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Abstract

This paper introduces an architecture for crowd-monitoring which
allows statistical counting for pedestrian dynamics while consid-
ering privacy-preservation for the individuals being sensed. Mon-
itoring crowds of pedestrians has been an interesting area of study
for many years. The recent prevalence of mobile devices paved the
way for wide-scale deployments of infrastructures which perform
automated sensing. Suddenly, people could be discreetly monitored
by leveraging radio signals such asWi-Fi probe requests periodically
sent by their devices. However, this monitoring process implies deal-
ing with sensitive data which is prone to privacy infringement by
nature. While routinely performing their tasks, parties involved in
this process can try to infer private information about individuals
from the data they handle. Following privacy by design principles,
we envision a construction which protects the short-term storage
and processing of the collected privacy-sensitive sensor readings
with strong cryptographic guarantees such that only the end-result
(i.e. a statistical count) becomes available in the clear. We combine
Bloom filters, to facilitate set membership testing for counting, with
homomorphic encryption, to allow the oblivious performance of
operations under encryption. We carry out an implementation of
our solution using a resource-constrained device as a sensor and
perform experiments which demonstrate its feasibility in practice.

CCS Concepts

•Human-centeredcomputing→Ubiquitousandmobilecom-
puting; • Security and privacy→ Privacy protections.
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1 Introduction

Having a clear view of the dynamics developing within a crowd
of pedestrians is highly important. When thinking about crowds
of pedestrians, there are numerous situations that come to mind,
ranging from commonly seen scenarios of buzzing pedestrian areas,
congested transportation hubs, cramped touristic spots or popular
shopping districts, to even massive gatherings such as large sports
events or open-air festivals. Sought-after insights include informa-
tion about how numerous the crowd is at certain points and what
movement patterns are happening.

Measuring such dynamics is nowadays often done automatically,
owing to thewidespread adoption of carry-on devices, such as smart-
phones. These devices periodically emit so-called Wi-Fi probe re-
quests, signalswhichareusually capturedbya sensing infrastructure
and later used for answering crowd-dynamics questions.

Such techniques have raised concerns regarding the privacy of
individuals. This process of data capturing has shown to be so sen-
sitive to privacy infringement that it is now clearly regulated, e.g.,
by the GDPR in the EU. According to the regulation, collecting such
data without consent is strictly forbidden, unless it is used solely for
statistical counting of people in a limited time and space. Even then,
data must be anonymized or erased as soon as possible. As move-
ment patterns can extend across large spaces and over long periods
of time, it is not trivial to correlate informationwhile discarding data
in a timely manner. At the moment, organizations providing such
services are facing challenges when doing their job of delivering
insights to parties interested in understanding pedestrian dynamics.
A solution is, thus, needed, which should take care of the privacy
preservation aspects by construction while allowing these organi-
zations to perform statistical counts.

In this paper, we introduce an architecture that offers statisti-
cal counting for pedestrian dynamics while protecting the data of
individuals being sensed, at rest and during processing. Statistical
counting is based on the composition of elementary queries, which
take one of two forms: (1) howmany devices are detected by sensor
𝑠 during epoch 𝑒 , or (2) how many devices have been detected by
sensor 𝑠1 during epoch 𝑒1 and later by sensor 𝑠2 during epoch 𝑒2,
where an epoch typically has a duration of several minutes. In our
construction, the technical infrastructure is shielded from access-
ing data on pedestrians. At the same time, the statistical counting
information about pedestrian dynamics is offered as a service to con-
sumers interested in such scenarios, separating thus data gathering
and processing from its usage. Producing such results actually boils
down to performing countswithout revealingwhat is being counted,
i.e. computing the cardinality of either a set or an intersection of sets
and nothing more than that.
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As building blocks, we make use of Bloom filters (BFs), i.e. proba-
bilistic data structures that allow for highly efficient set membership
testing. Additionally, we employ homomorphic encryption (HE),
which allows performing operations on the data under encryption.
The combination of HE and BFs has been previously explored in
different contexts as a promising solution for hiding the elements
in a set while still being able to use them in computations. We inves-
tigate the use of these technologies in our crowd-dynamics setting,
to perform set membership tests under encryption, as a means of
measuring movement patterns across various locations and time
intervals. Moreover, as sensors have to do cryptographic operations
which are known to be costly, we implement a proof of concept
and evaluate how it performs when using Raspberry Pi as a typical
sensor device. Our results indicate that such a resource-constrained
device can already operate well enough to be able to support the
computation of multiple elementary queries within a reasonable
time frame, which we anticipate is sufficient for many real-world
composite queries ranging over several epochs.

