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Abstract—
Studying the movements of crowds is important for understanding and predicting the behavior of large groups of people. When
analyzing such crowds, one is often interested in the long-term macro-level motions of the crowd, as opposed to the micro-level
individual movements at each moment in time. A high-level representation of these motions is thus desirable. In this work, we present a
scalable method for detection of crowd motion patterns, i.e., spatial areas describing the dominant motions within the crowd. For
measuring crowd movements, we propose a fast, scalable, and low-cost method based on proximity graphs. For analyzing crowd
movements, we utilize a three-stage pipeline: (1) represents the behavior of each person at each moment in time using a
low-dimensional data point, (2) cluster these data points based on spatial relations, and (3) concatenate these clusters based on
temporal relations. Experiments on synthetic datasets reveals our method can handle various scenarios including curved lanes and
diverging flows. Evaluation on real-world datasets shows our method is able to extract useful motion patterns from such scenarios
which could not be properly detected by existing methods. Overall, we see our work as an initial step towards rich pattern recognition.

Index Terms—Crowd Analytics, Pedestrian Dynamics, Spatio-Temporal Clustering, Trajectory Clustering, Proximity Graph.
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1 INTRODUCTION

C ROWDS are a usual sight these day at busy public
locations such as airport terminals, soccer stadiums,

or city centers. Different studies (see survey by Castellano
et al. [1]) have shown that, even though the behavior of
each individual is erratic and unpredictable, the behavior of
a crowd as a whole is often highly organized and certain
spatio-temporal patterns appear at a macro scale which are
not visible at the micro scale.

To analyze the movements within crowds, it is thus
desirable to aggregate the overall motions into a compact
representation that exposes these high-level patterns which
emerge from the microscopic movements. One can think of
many applications of such a representation, for example, to
improve safety of large public events, provide guidelines
for urban planners to improve public spaces or automate
detection of anomalies.

To further illustrate this concept, consider a busy town
square, such as shown in Fig. 1a, and imagine we ob-
serve from a birds-eye-view. We discover that most people
wander randomly and motions look unstructured when
considering them at this low level, see Fig. 1b. However,
when aggregating these movements, certain motion patterns
appear and the collective movements of the crowd can be
described using just a small number of these patterns, see
Fig. 1c. While this description does not accurately describe
each individual, it does provide an aggregate view of the
movements of the entire crowd.

Designing a framework for extracting these motions
patterns from real-world crowds presents two challenges.

First, there is the problem of how to measure the crowd’s
movements. The data-collection method should be inexpen-
sive, power-efficient, scalable, and allow holistic analysis
of massive indoor/outdoor areas. Commonly used data
collection techniques, such as surveillance cameras or GPS
receivers, do not meet these requirements.
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Second, we are presented with the problem of how to
extract motion patterns from the location data. Formalizing
a detection algorithm is challenging since the data is noisy
and patterns are often not well-defined or even ambiguous.

In this work, we present a framework for the detection
of motion patterns in real-world crowds. Our method fo-
cuses on scalability and resilience, allowing it to scale to
thousands of people and be usable in the real world.

For data collection, we follow the ideas by Martella et
al. [2] of describing the texture of crowds using proximity
graphs. Proximity mining provides a low-cost and highly
scalable method for obtaining movement data. Previous
work (Section 6) has shown that proximity graphs can be
reliably constructed using low-power sensors. To determine
the trajectories of the nodes over time, we use a fast embed-
ding algorithm to embed the nodes into Euclidian space.

For data processing, our solution relies on two key
insights. First, instead of considering entire trajectories, we
analyze subtrajectories over small time intervals, resulting
in low-dimensional data points (called tracklets) describ-
ing the local behavior of each person at each moment in
time. Second, instead of directly aggregating these low-level
tracklets into high-level patterns, we employ a two-stage
solution which considers the spatial and temporal relations
between tracklets, separately.

We evaluated our method on both synthetic and real-
world datasets. For synthetic evaluation, we consider four
challenging scenarios: curved lanes, parallel lanes, crossing
lanes, and diverging/converging lanes. For real-world eval-
uation, we show how our method extracts useful patterns
from two datasets commonly used for trajectory clustering.

