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Abstract. Analyzing pedestrian dynamics has since long been an active and
practical field of interest. Since the introduction of, in particular, smartphones,
various organizations saw a simple means for automatically measuring pedes-
trian dynamics. The basic idea is simple: network packets sent by WiFi-enabled
devices can be collected by sensors and by extracting the unique MAC address
from each packet, it should be possible to count how many devices are detected
by a single sensor, as well as how devices move between sensors. Although this
approach has been commercially deployed for many years, it is now largely for-
bidden (at least in the EU) due to obvious privacy infringements. In this paper,
we address challenges and some potential solutions to automated measurement of
pedestrian movements while protecting privacy. The results come from learning
the hard way: having run experiments extensively over the past years, we have
gradually gained considerable insight in what is possible and what may lie ahead.

1 Introduction

Understanding pedestrian dynamics is a long-standing scientific field motivated by
questions from very different domains (e.g., tourism [11], urban planning [14], safety
and security [12]). Automating the measurement of pedestrian dynamics allows for
collecting more accurate data than what is possible by manual means. In the past
decade, much attention has been spent on using the fact that people carry network-
connected devices such as smartphones (see, e.g., the extensive surveys conducted by
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our team [7,23]). Such devices regularly transmit network packets, and many of those
packets contain information that uniquely identifies the transmitter, such as its MAC
address in WiFi or Bluetooth communications. The basic idea is that such identifiers
can be used as a proxy for the person carrying the associated device. In this way, it
becomes possible to, in principle, gather statistics on the whereabouts of a pedestrian
by simply capturing his or her movements through identification of the device that is
being carried.

There are several problems with this approach. For one, such schemes infringe upon
a person’s privacy and are largely forbidden, as formulated in the European General
Data Protection Regulation (GDPR). However, the strict regulation on the automated
collection of data transmitted by devices is being alleviated in the case data is used for
statistical counting, and under the condition that pedestrians are informed, as well as
that the data is discarded after the statistics have been computed [6]. Although these
measures allow for some automated gathering of data, the question of how to do so in a
privacy-preserving manner remains open.

Next to privacy infringements, there are other problems pertaining to the data
gathered by collecting network packets. Many modern devices use randomized MAC
addresses whenever possible, effectively making it impossible to check whether a
device has been detected for a long time at a specific location, or has moved between
two locations. MAC address randomization is offered by device manufacturers in light
of privacy considerations, but it is not a technique that can be applied to all packets.
Likewise, detecting packets in outdoor environments is by itself already difficult, cer-
tainly if packets can be captured by multiple sensors at the same time as it makes it
much harder to determine the location of a device.

In this paper, written for a nonexpert, we address several of these problems, with an
emphasis on privacy protection. We discuss potential solutions based on our own expe-
rience with experiments we conducted in the past five years, as well as some solutions
that are currently being explored by others.

2 Automated Measurement of Pedestrian Behavior

Key to automated measurement of pedestrian dynamics is capturing network traffic
from a device carried by a person and extracting an identifier of that device. Capturing
network traffic and extracting an identifier is done by means of a sensor that knows the
communication protocol (WiFi, Bluetooth). A WiFi access point can be re-purposed
to record the MAC network address transmitted by a device and use these as device
identifiers. However, such a raw device identifier is considered to be personal infor-
mation and recording it can be considered intrusive. Common practice has therefore
been to transform a raw device identifier RID to a pseudonym PID using a secure one-
way encryption function F (e.g., a collision-resistant cryptographic hash function). The
pseudonym is unique for a given raw device identifier, but the function makes it compu-
tationally infeasible to derive the raw identifier from the pseudonym. In other words, the
inverse function F~! is infeasible to compute. In this way, one can use the pseudonym
PID = F(RID) as a device identifier. Given a sufficiently strong hash function (several
of which are known to exist, such as SHA256), it is impractical to determine the RID
from the PID alone.
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Schemes are also being deployed in which a provably secure parameterized one-
way encryption function is used to generate the pseudonym. To illustrate, consider such
a function Fr s with two parameters, a parameter 7 related to a time span, and a param-
eter S associated with a group of one or more specific sensing locations. The values of
the parameters determine which pseudonym is generated, given an identifier as input.
In other words, if we take RID as the raw device identifier, we can recognize that device
through the pseudonym PID = Fr s(RID) (here T and S can be considered what are
known as salts for the hash function). If we change either T or S, Fr s(RID) will change
as well. Note that F is collision resistant: when changing the value for T or S, a pseu-
donym is generated that makes it practically impossible to associate it with any other
pseudonym based on RID [9].