2 Systemmodel

A system providing means for understanding pedestrian dynam-
ics generally consists of a sensing infrastructure detecting people
passing nearby, together with techniques to assemble meaningful
information from the sensed data. Throughout the rest of the paper
we refer to such a system as a crowd-monitoring system and we as-
sumeWi-Fi as sensing technology. To model our solution, we start
by describing the sensing infrastructure together with its expected
behavior. Then, we model the situations relevant for pedestrian dy-
namics, aswell as the entities involved in this process. Eventually,we
formulate requirements for the system so that the privacy-sensitive
data of individuals is protected.

2.1 Preliminaries

The core element of a crowd-monitoring system is the sensing in-
frastructure, i.e. a set S = {𝑠1,...,𝑠𝑛} of sensors spread across a geo-
graphical area, capturingWi-Fi signals frommobile devices carried
by passers-by. For the clarity of exposition, we assume that sensors
have nonoverlapping ranges, meaning that a device can be solely
detected by a single sensor at a time.

When a sensor 𝑠 ∈ S identifies a device in range, it reads its
MAC address 𝑎 ∈ A from the probe request, A ⊂ {0,1}48 repre-
senting the set of all existing MAC addresses. Each address reading
belongs to an epoch 𝑒 ∈E corresponding to its timestamp 𝑡 , such that
𝑡𝑠𝑡𝑎𝑟𝑡 (𝑒) ≤ 𝑡 < 𝑡𝑒𝑛𝑑 (𝑒), where 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 mark the beginning
and the end of an epoch and E denotes the set of all such epochs. A
detection is, thus, uniquely identified by the 3-tuple (𝑎,𝑠,𝑒), i.e. the
device with MAC address 𝑎 detected by sensor 𝑠 during epoch 𝑒 .

ByD𝑠,𝑒 we denote the set comprising all the MAC addresses de-
tected by a sensor 𝑠 during an epoch 𝑒 . By modelingD𝑠,𝑒 as a set,
we assume that even if a device is detected multiple times within an
epoch, we count it only once. Additionally, in our systemwemodel
the number of people in a specific area as the number of detected de-
vices, this being the only information the system has. We are aware
that the actual number of people may be different (e.g., because of
people not carryingmobile devices) andwe assume that a correction
factor will be applied afterwards.

2.2 Counting for pedestrian dynamics

Relying on the detections previously introduced, various statistics
can be derived. In particular, in our systemwe consider the following
two situations:
• The crowd of people present in one place in a particular period
of time, known as footfall

• The crowd flow of people traveling from one place to another
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Figure 1: Situations encountered in pedestrian dynamics.
Each individual square displays footfall, while the whole
figure represents a crowd flow.

In Fig. 1, the two situations can be seen. On one hand, there is the
crowd of people detected near each sensor during an epoch, repre-
senting footfall. On the other hand, there is a group of people from
a crowd traveling from one place to another, a so-called crowd flow.
Let us now formally define these situations in terms of counts.

Definition 1. LetD𝑠,𝑒 be the set of detections made by a sensor 𝑠
during an epoch 𝑒 within a crowd-monitoring system.We define the
footfall in the area of sensor 𝑠 during epoch 𝑒 as the count obtained
by computing |D𝑠,𝑒 |.

Definition 2. For a collection of sets {D𝑠1,𝑒1 ,...,D𝑠𝑛,𝑒𝑛 } represent-
ing detectionsmade by sensors 𝑠1,...,𝑠𝑛 during epochs 𝑒1,...,𝑒𝑛 within
a crowd-monitoring system, we define the crowd flow as the inter-
section

⋂𝑛
𝑖=1D𝑠𝑖 ,𝑒𝑖 over that collection. The size of the crowd flow

following thecorrespondingpath is the countobtainedbycomputing
|⋂𝑛

𝑖=1D𝑠𝑖 ,𝑒𝑖 |.

The crowd-monitoring system should function in such away that
it produces these two types of statistical counts. It should be also
capable of responding to queries concerning them.

Having settled on what kind of information must be generated
to support pedestrian dynamics, let us now model, from an archi-
tectural point of view, the entities taking part in the process. Please
note that a depiction can be seen in Fig. 2.