The remainder of this manuscript is structured as fol-
lows: Section 2 provides a problem description and a brief
overview of our method, Section 3 explains our processing
pipeline in detail, Section 4 discusses the computational
complexity and parameters of our framework, Section 5
presents results, Section 6 contains related work, and Sec-
tion 7 is dedicated to conclusions and future work.
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(a) Overview. (b) Individual paths show motion at micro scale. (c) Motion patterns show motion at macro scale.

Fig. 1. Example of motion patterns at busy city square in Marrakesh, Morocco. Photo by Adam Jones, licensed under CC BY-SA 3.0

2 GENERAL OVERVIEW

In this section, we discuss the two problems of motion
pattern analysis: how to measure the crowd’s motions and
how to aggregate the individual motions into patterns.

2.1 Data Collection
To enable analysis of crowd motions, we require a data
collection method that captures the movements of people
in a crowd. While GPS receivers or video cameras could be
used for this purpose, we explore another option.

For this work, we follow the ideas by Martella et al. and
utilize proximity graphs to capture the texture of a crowd [3].
A proximity graph is a spatio-temporal graph where nodes
represent proximity sensors and edges are proximity detec-
tions. Time is discretized into fixed-sized timesteps and two
nodes are connected at certain timestep if the corresponding
sensors detected each other’s presence at that moment in
time. In general, we assume two types of sensors: anchor
sensors, which have a static location, and mobile sensors,
which are worn by individuals.

Proximity graphs do not store any position data. Detec-
tion of motion patterns requires at least some indication
of the physical locations of the sensors. These locations
need not be highly accurate, since our overall goal is not
to position the sensors, but instead, obtain some rough
estimate of their motions (i.e., “position over time”). In our
framework, we use a fast embedding algorithm to place the
nodes into a d-dimensional space. Embedding is repeated
at every timestep, each time adapting the locations from the
previous timestep using the topology of the next timestep. It
is crucial that the embedding is scalable, since it is executed
repeatedly and the number of nodes can be large.

Proximity graphs provide a number of advantages over
alternative crowd monitoring techniques, such as surveil-
lance cameras or GPS receivers. Proximity sensing is highly
scalable, low cost, energy efficient, and requires very little
infrastructure to set up (i.e., only the anchors need to be
placed beforehand). Surveillance cameras require expensive
infrastructure, video processing is computationally expen-
sive, and analysis is limited to the perspective of each
camera. GPS receivers [4] are expensive, energy inefficient,
and work poorly for indoor/crowded environments, due to
radio waves being attenuated by walls and human bodies.
Previous research has shown that proximity graphs can be
reliably constructed from real-world measurements utilizing
smartphones or specialized low-power electronic badges [5].

One of the challenges of proximity mining is that (some
subset of) the crowd members need to be equipped with
proximity sensors. For closed-off environments (e.g., fes-
tivals, conferences), this can be achieved by distributing
electronic “badges” near the entrance. This approach was
previously employed for real-world experiments at an IT
conference [3] and an art museum [5]. For open environ-
ments (e.g., shopping malls, city squares), smartphones
could be utilized. There has been research [6] into using
bluetooth and Android smartphones for this purpose.

2.2 Motion Pattern Detection
Embedding of the proximity graph provides an estimation
of the position of each node at each discrete timestep.
Motion patterns can be detected by considering the com-
plete trajectories for the nodes. However, extracting motion
patterns directly from trajectories is challenging due to the
following issues.

(a) People can change between different motion patterns
over time. For example, when monitoring a train
station, we could track a pedestrian walking through
the main entrance, moving up using the escalator,
and finally entering the platform. Each of these
events corresponds to one motion pattern (“enter
station”, “use escalator”, “move to platform”), but
one person contributes to each of these in sequence.

(b) Different individuals contribute to motion patterns at
different moments in time. For example, people will
use the escalator at different times, thus showing the
same behavior in the spatial domain but at different
offsets in the temporal domain.

(c) Motion patterns can be any arbitrary shape and they
are often elongated. For example, for an escalator, a
single cohesive pattern should be detected. Finding
several isolated “patches” is not desirable.

(d) For motion patterns, we are interested in the dom-
inant motions. Only frequently occurring paths
should be detected and rarely used paths should
be considered noise and thus discarded. Addition-
ally, more noise is introduced by inaccurate mea-
surements, faulty sensors, different walking speeds,
etc. Proper motion pattern detection thus requires
resilience against such noise.