To illustrate, if T spans only a single day, yet S is the same for a number of sensing
locations, it becomes computationally impossible to identify the same physical device
over periods lasting more than one day. It will be possible to identify the same device
as being at different sensing locations during a single day. If we change S per location
(i.e., different sensors use different encryption functions), identifying the movement of
a device across multiple sensing locations is computationally infeasible.

Timespan T
Sensor group S

T Sensor | | Server
1D extractor D D Set of

constructor collector detections for

timespan T,
sensor group S,
PID buffer epoch E,

Fig. 1. The general organization of many current sensors for measuring pedestrian dynamics.
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Current approaches are summarized in Fig. 1. Devices transmit signals that are cap-
tured by a sensor G, which subsequently extracts a device identifier, typically the afore-
mentioned RID. This identifier is then (securely) transmitted to a server where it is
converted to a device pseudonym, and handed over to a PID collector. The latter gen-
erally collects PIDs for a relatively small detection period, or time window, referred to
as an epoch, and places detected PIDs in a buffer, ignoring PIDs that had already been
encountered during that epoch. An epoch typically lasts 5 min and effectively identifies
the time of a detection (e.g., as the tuple (year,month,day, hour,timeslot)). In this way,
the collector registers the unique devices it has seen during that epoch and avoids any
double counting. At the end of the epoch, each collected device is added to the set of
detections as a tuple (PID,E,c), which tells when (E) and where (G) a device with
identifier PID was detected.

In practical situations, we see that commercial companies use so-called WiFi probe
messages to identify devices, let T span a single day, and often use a different value
for S per sensor. A probe message is broadcast by a WiFi-enabled device in search of a
WiFi access point to set up a connection. Such schemes allow for footfall counting on
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a per-daily basis. We also see cases where T spans much longer intervals and where S
is the same for all sensors, which effectively allows for tracking. Recently, this led to a
fine of 600k € in The Netherlands for violation of the GDPR.!

In the following, we assume sensor nodes to be trusted and to follow a single fun-
damental design principle:

FDP1: Any data produced by a collection of (trusted) sensors cannot be traced
back to a physical device.

This principle states that no matter how we combine the data coming from sensors, it
should be impossible to identify an actual physical device, and thus its owner. As a con-
sequence, any system processing this data, data generated by any collection of trusted
sensors, is secure by design. Ideally, no extra security measures need to be implemented
for the processing system. Note that stating the principle does not mean that it can
be easily established. For example, when only very few devices are detected, it may
become difficult to protect the privacy of their owners. Also, as we shall see, we do
need to rely on a noncolluding server.

Given the GDPR and its alleviation for measuring pedestrian dynamics, we focus
our work on secure and privacy-aware statistical counting. In particular, we want a
system that can address the following two types of queries:

e Query type 1: How many people have been at location L during time span 7?
e Query type 2: How many people, when at location LI during time span T/, were at
location L2 during time span 727

Given that not everyone will carry a network-enabled device, and that some people
may also have more than one such device, it is clear that precise counting is out of the
question. Moreover, many modern smartphones now deliberately use nonidentifiable
information when transmitting specific network packets (namely for the WiFi probe
requests which are used for automated measurements), typically in the form of ran-
domized MAC addresses. In addition, it is well known that radio signals as used in
wireless communication systems often exhibit highly unpredictable behavior [4]. This
means that we need to deal with missing network packets, but also packets which are
received at a much larger distance than would normally be possible considering the
specifications of the wireless medium.