Service Provider (SP). This is the entity that owns the sensing in-
frastructure. It is responsible for running the sensors and providing
the pedestrian dynamics service. In order to offer this service, the SP
should receive queries from interested parties and deliver the appro-
priate statistical counts as responses. In principle, the sensors could
manage this process and collectively compute responses. However,
the number of sensors can be high and the queries can be numerous,
coming frommultiple consumers and spanning across multiple lo-
cations and multiple epochs. Imagine that the sensors would have
to store and exchange all this increasing amount of information,
inherently leading to scalability issues. For this reason, in addition
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to the previously mentioned tasks, the SP should also run a separate
service, not executed by the sensors, acting as a central manager.
This service can be implemented, e.g., by a single or multiple cloud-
based servers. For coherence, we are going to use the term server
throughout the paper.

Consumers. Generally, these are public or private parties inter-
ested in understanding pedestrian dynamics. They are not part of the
crowd-monitoring system, but they are theones querying the system.
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Figure 2: Service Architecture

2.3 Security requirements

Throughout the crowd-monitoring process, sensitive data is dealt
with, such as unique identifiers of individuals, timestamps and lo-
cations where they are collected. It is highly important that a crowd-
monitoring system is built in such a way that it does not leave any
door open for tactics infringing the privacy of individuals. For this
purpose, we are imposing a number of security requirements to
be fulfilled while still being able to perform the statistical counts
introduced in the previous subsection.

Sensors.We assume the sensors to be trusted. For this assumption
to hold, we need to demand the sensors to be tamper-proof. On top
of that, even if we trust the sensors, we should allow them to know
only the least amount of informationnecessary for producing results.
By that we mean that they should not see detections made by other
sensors than themselves and they should not be aware of queries
other than those in which they are involved. A final requirement for
the sensors is that at the end of each epoch they should discard the
detections made during that epoch, thus complying with common
requirements of keeping data in clear as short as possible.

Oblivious server. The server should not be able to assemble any
meaningful information from the arriving data; it should learn in-
formation needed only for running the protocol, such as sensors,
consumers and queries. Hence, it should not be able to see infor-
mation such as MAC addresses detected by sensors, results of the
statistical counts or any other intermediary information related to
individuals. Fulfilling this requirement keeps the individuals safe
from honest-but-curious service providers, as well as protects their
privacy in case of an attack on the service provider.

3 Our Construction

In this section we present our construction, following the system
model introduced in Section 2.We start from the sensors, we present
how they generate the required pedestrian dynamics information,
and then we continue by adding several building blocks such that
the security requirements are met.

The sensors are aware of the queries inwhich they are involved, as
we have specified in the systemmodel. This is a necessary condition
so that they know how to behave during a specific epoch: they do
only the work that they have been asked to do. In case of a footfall
query, the sensors can simply gather detections in a set and, at the
end of the epoch, they calculate the cardinality of that set, delivering
the result to the server which forwards it to the intended consumer.
The problem gets complicated when queries regarding crowd flows
are asked, since answering them requires computing the cardinality
of an intersection of sets coming frommultiple sensors and epochs.
We recall that we made the design decision of mandatorily discard-
ing detections at the end of each epoch. As a consequence, we are
now faced with the challenge of performing an intersection of sets
without having the original sets any longer.

In our setting, computing the result of a crowd flow query as an
intersection of sets is equivalent to performing a chained set mem-
bership testing across the sensors on the path of a crowd flow and
carrying forward only the matching identifiers. The problem now
transforms intofindinga structure that allowsus toperformmember-
ship testing without revealing what is stored in the sets themselves.

3.1 Bloomfilters

ABloomfilter (BF) [5] is a space-efficient probabilistic data structure
generally used for checkingwhether an element is a member of a set.
It is represented as an array of𝑚 bits initially set to 0. Alongwith the
BF,𝑘 different hash functions are also defined, each of themmapping
a set element to one of the𝑚 array positions. A set element 𝑒 is added
in the BF by computing the 𝑘 hash functions on 𝑒 and setting the
resulting positions to 1. Similarly, checking whether an element is a
member of a set is done by verifying if the positions indicated by the
𝑘 hash functions are all set to 1. For future reference, this is the same
as multiplying the values found at those position and checking if the
result is 1. BFs do not give false negatives, but false positives can be
expected since the positions corresponding to an element could be
also set to 1 by the hashes of other elements. However, research [7]
has shown that the parameters of the BF can be easily tuned to obtain
a desired false positive rate, which is acceptable for the domain of
the application.

