm, Tm⟩]. We compute the
union k-test vector UZ(Appi) of an application Appi as the
union of learned vectors for its words:

UZ(Appi) = ⟨
m⋃

k=1

Σk,

m⋃
k=1

Ik,

m⋃
k=1

Fk,

m⋃
k=1

Tk⟩.

We use the union k-test vector of an application as its
fingerprint as it gives a compact representation that considers
all the sample words. The classifier aims to label given
network traffic according to learned fingerprints. To do so,
we use the trace generator to convert new traffic containing
ℓ traces to a list of words W = [w1, . . . , wℓ]. The classifier
will then need to label each member of W with application
names. To that end, for each w ∈ W , the language learner
generates its k-test vector Z(w) = ⟨Σ, I, F, T ⟩. Next, we train
a machine-learning classifier that identifies each word class
from features computed by our feature computation function.
The feature computation function (FC) computes the proximity
between the given k-test vector and the union k-test of all
applications as the feature vector.

Definition 3. (Feature Computation Function): Given
Z(w) = ⟨Σ, I, F, T ⟩ and UZ(Appi) = ⟨Σi, Ii, Fi, Ti⟩,
FC(Z(w),UZ(App1), . . . ,UZ(Appn)) = (f1, . . . , fn), where
fi is the proximity between Z(w) and UZ(Appi):

fi = (∆Ti,∆T ′
i ,∆Σi,SIMΣi)



with

∆Ti =
|T−Ti|

|T | ∆T ′
i =

|Ti− T |
|Ti|

∆Σi =
|Σ−Σi|

|Σ| SIMΣi =
|Σ∩Σi|
|Σ∪Σi|

(1)

We compute the feature vector of training traces using the
Feature Computation Function. If we have n applications, then
the number of features computed for each trace equals 4 ×
n. We train the classifier model with the computed feature
vectors and the names of the applications that are used as
labels. To predict the application label for a given test trace
w, we first compute its feature vector by applying the FC
to its k-test vector and the union k-test vectors learned for
all applications, i.e., FC(Z(w),UZ(App1), . . . ,UZ(Appn)) .
Finally, the model predicts the label of a given trace by the
name of an application.

IV. EVALUATION

We implemented our methodology, named ML-NetLang2 in
Python 3 using PyShark3 to read captured network traffic and
extract destinations and timing features in the trace generator.
We applied the k-TSS language learner implemented in Net-
Lang [10] in the Language Learner module to learn the union
k-test vectors of applications as fingerprints. Finally, we used
Scikit-learn4 to create the machine learning model used for
classification. We evaluated the performance of our methods
in application identification in terms of precision, recall, and
F1-Score.

A. Dataset

We used two public encrypted network traffic datasets to
evaluate our method under different conditions. These datasets
have different properties, like being generated automatically
or by user interaction, containing different versions of ap-
plications, installed on iOS and Android operating systems,
and collected from different countries and application stores.
As network traffic behavior relies on user interactions, the
results of the synthetic datasets may differ from user-generated
datasets. Furthermore, users tend to update applications with
newer versions on average monthly [16], stressing the need
for fingerprints that are robust against updates. ML-NetLang
showed robust results within user-generated and synthetic data,
iOS and Android, and identified applications precisely when
applications were updated.

1) ReCon: ReCon Android App Versions [17, 18] stores
multiple versions of 512 popular Android apps from Google
Play Store, covering 7,665 app releases over eight years of
app version history. The selection was made from the top 50
ranking apps from each category like chatting, video sharing,
etc, among the 600 most popular free apps available on
the Google Play Store. The network traffic was captured by
automated and scripted interaction with apps on real mobile

2Available at: https://github.com/mlnetlang/
3https://pyshark.com/
4https://scikit-learn.org

devices. This dataset enables us to evaluate our method against
different versions of apps.

2) Cross Platform: Cross Platform [19] stores user-
generated executions of overall 215 top Android apps from
Google Play Store in the US and India, and Tencent MyApps
and 360 Mobile Assistant stores in China. It also contains 196
iOS apps from the official Apple Store in the US, India, and
China. The network traffic was captured by manual interaction
for five minutes while testing all the main features of the ap-
plications. This dataset enables us to evaluate our method with
user-generated network traffic and different mobile operating
systems.