To detect motion patterns, instead of directly clustering
the trajectories, we propose a three-stage solution:
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Fig. 2. The processing pipeline of our framework. For this particular example, our method detects two opposing movement streams.

1) Tracklet Extraction. For each node at each timestep,
we consider the subtrajectory over a small time win-
dow and construct a data point (called tracklet) in a
low-dimensional space. A tracklet can be seen as a
description of microscopic behavior such as “turned
left at the elevator” or “moved up the stairs”. This
phase targets challenge (a), since many tracklets are
created for long trajectories.

2) Spatial Clustering. Next, these tracklets are clus-
tered into motion clusters, i.e., small “patches” of
cohesive behavior. This phase considers only the
spatial aspect of the tracklets and ignores the tem-
poral aspect, thus clustering the same behavior at
different moments in time and solving issue (b).

3) Temporal Clustering. Large motion patterns could
get split into multiple smaller motion clusters. To
combat this, the final stage of the pipeline con-
catenates multiple smaller clusters to create larger
patterns based on the temporal coherence between
clusters. Clusters that are frequently visited in se-
quence should belong to the same pattern and are
combined, resolving issue (c).

Challenge (d) is tackled by careful choice of the algo-
rithms used for each stage.

3 PROCESSING PIPELINE

In this section, we describe each phase of our processing
pipeline (Fig. 2) in detail.

3.1 Data Collection
3.1.1 Proximity Detection
We assume (a subset of) the crowd is equipped with prox-
imity sensors. Additionally, a small number of anchor sen-
sors is placed to provide fixed points of reference. Time is
discretized into fixed-sized timesteps (e.g., several seconds)
and sensors report their detections at every timestep. The
exact method for measuring of proximity is out of the scope
of this work.

The results of the proximity detection is a dynamic prox-
imity graph G = (V,E(T )) where V = {v1, . . . , vn} are the
n sensors, T = {1, 2, . . . , tmax} is the set of tmax timesteps,
and each undirected edge (vi, vj) ∈ E(t) indicates that
nodes vi and vj were within proximity of each other at
timestep t ∈ T .

3.1.2 Embedding

We embed the nodes into a d-dimensional space and es-
timate the position pi(t) ∈ Rd for each node vi at every
timestep t. We assume either d = 2 (for mostly flat envi-
ronments) or d = 3 (for multi-floor buildings). Nodes are
initially placed randomly in space and, for each timestep t,
an embedding procedure is executed which considers the
positions pi(t− 1) together with the edges E(t) and adjusts
the node’s locations.

It is crucial that this embedding procedure is fast and
scalable, since it is repeated at each timestep and should be
able to handle massive crowds. Classic graph embedding
algorithms, such as force-directed graph drawing [7] and
multi-dimensional scaling (MDS) [8], yield high-quality re-
sults but are expensive since their run-time is in O(n2).

Instead, our embedding method is based on Stochastic
Proximity Embedding (SPE) [9], which has proven to be usable
for large datasets. SPE performs multiple rounds and, dur-
ing each round, randomly selecting a pair of nodes (vi, vj)
and adjusting their positions such that their embedding
distance dij more closely matches their “ideal” distance d∗ij .
This is achieved by either pushing the nodes further apart
(if dij < d∗ij) or pulling them closer together (if dij > d∗ij).

We made two modifications to the original algorithm
to implement SPE for proximity graphs. First, we defined
a heuristic to estimate d∗ij since this information is not
provided by the proximity graph. For this work, we define
d∗ij = dhophij where dhop is a parameter for the “average
single-hop distance” (i.e., mean distance between two nodes
in proximity of each) and hij is the number of hops between
the nodes (i.e., length of the shortest path in G at time t)
which can be calculated using breadth-first search.
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Algorithm 1 Embedding algorithm.
Input: N , dhop, ε, pi(t− 1) for all vi ∈ V ,
S = {(vi, vj) ∈ V × V |hij = 1 or hij = 2}