BFs are going to be used in our system to support the result com-
putation for crowd flows. We will return to footfall queries later in
this section. Instead of sets of detections, now the sensors involved
in a crowd flow querymake use of BFs in the followingway. Leaving
aside security requirements for a moment, the first sensor on a path
generates a BF containing the detections made during an epoch and
sends it to the server at the end of the epoch. Subsequent sensors
download from the server the BF corresponding to the previous sen-
sor on the path, check the BF for all the addresses they sense during
the epoch concerning them, according to the query, and generate
a new BF containing only the matched elements. The final sensor
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on the path computes the answer as the count of elements that were
both sensed and found in the downloaded BF.

Up to this point we have a system delivering responses to both
footfall and crowd flow queries. However, the solution is not com-
plete as there are still a number of unfulfilled requirements:
• The advantage in terms of privacy provided by BFs relies on the
fact that the hash functions are not made public. Considering that
the MAC address space is easily enumerable [4], once the hash
functions are known a BF can be brute-forced in limited time, thus
revealing with high probability the MAC addresses it stores.

• When a sensor involved in a crowd flow receives a BF from the
server, it can see which individuals are matched when performing
set membership testing.

• The server sees the query results as we currently do not employ
anymechanism to hide them. The same statement is true about
the last sensors on the path of a crowd flow.
The answer to the problems mentioned above is combining BFs

with an encryption scheme placing the server out of the game (it
will store only encrypted information that it cannot decrypt) as well
as blocking the sensors from gathering insights from the data they
use when computing query responses. The only things to be seen
in clear remain the results of the queries and solely by the specific
consumers launching them. To satisfy our requirements, such an
encryption scheme should bear the following properties:
• Encrypting the same value multiple times should deem different
ciphers, so that no one can infer, by looking at the ciphers, which
values are stored.

• It should allowmultiplications under encryption, i.e. decrypting
ciphers which result from multiplying other ciphers should be
equal to the result of multiplying the unencrypted values.

• It should be asymmetric, such that encrypted data, both interme-
diary and responses, is meaningless for anyone accessing it but
the intended consumer.

3.2 Homomorphic encryption

Homomorphic encryption (HE) [18] is a type of encryption which
allows performingmathematical operations on encrypted data with-
out a preliminary decryption. The results are encrypted too and they
are the same as if the operations were performed on unencrypted
data. There are multiple classes of HE schemes covering different
types or frequency of operations. Partially homomorphic encryption
(PHE) is a class of schemes which allows one type of mathemati-
cal operation, either addition or multiplication, to be performed on
the encrypted data for an unlimited number of times. As we spec-
ified in 3.1, we are looking for an encryption scheme that allows
multiplications under encryption, a property which holds for PHE.

ElGamal [13] is such a partially homomorphic cryptosystem al-
lowing multiplications under encryption, which we choose to use in
our construction. The algorithm is asymmetric, using a public key
for encryption and a private key for decryption. Furthermore, the
algorithm is probabilistic, involving randomness in the encryption
process, so that encrypting the same value multiple times yields
different and indistinguishable ciphertexts.

Let us now see how augmenting BFswithHEmakes our construc-
tion complete. When consumers enroll in the crowd-monitoring
system, they generate a public-private key pair and provide the pub-
lic key to the SP, which distributes it to its sensors. Every time a

[1]pkc... [0]pkc [0]pkc [0]pkc [1]pkc [0]pkc [0]pkc [0]pkc [0]pkc ...Encrypted
BF 

H[1](MAC1) H[2](MAC1) H[1](MAC2) H[2](MAC2) H[1](MAC3) H[2](MAC3) ...

[1]pkc... [0]pkc [0]pkc ...Query
Response

1... 0 0 ...

pkc - public key of Consumer
skc - private key of Consumer
[x]pkc - value encrypted with pkc

H[1], H[2] - hash functions

skc

@ Sensor
@ Consumer

* **

Query
Response

Figure 3: Statistical counting process under encryption,
using an encrypted Bloom filter from another sensor and
checking whether the detected MAC addresses are also
members of that Bloomfilter. The example considers k=2.

sensor builds a BF as part of a query response for a consumer, before
sending it to the server, it encrypts each position with the public
key of that specific consumer1. Subsequent sensors take, for each
device sensed, the encrypted values found at the positions indicated
by the 𝑘 hash functions, multiply each of themwith an encrypted
1 (for rerandomization purposes) and copy the results at the exact
same positions into a new BF. The rest of this new BF is filled with
encrypted random numbers. Finally, the last sensor on the path per-
forms set membership tests under encryption (Fig.3). It does so by
multiplying, per device sensed, the 𝑘 encrypted values together. The
result of a multiplication could be either an encrypted 1, in case of
a match, or an encrypted random number otherwise. Each result is
then written in a collection, which will represent the response for
the consumer. Please note that in a similar way the response for a
footfall query is computed, by writing an encrypted 1 in a collection
for each device detected during that single epoch. To find out a query
response, a consumer iterates through such a collection, decrypts
the ciphertexts and sums up the 1s.