In addition, simply assuming that sensors can be trusted is easier said than done.
We therefore also require the following:

FDP2: A sensor may not store any information that may be traced back to a
physical device any longer than strictly necessary for statistical counting,

FDP3: A sensor may not share information that may be traced back to a physical
device.

In other words, even storing pseudonyms needs to be limited to a minimal amount of
time and those pseudonyms need to be confined to the sensor. This leads to the design
sketched in Fig. 2.

! https://autoriteitpersoonsgegevens.nl/en/news/dutch-dpa- fines-municipality- wi-fi- tracking.
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Fig. 2. The design of a privacy-protecting sensor.

There are a number of important differences from current approaches. First and
foremost, we introduce a separate data protector. A data protector takes a collection
of PIDs as input and produces a set of detections from which it is computationally
infeasible to extract any original PID. We explain below how this can be achieved. Sec-
ond, the whole path from ID extraction to an anonymized set of detections takes place
at the (trusted) sensor. We do not trust the server collecting data from many sensors
or the communication medium between the sensor and the server. If we need to store
data external to the sensor, we do so only after the sensor has taken sufficient privacy-
protecting measures. Thirdly, all data that we stored until handed over to the protector
is deleted after the elapse of an epoch. Only the protected set of detections is kept.

3 Protecting Privacy Through Detection k-anonymity

3.1 Approach

In a first attempt to protect privacy, we developed a method based on achieving k-
anonymity [15]. To explain, let PID denote the set of all possible PIDs. We devise a
mapping m to a new set of pseudonyms MPID, such that for each detected pid € PID
there are at least k — 1 other detected pseudonyms {pid,,...,pid,_;} C MPID with
m(pid) = m(pid;). To rephrase this, assuming that each sensor stores mapped pseudo-
nyms, then for each such stored pseudonym associated with some epoch, we are guar-
anteed that the sensor actually detected at least k different devices during that epoch.
We denote such a mapped pseudonym as a multipseudonym. It is important that com-
bining multipseudonyms preserves this k-anonymity.

A straightforward mapping is the one that simply truncates detected pseudonyms.
This works fine, in particular if we can assume that pseudonyms are effectively drawn
uniformly at random (which can be achieved by using a secure hashing function that
generates a pseudonym from a detected MAC address). A uniform distribution guar-
antees that no biases are introduced when removing bits, and thus no systematic error
when trying to map multiple PIDs to the same multipseudonym. For each epoch, a
sensor then stores truncated pseudonyms as multipseudonyms and records how many
different pseudonyms it detected for each stored multipseudonym. A problem, however,
is that we need to determine a priori, i.e., at design time, how many bits to keep without
knowing if that choice will lead to having detected enough pseudonyms to guarantee
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k-anonymity. In other words, truncation of detected pseudonyms may leave us with mul-
tipseudonyms for which there are simply less than k detected pseudonyms. In that case,
we have no choice than to discard those multipseudonyms (and thus also the counts of
the number of associated detected pseudonyms). Clearly, this may seriously affect the
accuracy of counting pedestrians.

As an alternative to discarding multipseudonyms, we can also remap detected pseu-
donyms such that k-anonymity is preserved. To this end, we need to consider only the
multipseudonyms and their associated detected pseudonyms that violate k-anonymity.
A naive approach is to generate an unused multipseudonym and assign that to the first
k detected pseudonyms (for which k-anonymity was violated); generate another unused
multipseudonym for the next k detected pseudonyms, and so on. This solution works
fine for a single location, but not if we want to count how many pedestrians moved
from location A to B. The problem is that any relation with what was detected at A is
lost when generating multipseudonyms at B (at least for those detected pseudonyms that
violated k-anonymity). We then might have just as well discarded them.