Output: pi(t) for all vi
λ← 1
pi(t)← pi(t− 1) for all vi ∈ V
loop N times

vi, vj ← randomly select pair from S
d∗ij ← hij × dhop
dij ← ‖pi(t)− pj(t)‖
∆← d∗ij−dij

dij
(pi(t)− pj(t))

if node vi is non-anchor then
pi(t)← pi(t) + 1

2λ∆
end if
if node vj is non-anchor then

pj(t)← pj(t)− 1
2λ∆

end if
λ← λ(1− ε)

end loop

Second, our implementation of SPE considers only node
pairs (vi, vj) which are either 1-hop neighbors (hij = 1)
or 2-hop neighbors (hij = 2). This modification was made
since it is more important for the embedding to be accurate
for nodes which are close (i.e., hij is small) than far apart
(i.e., hij is large). We experimented with considering only
1-hop neighbors, but this showed poor results where the
embedding would “collapse” into itself. We also experi-
mented with 3-hop or even 4-hop neighbors, but this did not
improve the embedding quality, while significantly raising
the computational effort.

Algorithm 1 shows the pseudo-code for the embedding
algorithm. The algorithm performs N rounds. During each
round, the algorithm randomly selects pair (vi, vj) having
hij ≤ 2, calculates their target distance d∗ij , calculates their
current distance dij , and adjusts the positions of the mobile
nodes based on difference between dij and d∗ij . Parameter λ
is the learning rate, it decreases by factor ε in each round and
aims to avoid oscillation behavior [9].

3.1.3 Trajectory Generation
The embedding provides an estimate of the location pi(t) ∈
Rd for each node at every timestep t. The trajectory for node
vi is defined as the sequence (pi(1), pi(2), . . . , pi(tmax).

3.2 Motion Pattern Detection
3.2.1 Tracklet Extraction
To describe the behavior of node vi at timestep t, we consider
the subtrajectory (pi(t−w), . . . , pi(t+w)), where w is some
small predefined integer constant.

Motion clusters are detected by considering the entire set
of subtrajectories for all nodes at all timesteps and grouping
them into clusters. However, clustering the subtrajectories
directly is computationally expensive. Instead, a preprocess-
ing step reduces each subtrajectory into a low-dimensional
description which we refer to as tracklet. This step reduces
noise and lowers the cost of the clustering.

The tracklets should capture at least two characteristics
of the behavior: the average location and the average motion

Fig. 3. Example of noisy trajectory (top) and result of tracklets extraction
for window size of w = 1, w = 2, and w = 3, respectively. Each arrow
visualizes a tracklet τi,t at location p̂i,t having angle/length v̂i,t.

vector. For this work, we define a tracklet τi,t for a subtra-
jectory of node vi at time t as the linear approximation in
the least squares sense. Least squares fitting comes down to
finding the vectors p̂i,t and v̂i,t that best fit the points of the
subtrajectory for node vi around time t:

pi(t+k) ≈ p̂i,t+kv̂i,t for k ∈ {−w,−w+1, . . . , w−1, w}

We define this tracklet as τi,t = (p̂i,t, v̂i,t). The vectors
p̂i,t and v̂i,t can be interpreted as estimations for the location
and velocity of node vi at time t.

Fig. 3 demonstrates tracklet extraction for a noisy tra-
jectory. The figure shows how increasing the window size
w reduces noise, but also removes finer details and sharp
corners. Note that the time windows used for the tracklets
are not disjoint but overlap. For example, the tracklets at
timesteps t and t + 1 use time windows [t − w, t + w] and
[t− w + 1, t+ w + 1], sharing 2w − 1 of the same points.

3.2.2 Spatial Clustering

The next step of the processing pipeline is to aggregate
similar tracklets into clusters, resulting in small “patches”
of cohesive motion. Selecting a clustering algorithm presents
the following challenges: (1) the dataset contains noise since
human behavior is unpredictable, (2) scalablilty is crucial
since the number of tracklets can be massive, and (3) there
are no clear boundaries between patterns. Common clus-
tering methods are thus unsuitable: k-means [10] does not
deal well with noise, hierarchical clustering [11] or mean-
shift [12] is too expensive, and SLINK [13] or DBSCAN [14]
detect one giant cluster since they are based on transitivity.