B. Application Identification

We evaluate our approach on 100 randomly chosen Android
and iOS apps from the Cross-Platform dataset. We also ran-
domly chose 100 applications with ten random versions of
each from ReCon dataset. Some machine-learning methods
randomly split network traffic flows into training and testing
sets, but this technique does not preserve the temporal order
among flows. As our method depends on this temporal order,
we used partial-window splitting to preserve partial order
among flows. First, we split network traffic into windows with
a maximum size of k, which means each window contains
k or fewer flows. Then we randomly split the windows of
each application 50:50 into training and testing sets without
any overlap. We assume the window size equals k in the
language learner, which in our case is 3. Figure 3 shows the
result of applying the partial-window splitting on the given
network traffic in Figure 2 when the window size equals 3.
The last window of network traffic may have fewer flows
than the window size based on network traffic length. To
evaluate our method, we created union k-test vectors of labeled
training data. Then trained the model by computing features by
applying Feature Computation Function in the k-TSS language
and union k-test vectors of labeled training traffic. After
training our model, we predicted the application name of the
test data using the distance function proposed in NetLang and
machine-learning algorithms Logistic Regression, SVM, Ran-
dom Forest, Gradient Boosting, and Decision Tree. NetLang’s
distance function computes the distance between the test k-
TSS language and trained k-TSS languages of applications,
and labels the trace with the application name that has the
minimum distance. Each classifier was evaluated by a 10-fold
cross-validation.

Fig. 3. Example of applying the partial-window splitting on the given network
traffic in Figure 2. Window size equals 3. Different backgrounds of packets
represent different flows, categorized based on the destination address.



Fig. 4. Performance of application detection with different classifiers on each
dataset.

Figure 4 shows the performance of the application detection
using different classifiers on each dataset in terms of Precision,
Recall, and F1-Score. Logistic Regression gives the best
results in all datasets. Generally, SVM and distance function
had slightly lower results than Logistic Regression. Random
Forest, Gradient Boosting, and Decision Tree showed lower
F1-Score compared to the other algorithms. More detailed
performance results for Logistic Regression, SVM and the
distance function can be found in Table I. The accuracy and
recall levels are equivalent in our experiments, as a result of
calculating the micro-average metrics for the individual apps.
The superiority of LR and SVM can be explained as follows:

• Linear relationship: Linear Regression (LR) assumes a
linear relationship between the input features and the
target variable. Our results indicate that the relationship
between the features and the application names in our
data is approximately linear, so LR is able to capture this
relationship well, resulting in good performance metrics
such as precision, recall, and F1-score.

• Linear Separability: SVM is a binary classification algo-
rithm that aims to find a hyperplane that can best separate
the data points of different classes. Our results indicate
that the features between the applications allow for a clear
linear separation between the classes (i.e., the names of
the applications used as class labels), So SVM performs
well. SVM is particularly effective in cases where the
data points are linearly separable.

C. Training Size

Fig. 5. Application identification performance vs training size (Cross-
Platform)

Fig. 6. Application identification performance vs training size (ReCon)

We have assumed that each device in the network has 100
applications installed. If this number is changed, ML-NetLang
may perform better or worse because the number of training
features has a direct and linear relationship with the number
of training programs. To evaluate the impact of the number
of installed applications, we train the model by varying the
number of applications in the training data. Hence, we trained
the model to evaluate application identification performance
by randomly choosing N applications from 0 to 200 from the
ReCon and Cross-Platform datasets. The three top algorithms,
Logistic Regression, SVM, and distance function, are applied
with a 10-fold cross-validation in each experiment. Figures 5
and 6 show the performance of ML-NetLang trained by
different numbers of applications. As seen in both datasets,
all metrics decline, but after a point, they become rather
stable, especially for the Cross-Platform dataset. This shows
the robustness of ML-NetLang against larger application sets.
Furthermore, it is noticeable that Logistic Regression has the
best performance compared to SVM and distance function.
When 200 applications are installed, the F1-Score of Logistic
Regression in the ReCon dataset is 83% and 95% on Cross
Platform.



TABLE I
ML-NETLANG PERFORMANCE USING OF THREE BEST PERFORMING ALGORITHMS.

Dataset Logistic Regression SVM Distance Function
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

Cross Platform (Android) 0.94 0.95 0.94 0.95 0.91 0.93 0.92 0.93 0.93 0.94 0.93 0.94
Cross Platform (iOS) 0.96 0.97 0.96 0.97 0.91 0.94 0.92 0.94 0.66 0.73 0.68 0.73
Cross Platform (Average) 0.95 0.96 0.95 0.96 0.91 0.94 0.92 0.94 0.79 0.84 0.81 0.84
ReCon 0.97 0.97 0.96 0.97 0.90 0.89 0.88 0.89 0.91 0.89 0.88 0.89

Fig. 7. Application identification performance vs changes in symbols of
traffic trace (Cross-Platform-iOS). The x-axis demonstrates the % of changed
features (in both IP and certificate features)

Fig. 8. Application identification performance vs changes in symbols of traffic
trace (Cross-Platform-Android).