We thus need a systematic way of mapping k-anonymity-violating detected pseu-
donyms (we refer to them simply as violating pseudonyms), and apply that method
to all sensors. We proceed as follows with what we denote as a correction method.
Assume a sensor has n violating pseudonyms for a specific epoch. It then sorts those
n pseudonyms and subsequently keeps only the top |n/k| ones. Using the remaining
n— |n/k| violating pseudonyms, it then systematically increases the counts for every
one of the remaining top of violating pseudonyms. In this way, in principle, almost none
of the counts for the other violating pseudonyms are lost. Moreover, if this procedure
is used at location A as well as B, we see that both locations will be assigning the same
multipseudonym to the same detected pseudonym, just as we wanted. The details can be
found in [15], along with a proof that when results from different sensors are combined,
k-anonymity is preserved.

3.2 Evaluation

We have evaluated this setup using simulations as well as real-world data. For the latter,
we used data on subway trips from Beijing [22,24]. That data set can be used to mimic
WiFi-based detections. The set consists of check-in and check-out records, each record
containing a unique card identifier, the identifier of the station where the card is being
checked, as well as a timestamp. For our purposes, namely counting the number of
devices that were detected at location A during some epoch e; and later at location B
during epoch e», the data is just fine: each check-in or check-out corresponds to a WiFi-
based detection of a device; the card identifier is analogous to a MAC address. (Note that
although we also have real-world measurements on WiFi data, those measurements do
not provide us with ground truth: they do not tell us which device actually moved from
one location to another. In contrast, the Beijing data set gives us an accurate account of
movements, making it, in principle, ideal for mimicking WiFi-based measurements.)
We apply the k-anonymity algorithm as explained above, for different values of the
epoch length, the size of truncated pseudonyms (i.e., the number of bits to keep), as
well as for different values of k. A check-in or check-out counter is treated as a sensor.
The idea is that each counter applies the algorithm and sends the k-anonymized data to
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a central server. If we consider an isolated trajectory, i.e., only those trips that have been
made between two specific locations, we attain high accuracy of counting the number
of trips between two locations. Results are generally better for lower values of k, yet
this is partly explained by the sometimes limited number of actual detections during
an epoch. We also see that there is a trade-off between the length of an epoch and
accuracy: the smaller an epoch is, the fewer detections we will have, in turn affecting
the accuracy (depending on k). The length of an epoch becomes less important once
enough detections can be guaranteed.

However, matters may easily deteriorate when combining trips, as also examined
in [15]. Let us return to the situation of counting pedestrians moving from A to B.
Assume that the sensor at A collected a set of pseudonyms PID,, which were then
mapped to the multiset MPID, . Likewise, at location B we have sets PIDg and MPIDg.
If there are no intermediate junctions, the multiset MPID, N MPIDg represents the
devices that had moved from A to B.

Now consider the situation that we have two intermediate junctions Z1 and Z2 on
the path from A to B. At Z1 the sensor detects PIDz; devices entering the flow of
pedestrians moving from A to B, which are mapped to the multiset MPIDz;. Assume
that MPID, N MPID7z; is nonempty. At junction Z2, the sensor detects PID7z; devices
(mapped to MPIDz,) leaving the flow again. If PIDz, C PID, then, clearly, the final
count at B will be false: it will have been contaminated by devices entering at Z1 that
were mapped to the same multipseudonyms as those at A, which then for counting
purposes go unnoticed by the devices that left at Z2. This situation is sketched in Fig. 3.

Pedestrians entering the flow

@Q%‘ﬁ.@

Same MPID

Pedestrians from A leaving the flow

Fig. 3. The effect of devices entering and leaving a flow.