4 Experimental results

We have so far proposed a construction which fulfills, by design,
the requirements for performing statistical counts on crowds while
protecting privacy-sensitive data during processing and storage.
The question now emerging is whether it is feasible to deploy this
approach in practice and, if so, what kind of costs are to be expected.

In our solution, the core of data processing happens right at the
edge, on the sensors, before reaching a server. Processing involves
computing numerous hash functions, as well as encryption and
multiplication under encryption operations which are known to
be costly. Therefore, knowing that edge devices can have certain
limitations in terms of capabilities, it came natural to aim for a proof
of concept implementation directly on such a device, to get a clear
picture of the problem.

We used throughout the experiments a Raspberry PI 4B, which
uses a Broadcom BCM2711 SoC, with a 1.5GHz 64-bit quad-core
ARM v8 Cortex-A72 processor, 8GB of DDR4 RAMmemory, 16GB
1We note that 0s are represented as random numbers as ElGamal can deal only with
positive integers.
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microSDmemory card and it is running Ubuntu 20.10 as OS. We did
both serial and parallel implementations using C++11 threads for
parallelization, MurmurHash3 [3] with different seeds for hashing
and the SCAPI2 library [12] for homomorphic encryption support.
ElGamal is instantiated using the NIST P-256 elliptic curve [1].

BFs have the property that for each tested element, if all the posi-
tions indicated by the 𝑘 hash functions are set to 1, then the element
is probably present in the BF with a false positive rate of 𝑝 . This is
directly tied to the accuracy of the statistical counts as it is the only
thing which can determine a count different than the one obtained
by simply using the detections in clear. Recalling that BF parameters
can be set such that a desired 𝑝 is obtained, for a given maximum
number of detections supportedwithin an epoch𝑛 and adesired𝑝we
can compute the length𝑚 of the BF as−𝑛ln𝑝/(ln2)2 and the optimal
number of hash functions 𝑘 as −log2𝑝 . We fix 𝑛 to 1000, a sensor
thus accommodating, per epoch, crowds carrying up to a thousand
devices, and setup experiments according to Table 1. Alongside BF
parameters we also display the resulting encrypted sizes.

Table 1: BF characteristics when 𝑛 is fixed to 1000

p m k size
0.0001 19173 13 13.01MB
0.001 14378 10 9.76MB
0.01 9593 7 6.51MB
0.1 4809 3 3.26MB

An edge device playing the role of an intermediary sensor in a
query has to do the highest amount of work, which is up to𝑘∗𝑛 hash
computations and ElGamal multiplications, as well as𝑚 ElGamal
encryptions. To this end, we show in Fig.4 the timing results for this
specific scenario; similar setups for first and last sensors would lead
to lower processing times. As a typical epoch length ranges from a
couple of minutes to even hours, the results show that our solution
can be safely deployed in practice using the considered hardware.
For any trialed value of 𝑝 , a sensor is able to perform computations
for at least a couple of queries within the same epoch. At the same
time, judging by the values in Table 1, the space complexity is not
something that could raise concerns.

5 Discussion

Following common privacy by design principles, we deliberately
require a consumer to announce the exact query he is interested in
before the data collection starts. This leads to minimizing the data
to be collected, using resources only when needed and avoiding
unnecessary work. However, a consumer could realize that he is in-
terested in the dynamics within a situation only after it happened. In
principle, the system could be adapted to allow for such post-factum
queries, but this will lead to further privacy challenges that we did
not investigate.

Despite the fact that the most intensive computational part of our
solution is bound to the sensors, we have shown that it is practically
deployable even by using resource-constrained devices as sensors.
By simply using more performant sensors which have, for example,
more CPU cores, better performance can be expected as the data pro-
cessing algorithm proved to be highly parallelizable due to the little
2https://github.com/cryptobiu/libscapi
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Figure 4: Most intense data processing scenario: an interme-
diary sensor detects the maximum number of devices (1000)
during an epoch.

dependency between operations. Still, there could be cases when a
sensormustdealwithanoverlyhighnumberof simultaneousqueries.
For these specific cases and without lowering our privacy expecta-
tions, we plan to investigate the possibility of moving away opera-
tions under encryption to an external serverwith plenty of resources.