Instead, our solution is based on Quick Shift [15], a fast
nonparametric mode-seeking algorithm which aims to find
the local maxima (i.e, modes) of a density function. Each
cluster is defined by one of these modes and data points
are assigned to each mode using a fast hill-climbing-like
procedure. Vedaldi & Soatto [15] coined the name “Quick
Shift”, although nearly identical methods were proposed by
Rodriguez & Laio [16] in 2014 and Koontz et al. [17] in 1976.
We borrow notations and conventions from the work by
Rodriguez & Laio [16].
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Let T be the set of collected tracklets. We define the
distance `sr between tracklets τs and τr as in Eq. 1, taking
into account difference in position and velocity. Note that
the subscript of τs is a tuple indicating a combination of
node and timestep, i.e., s = (i, t) for node vi at timestep t.

`sr = max

{‖p̂s − p̂r‖
α

,
‖v̂s − v̂r‖

β

}
(1)

The parameters α and β are used to normalize the
position and velocity. We define the local density ρs for each
tracklet as in Eq. 2.

ρs =
∑

τr∈T ,`sr≤1
‖v̂r‖ (2)

The density function counts similar tracklets (i.e., `sr ≤
1, or equivalently ‖p̂s − p̂r‖ < α and ‖v̂s − v̂r‖ < β),
weighing each one using ‖v̂r‖. The weighing is needed since
tracklets generated by fast-moving nodes are further apart
than tracklets for slow-moving nodes, meaning their density
(i.e., tracklets per area) needs to be compensate for based on
their velocity.

Finally, we define H(τs) as the tracklet closest to tracklet
τs having higher density. Furthermore, let δs be the distance
`sr between tracklet τs and τr = H(τs). By convention, if ρs
is the global maximum, we define H(τs) = ⊥ and δs =∞.

δs = min
τr,ρs<ρr

`sr, H(τs) = arg min
τr,ρs<ρr

`sr (3)

As observed by Rodriguez & Laio [16], if point τs is a
local maximum in the density function then the value of δs
will be abnormally large since a “jump” is required to go
from the local maximum in one region to another region
of high density. Tracklets for which δs is greater than some
threshold δmax are thus defined as cluster centers and each is
assigned to a unique cluster. Every remaining tracklet τs is
assigned to the same cluster as tracklet H(τs).

Spatial clustering is thus performed as follows. First,
calculate ρs for each tracklet τs using Eq. 2. Next, calculate
δs for each tracklet τs using Eq. 3. Each tracklet for which
δs > δmax is marked as a cluster center and placed into a
unique cluster. Each non-center tracklet τs is assigned to the
same cluster as H(τs), possibly requiring recursion in order
to reach a cluster center. To combat noise, clusters where the
center τs has low density (i.e., ρs < ρmin) are deleted. Some
tracklets from T are thus labeled as noise.

We use an artificial example to motivate our choice for
this method and illustrate the underlying intuition. Con-
sider a narrow hallway with pedestrians moving both east-
to-west and west-to-east. Applying spatial clustering should
ideally reveal two motion patterns for the two directions.

Fig. 4a shows the tracklets for such an area from a
top-down view. Fig. 4b plots the densities ρs versus the
distances δs. The plot shows that five points have an abnor-
mally high value for δs and are thus centers. Fig. 4c shows
the five clusters indicated by different colors with the cen-
ters highlighted. This example reveals that the two motion
patterns have been split into five clusters: three clusters for
eastward motions and two for westward motions.

To understand these clusters, we visualize the tracklets
in three dimensions (Fig. 4d) where the Z-axis shows hori-
zontal velocity. The plot reveals two “point clouds” where
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each cluster centers corresponds to a point inside these
clouds having maximal density. Defining clusters based on
the local density maxima is thus a natural approach.

3.2.3 Temporal Clustering
In the example from the previous section (Fig. 4), spatial
clustering has split the two motion patterns into five smaller
clusters. Considering solely the spatial relations between
clusters is thus insufficient. Temporal clustering takes the
smaller motion clusters from spatial clustering and combines
them to create larger motion patterns based on the temporal
relations between tracklets.

To motivate this approach, consider Fig. 5 showing the
tracklets of one node for t = 5, . . . , 10 and two motions
clustersX and Y . When considering the sequence of motion
clusters visited by this node, we observe the sequence
“. . . , X,X, Y, Y, . . .”. If this sequence also occurs frequently
for other nodes, it is a strong indication that the relation
“X precedes Y ” is strong and these clusters should be
concatenated.