3.3 Reflection

Although the described approach toward k-anonymity is highly efficient, it turns out
that it is fairly sensitive to perturbations in flows of pedestrians between two locations.
Moreover, when considering practical situations such as subway networks, we have
found that setting correct values for epoch length and truncation sizes may be tricky. It
is yet unclear whether the approach is practically feasible.
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4 Protecting Privacy Through Homomorphically Encrypted
Bloom Filters

4.1 Approach

An alternative to k-anonymity is to have sets of pseudonyms represented by Bloom
filters [2]. A Bloom filter is a constant-space probabilistic storage mechanism. Being
probabilistic, a Bloom filter can indicate that an item that was not included in the set is
actually present. The opposite is not true, if the Bloom filter indicates that an item is not
in the set it is guaranteed that this is true. The Bloom filter is represented using a vector
of m bits, initially all set to 0. Using a collection of k hash functions, an element x is
added to a Bloom filter by setting the position /;(x) to 1 for each of the k hash functions.
Each element can thus be represented as an m-bit vector consisting of exactly k bits set
to 1. A bitwise OR operation is performed each time an element is added.

A Bloom filter has the important property that one cannot retrieve the elements of
the set it represents other than by exhaustively testing for all possible elements. In other
words, a Bloom filter supports only membership tests. To check if x is in a set A, one
needs to check if every position /;(x) for the Bloom filter BF representing A has been
setto 1: ;

x € Aonlyif [[BF[hi(x)] =1
=1
(In the following, we will use the same notation for a set A and its representation by
means of a Bloom filter.) A Bloom filter allows for testing whether an element is in
the union of two sets, or in their intersection (this can be done by applying the OR
operation for union and the AND operation for intersection). This forms the basis for
counting at a single location (perhaps using multiple sensors), or counting movements
(between different locations, and certainly using multiple sensors). Statistical counting
is possible by means of a simple estimation n* of the number of elements in a Bloom

filter [17].
m X
f=——In(1-——
W=t ( m)

where X is the number of nonzero elements in the Bloom filter.

One problem with the approach sketched so far is that the sensors would, in princi-
ple, need to share Bloom filters, which violates our design principle FDP3. Considering
that testing for membership entails a bitwise AND operation, which is equivalent to a
multiplication of 0’s and 1’s, we can test for such membership using multiplicative
homomorphic encryption. Such an encryption scheme enables the multiplication of
two encrypted numbers without the need to first decrypt those numbers. To clarify, let
[p] denote the homomorphically encrypted version of the number p. Then, with multi-
plicative homomorphic encryption, we have

[p]*[q] =[P4l

The basic idea is that a third party (e.g., a crowd expert) who needs the value of a sta-
tistical count provides a public key by which each sensor homomorphically encrypts
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the entries of its Bloom filter. Note also that if a value p is encrypted, leading to [p];,
and that same value is encrypted a next time, leading to [p]», the two encrypted val-
ues will be different: [p]; # [p]> and an observer will not be able to distinguish the
two underlying values to be the same. Such an encrypted filter can be handed out to
another sensor without disclosing any detections. This latter sensor can still compute an
intersection [A] using its own Bloom filter (which has been homomorphically encrypted
with the same public key). Then, by simply shuffling the elements of that (encrypted)
intersection, the result will be an encrypted Bloom filter [A*], in principle representing
a different set of devices (which have nothing to do with the actual detected devices)
yet of the same estimated size: A # A*,|A| = |A*|. This encrypted Bloom filter [A*] is
handed out to the entity having the private key, who can then compute |4*|. Obviously,
no sensor would ever hand out its (encrypted) Bloom filter to the third party, as this
would violate FDP3.

4.2 Evaluation

Our initial motivation for developing an anonymization technique based on k-
anonymity was our assumption that using Bloom filters was simply too expensive in
terms of computational and storage resources. At that time, we were considering that
sensors would need to do handle all possible queries and also store results for those
queries. We were wrong. For many practical situations, using a Raspberry Pi4 as the
basis for a sensor, in combination with offloading the encrypted Bloom filters to a cen-
tralized server, is enough. In our experiments, assuming that a sensor needs to detect at
most 10,000 PIDs during a single epoch (again, meaning to be able to detect at most
10,000 different devices during, say, 5 min), it takes just over 2 min for a sensor to
process a complete pipeline of collecting data, constructing a Bloom filter, and subse-
quently encrypting the filter. The implementation is optimized in the sense that it makes
optimal use of multiple cores. A serial implementation takes close to 8 min. When we
can assume that at most 1000 devices need to be detected per epoch, these numbers
drop to tens of seconds. Not surprisingly, the server, even lightweight versions, can eas-
ily handle the generated workloads. Our conclusion is that there are no serious problems
when it comes to performance.