D. Mutated Traffic

So far, we have assumed that flows do not really change.
However, in reality and because of the dynamic nature of
network traffic, the destination-related features of applications
may change over time, for instance, modifying (IP address,
port) and TLS certificate. These changes can be the result
of server migration or certificate renewals. To observe the
effect of these changes on the ML-NetLang performance, we
replaced a percentage of random symbols of generated traces
in the trace generator module with random symbols (which we
coin “noise”). We evaluated this experiment on 100 randomly
chosen applications of the Cross-Platform dataset by applying

Logistic Regression, SVM, and distance function using, again,
a 10-fold cross-validation. Figures 7 and 8 show the results of
ML-NetLang performance while the percentage of network
destinations changed. As the figure shows, the application
detection performance decreases mainly with the increase in
the ratio of noise to traffic. However, in the case of 50%
noise in the network traffic, Logistic Regression, and SVM
still achieve a precision, recall and F1-Score of more than
80%, showing their robustness against high levels of noise.
Increasing more than 50% of traffic changes leads to a steeper
fall until all the symbols are changed when it cannot identify
any application. In addition, it can be observed that Logistic
Regression and SVM outperform the distance function.

E. Window size of k-TSS language

In the original NetLang paper [10], the optimal values for
the window size k of k-TSS languages have been proposed
as 3, 4, and 5, respectively, and therefore we have used
k = 3 in all experiments. To observe the effect of the
window size on ML-NetLang performance, we repeated the
experiments detailed in Section IV-D with k equal to 3, 4,
and 5, respectively. For this purpose, 100 random applications
of the Cross-Platform iOS and Android datasets were chosen.
We measured the experiment results using a 10-fold cross-
validation and F1-Score metric to compare how different
window sizes affect Logistic Regression, SVM, and distance
function. Figures 9 and 10 show the results of ML-NetLang
performance with different values of the window size while the
percentage of network destinations changed in Cross-Platform
datasets (iOS and Android). As the figures demonstrate, the
decline in performance when using a larger window size
is minimal for Logistic Regression and SVM. However, the
performance of the distance function is notably affected by
the choice of larger values for k and thus is less robust.

F. Comparison with other methods

We compare our work with the state-of-the-art tool NetLang
which is the most related work to our approach. We also
compare against the state-of-the-art methods FLOWPRINT [7]
and AppScanner [12], which are using traffic correlation and
machine-learning algorithms to identify applications, respec-
tively.

1) Comparison with NetLang: NetLang and ML-NetLang
both have three main modules: a trace generator, a language
learner, and a classifier. We completely redesigned the trace
generator and classifier and used NetLang’s language learner.



Fig. 9. Application identification performance vs changes in symbols of traffic trace(Cross-Platform-iOS) using different window sizes.

Fig. 10. Application identification performance vs changes in symbols of traffic trace(Cross-Platform-Android) using different window sizes.

Our method simplifies the trace generator by using destination-
related features to extract the alphabets of learned automata
(Section III-A), which is complicated and time-consuming in
NetLang. NetLang splits network traffic into smaller units
by different timing parameters, then categorizes units based
on the highest layer protocol (observed in the corresponding
packets), and finally, each category is clustered and labeled.
We evaluate ML-NetLang against NetLang by running a 10-
fold cross-validation on the same datasets and using partial
window splitting to split the dataset into training and testing
parts. In addition, NetLang requires timing parameters. We
used the optimal values for these parameter values and window
size of k = 3 suggested by the original paper. Table II
compares our work and NetLang in terms of performance
and time complexity. ML-NetLang remarkably outperforms
and reduces the training time to the scale of seconds. Our
classification results are more accurate than NetLang due to
machine-learning algorithms instead of NetLang’s distance
function. This distance function computes the distance of test
k-TSS language and trained k-TSS languages of applications
and classifies the traffic with the application name that has

the minimum distance. One of the disadvantages of NetLang
is that its timing parameters have to be tuned for each dataset.
As our ML-NetLang approach does not include any timing
parameters, it is independent of the underlying dataset. In
addition, in the Sections IV-D and IV-E, we have shown that
using Logistic Regression and SVM are both more robust than
the distance function against changing destinations as well as
the window size.

2) Comparison with FLOWPRINT and AppScanner: To
compare fairly, we repeated the experiment setup mentioned
in FLOWPRINT, choosing 100 applications randomly from
the datasets and running a 10-fold cross-validation. Table III
shows the performance of ML-NetLang, FLOWPRINT, and
AppScanner in application identification. The accuracy and
F1-Score are equal because of computing macro-average
metrics for each application. Our method outperforms both
FLOWPRINT and AppScanner in terms of recall and F1-
Score. In other words, by focusing on the temporal order be-
tween flows rather than the various features used by FlowPrint
and AppScanner, we observe a drop in false negatives. On
the other hand, FLOWPRINT generates multiple fingerprints



TABLE II
PERFORMANCE OF OUR FRAMEWORK COMPARED TO NETLANG IN APPLICATION IDENTIFICATION.