Depending on how large we consider the surface of a single lo-
cation, more than one sensor might be needed to cover it. As a
consequence, to count the people in that location we would have
to compute a union of detection sets coming from sensors covering
that surface, a meta-sensor as we denote. It is worth noting that
computing such a union should happen no matter whether we are
interested in counts concerning one or rather more locations. To
accommodate such a setup, we plan to study different homomorphic
schemes, as well as to consider additional assumptions regarding
the communication within ameta-sensor. Along the same lines, new
types of queries would be possible by supporting unions not only
within the same location, but also across different locations.

Our approach is protecting only the collected privacy-sensitive
sensor readings right after collection and during processing. The
final end result, i.e. a statistical count, is then available in the clear to
the designated consumer. In futureworkwewill studywhether these
statistical counts allow for possible inference of privacy-invasive in-
formation (e.g., in edge cases where the monitored crowd consists of
a single person) and, if so, what we can do about it (e.g., not allowing
the system to produce any result in such cases).

6 RelatedWork

PerformingWi-Fi crowd-monitoring for pedestrian dynamics relies
on Wi-Fi-enabled mobile devices which, by default, run in active
scanning mode, periodically broadcasting messages known as probe
requests in order to discover available networks [17]. When people
carrying such devices walk around in a public space where a sens-
ing infrastructure is installed, they can be automatically detected
by the means of the messages being transmitted by their devices.
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By analysing these detections, interested parties can learn valuable
information about pedestrian dynamics, such as pedestrian crowd
densities and flows [20], or different mobility patterns developing
within the crowd [6].

All this ispossiblebecause theprobe requests sentby smartphones
contain, among other information, the MAC address of the device,
thereby acting as a unique identifier. This poses a well-known prob-
lem in terms of privacy preservation since the address can expose in-
dividuals to unconsented tracking [8] or profiling [9]. As an effort to
mitigate such identification, several hardware manufacturers imple-
mented MAC address randomization, meaning that probe requests
are sent with random instead of real MAC addresses. However, this
has proven to be insufficient for protecting devices from reidentifica-
tion, as shown in [21] and [15], getting back from a randomMAC ad-
dress to aunique identifier beingpossible through several techniques.

Organizations involved in Wi-Fi crowd-monitoring have also
tried to address the problem, mostly by using pseudonymization.
Hence, a pseudonym is calculated based on a sensedMAC address
either by using a one-way hash function, a randomized allocation, or
a deterministic encryption scheme. Due to the MAC address space
being limited, such techniques are vulnerable to brute-force attacks,
generating weak anonymized data [11]. Demir et al. [10] have even
shown how such schemes used by most commercial solutions can
be defeated using off-the-shelf equipment, an aspect reconfirmed
as remaining a problem by the more recent work of Marx et al. [16].

Ultimately, research has been conducted by several scholars with
the precise goal of protecting the privacy of individuals sensed by
Wi-Fi systems. In [14], Kamp et al. introduce a solution based on
linear counting sketches [19] for tracking the number of distinct
persons that are present at a location, as well as reconstructing flows
of persons between two or more locations. While the results look
good when counting at a single location, the accuracy dramatically
drops with the length of the flowwhen looking at pedestrian flows.
Another interesting approach is based on differentially pan-private
Bloom filters proposed by Allagan et al. [2]. Despite working well
for large crowds, their proposal fails to deliver acceptable accuracies
when dealing with smaller crowds. In contrast to these works, the
solution proposed by us is not affected by the length of the flow, nor
by the size of the crowds.

7 Conclusion

Measuring crowds of pedestrians can bring valuable insights for a
wide range of domains. However, there are valid concerns regarding
the privacy of individuals which are not sufficiently addressed by
existing crowd-monitoring solutions. In this paper we introduced
a crowd-monitoring systemwhich can perform statistical counting
for pedestrian dynamics and deliver results as a service to inter-
ested consumers while protecting the privacy-sensitive data of the
individuals being sensed. We combined Bloom filters with homo-
morphic encryption in order to measure, in a privacy-preserving
way, movement patterns across various locations and time inter-
vals. As intensive operations are to be performed on sensors, we

demonstrated the feasibility of such a construction by implementing
a proof of concept while using a resource-constrained device as a
sensor. Our experimental results showed that statistical counts can
be computed within acceptable space and time bounds for any of the
trialed BF probabilities of false positive.
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