We have also tested our setup against real data, gathered during a multi-day outdoor
festival. In this case, we evaluated how our method of privacy protection would lead to
the same results as the ones coming from the dataset as collected by the sensors that
were using the original pseudonyms. Because Bloom filters are probabilistic in nature,
deviations are to be expected in comparison to processing raw data. Again, we see that
we attain high accuracies in the 90-98% ranges for both footfall counting as well as
measuring the size of crowd flows. Some of these results have been reported in [16].

4.3 Reflection

There are reasons to believe that the described Bloom-filter approach is the way to go
for automatically measuring pedestrian dynamics. Yet, there are several challenges that
need to be addressed before drawing final conclusions.
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The setup described so far implicitly relies on the assumption that devices are
detected by only one sensor at a time (this is why we can state that a flow moved
from one location to another). In practice, avoiding simultaneous detections of the same
device by multiple sensors may not be possible, or even desirable. For example, for pur-
poses of reliability, we may wish to install multiple sensors at a single location and com-
bine their detections as if they came from one, more powerful, sensor. In principle, this
is possible by constructing the union of (encrypted) Bloom filters over the same epoch
but from different sensors. Such a construction can be efficiently done by a server, as
described above. To what extent unions affect the design of Bloom filters remains to
be seen: there is a trade-off between the length m, the number of hash functions k, and
the accurate representation of sets of a given size, although unions of Bloom filters
are known to be lossless. More important is that constructing unions requires addi-
tive homomorphic encryption, implying that we may need a more advanced encryp-
tion scheme, or use two partial homomorphic schemes side-by-side. It is yet unclear
what this would mean for the design and implementation of the monitoring system as a
whole. Homomorphic encryption schemes are known to be generally computationally
hungry [1].

A final remark is in place. We essentially looked at combining only two Bloom
filters, and relied on the closed formula for estimating the size of the intersection [17], as
well as an improvement for that formula [13]. However, Bloom filters are probabilistic
data structures, meaning that when more than two filters are combined it is seen that
the estimated size becomes increasingly less accurate. No closed formula is known for
combining more than two Bloom filters. This implies that for practical implementations,
we need to look much closer into the accuracy of the final result after having combined,
in whatever way, several Bloom filters.

S Other Challenges

Although protecting privacy has been a major issue in automated measuring pedestrian
dynamics, there are many other issues that need to be taken into account. Let us consider
a number of those that we encountered in the past years, of which some have also been
reported in [4].

5.1 Behavior of Carry-On Devices and (non)overlapping Sensor Ranges

The whole idea of automated measurements assumes that carry-on devices send out
packets at some minimal frequency. We have found that this may be a flawed assump-
tion. In fact, the behavior of different devices, especially from different manufacturers,
may vary widely, as also reported by others [10]. Together with the fact that wireless
communication is inherently difficult, making many transmitted packets impossible to
detect, even when in advertised range, means that automated measurements have an
unexpectedly low number of detections. One possible solution is to increase the length
of an epoch, as it simply increases the chance of capturing packets from a device that is
within range of a sensor. On the other hand, long epochs can easily complicate deciding
where a device actually is: just imagine that within a single epoch a device is detected
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at two locations (which may easily happen when a device moves from one location to
another within that epoch). Effectively, increasing epochs means that devices may more
easily be detected by multiple sensors during the same epoch. Yet, even if epochs are
small enough, we still need to handle the case in which sensor ranges overlap. Deter-
mining a location of a detected device may turn out to be difficult, in turn, hindering the
process of determining the size of crowd flows.