Dataset ML-NetLang NetLang
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

Cross Platform(Android) 0.94 0.95 0.94 0.95 0.26 0.36 0.29 0.36
Cross Platform(iOS) 0.96 0.97 0.96 0.97 0.20 0.27 0.22 0.27
Cross Platform(Average) 0.95 0.96 0.95 0.96 0.23 0.32 0.26 0.32
ReCon 0.97 0.97 0.96 0.97 0.29 0.28 0.26 0.30

Time Training < sec < 1hr
Time Testing < sec < milisec

TABLE III
PERFORMANCE OF OUR FRAMEWORK COMPARED TO FLOWPRINT AND APPSCANNER IN APPLICATION IDENTIFICATION.

Dataset ML-NetLang(Logistic Regression) FLOWPRINT(Jaccard Similarity) AppScanner(Random Forest)
Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

Cross Platform(Android) 0.94 0.95 0.94 0.95 0.90 0.87 0.87 0.87 0.91 0.89 0.87 0.89
Cross Platform(iOS) 0.96 0.97 0.96 0.97 0.94 0.93 0.93 0.93 0.85 0.15 0.24 0.15
Cross Platform(Average) 0.95 0.96 0.95 0.96 0.92 0.89 0.89 0.89 0.88 0.50 0.58 0.50
ReCon 0.97 0.97 0.96 0.97 0.95 0.94 0.95 0.94 0.90 0.43 0.58 0.43

per app and uses the Jaccard similarity to label a fingerprint;
its complexity order is O(n2). ML-NetLang reduces this
complexity by generating a single union k-test vector as a
fingerprint and uses Logistic Regression for classification.
Having just a single fingerprint per application simplifies
matters, although we still need to compare new traces to all
fingerprints.

V. RELATED WORK

We categorize the related work into three classes based
on the characteristics of their features used in classification,
inspired by [2]. The statistics- based classification methods
rely on statistical features extracted from the traffic. The
correlation-based approaches depend on the correlation of
flows in their classifications. The behavior-based methods con-
sider the temporal order of packets or flows in communication
with hosts.

A. Statistics-based methods

AppScanner [12] used statistical features of TCP flows to
generate a model using Support Vector Machine and Random
Forest algorithms. They achieved an accuracy of 96% on the
110 most popular applications in Google Play Store. Deep
Packet [20] can identify encrypted traffic with granularity
at the packet level. They used a stacked autoencoder and
convolution neural network for traffic classification. Deep
Packet achieved a recall of 98% on the ISCX dataset [21],
a dataset of network applications with/without VPN traffic,
using CNN as a classifier. In contrast to ML-NetLang, this
method training phase is time-consuming.

B. Correlation-based methods

FLOWPRINT [7] is a tool to identify encrypted network
traffic of mobile applications. They defined Adjusted Mutual
Information (AMI) to rank statistical features of network

traffic. They selected source/destination IP address, and TLS
certificated features as the top ranks. The authors observed
that mobile applications are composed of various modules that
individually communicate with a set of network destinations.
Based on this observation, FLOWPRINT clusters traffic flows
based on destinations, finds temporal correlations among desti-
nations, and extracts maximal cliques from these correlations,
using them as application fingerprints. The classification ac-
curacy of FLOWPRINT can reach 89.2%. Its granularity is at
the flow level.

C. Behavior-based methods

NetLang [10] is the most similar framework to ours. It
uses statistical features and timing to generate the alphabets
of automata and then classifies the learned automata models
with a distance function. However, the alphabet-generating
method in NetLang is slow and cannot be used for online
classification. Furthermore, this approach is not appropriate
for mobile applications. BIND [22], uses statistical features of
TCP streams to create application fingerprints. BIND also uses
temporal features to observe application behavior. It gained
an average accuracy of 92.6% on their own dataset collected
for Android applications. It requires retraining the system
periodically to avoid decreasing performance.

VI. CONCLUSION AND FUTURE WORK

We propose a framework, called ML-NetLang, for identify-
ing applications from encrypted network traffic by combining
automata learning and machine learning. The method is dataset
independent, which means it is applicable to datasets with
one traffic trace for each application and performs well on
both synthetic (ReCon) and dynamic (Cross Platform) traffics.
Furthermore, the results from the Cross-Platform dataset show
ML-NetLang can be used to identify iOS and Android applica-
tions. The evaluation indicates that ML-NetLang achieved an



accuracy of 95%. The novelty of symbol generation based on
destination addresses makes it more accurate and faster than
other state-of-the-art techniques.

At the moment, our approach has shown to work when
assuming that network traffic comes from just a single appli-
cation. More challenging, obviously, is when network traffic
comes from multiple, simultaneously operating applications.
In that case, we may need to look at additional features to
separate different behaviors, and thus applications. We see this
as the next, logical step, to bringing our approach to more
realistic settings.
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