After running real-world experiments trying to distinguish bystanders looking at a
marching crowd and the marching crowd itself, Groba [10] draws the conclusion that the
behavior of carry-on devices may be so unpredictable that it may be close to impossible
to answer this type of questions or to accurately measure pedestrian dynamics.

5.2 MAC-Address Randomization

The statistical counting techniques described above are independent of the actual tech-
nique for detecting a device. So far, we have gained considerable experience with WiFi-
based detections, which have shown to be prone to many unreliable measurements,
notably in outdoor environments [3,5]. Making things more difficult is the general-
ization of the use of MAC-address randomization. When devices are associated to an
access point, such as, for example, when roaming within a public network or within
international networks such as Eduroam, they will always use their uniquely assigned
MAC address. In other cases, when a device is actively seeking for a network, we see
that increasingly often MAC-address randomization is deployed. This randomization
makes it much more difficult to identify devices. Attempts have been made to automati-
cally fingerprint devices by considering other fields in the transmitted signals (see, e.g.,
[20], which follows a machine-learning approach). We are investigating to what extent
the negative effects of MAC-address randomization can be mitigated to increase the
accuracy of device identification, along with other techniques. Others are also devel-
oping techniques that may prove to be useful [18]. In addition, it remains unclear
to what extent MAC randomization is effective [8,21], and to what extent it actually
affects accurately counting pedestrian dynamics. For example, if the used random MAC
address remains the same during an epoch, footfall counting may still be possible.

5.3 Stationary Versus Nonstationary Devices

As a final challenge, detections are hindered by the fact that many stationary WiFi-
based devices mingle with nonstationary devices. When counting pedestrian (flows),
the two need to be separated. For flows, this may be simple if we can assume that
stationary devices at one location do not show up at another. For footfall counting,
which takes place at a single location, ensuring that only nonstationary devices are
counted is important.

A simple solution to this problem is to filter out pseudonyms that have been seen
for a long time. Unfortunately, such an approach may easily violate FDP2, which boils
down to keeping information on a detected device too long. Fortunately, we can use our
Bloom-filter approach for distinguishing stationary devices. The basic idea is to still
register detected pseudonyms in a Bloom filter, but now to count how often a specific
entry is set, leading to a counting Bloom filter. Assuming that over time a stationary
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device is more often detected than a nonstationary one, we can set a watermark on all
entries of the counting Bloom filter to separate what we see as entries belonging to
stationary devices and those that do not. We then extract two new Bloom filters: one
of which the counts per entry were less than the chosen threshold, and one with entries
that counted equal or more than the threshold. Again, all operations can be done on
homomorphically encrypted Bloom filters. Eventually, only the encrypted Bloom filter
with detections from nonstationary devices is returned, after having shuffled its entries
so that only counting can be done.

6 Conclusions

Automatically measuring the dynamics of pedestrians continues to be a difficult prob-
lem. It is somewhat surprising to see the optimism that various groups report on attained
accuracies, but above all that so few groups have been paying attention to the protec-
tion of privacy. We have come to the conclusion that privacy can be successfully pro-
tected using a combination of Bloom filters for storing detected pseudonyms, together
with homomorphic encryption techniques for combining filters under encryption. At
the same time, more work needs to be done, notably when it comes to settings in which
sensors have overlapping ranges, or when many Bloom filters need to be combined.

Regardless of our means to protect privacy, we need to be aware of the difficulty
of gathering accurate detections. MAC-address randomization is one hindrance, but
there are many more, as we have discussed. We speculate that once privacy protection
is indeed considered to be safe, we may be able to open paths to smartphone apps
that assist in measuring crowd dynamics, operating completely unobtrusively, in the
background. This approach is very similar to the apps used for warning a user that he or
she was in close range to a COVID-infected person, which used the privacy-protecting
protocol Decentralized Privacy-Preserving Proximity Tracing (DP-3T) [19].
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