Assume spatial clustering yields C clusters T1, . . . , TC
with each cluster a subset of tracklets (i.e, Tc ⊆ T ) and
clusters being disjoint (i.e, Tc ∩ Tc′ = ∅ if c 6= c′).

Next, we define Acc′ as the strength of the temporal
relation “Tc precedes Tc′”. Let Ti,c be the set of timesteps
for which tracklets by node vi were assigned to clusters Tc.

Ti,c = {t ∈ T |τi,t ∈ Tc} (4)

The entry Acc′ is defined as in Eq. 5.

Acc′ =
∑
vi∈V

∑
t∈Ti,c

∑
t′∈Ti,c′

(1− γ) γt
′−t

1t≤t′ (5)

Parameter γ ∈ [0, 1] indicates how the influence between
clusters decays over time. For example, for γ = 0.9, the
influence decreases by 10% for each timestep. The term 1t≤t′
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t=5

t=6 t=7

t=8

t=10

t=9X
Y

Fig. 5. Example of sequence of tracklets for a node. The arrows repre-
sent tracklets while the shaded areas indicate motion clusters.

indicates that only timestep pairs where t ≤ t′ should be
taken into account, meaning we consider going only forward
in time. Note that the total contribution of each tracklet to A
is at most 1.

To illustrate this approach, again consider Fig. 5. The
behavior of this individual was classified as X for t = 6, 7
and as Y for t = 8, 9. The strength of the relation from X to Y
is thus

∑
t=6,7

∑
t′=8,9(1− γ)γt

′−t = (1− γ)(γ+ 2γ2 + γ3).
Exact computation of A is expensive since it requires,

for each node vi, calculating the strength of the relation
γt
′−t between every pair of tracklets τi,t and τi,t′ . Total time

complexity for exact computation is thus O(nT 2) which is
infeasible. Instead, we propose a method for approximat-
ing A using random samples which has time complexity
O(nTκ). Parameter κ is a small constant indicating the
number of samples per tracklet (see appendix B for details).

Finally, we define the cohesion D(Tc, Tc′) between Tc
and Tc′ using Eq. 6.

D(Tc, Tc′) = 1 +
Acc +Ac′c +Acc′ +Ac′c′

|Tc|+ |Tc′ |
− Acc
|Tc|
− Ac′c′

|Tc′ |
(6)

Detection of motion pattern is done using an hierarchical
approach. Initially, each motion pattern corresponds to one
motion cluster. Next, the two motion patterns Tc and Tc′
showing the highest score for D(Tc, Tc′) are selected and
are merged to create a new motion pattern Tc′′ = Tc ∪ Tc′ .
This process is repeated until a single pattern remains.

Every time after merging two patterns,A needs to be up-
dated to accommodate the new pattern Tc′′ . This is achieved
using the following rules.

Ac′′x = Acx +Ac′x for all Tx 6= Tc′′
Axc′′ = Axc +Axc′ for all Tx 6= Tc′′
Ac′′c′′ = Acc +Ac′c +Acc′ +Ac′c′

As is traditional in hierarchal clustering, the result of
this process is a dendrogram [18]. The leaves of this tree
are the original motion patterns, while the root is a single
set. The final motion patterns are obtained by cutting the
dendrogram at a certain height Dcut.

4 ANALYSIS

In this section, we discuss the computational complexity
of our pipeline and analyze the expected sensitivity of its
parameters. Table 1 lists the complete set of parameters of
our pipeline.

TABLE 1
Pipeline parameters. E.S. stands for expected sensitivity.

Stage Param. Description E.S.
Proximity N Number of embedding rounds. Med.
Embedding ε Decrease in learning rate. Low

dhop Average distance per hop. High
Tracklet Ex-
traction

w Time window size. Med.

Spatial α Normalization factor for p̂i,t High
Clustering β Normalization factor for v̂i,t High

δmax Distance threshold for when
tracklet is considered cluster
center.

Low

ρmin Density threshold for when
cluster center is considered
noise.

Low

Temporal
Clustering

γ Temporal influence between
motion patterns.

Low.

κ Number of samples per tracklet
for approximation of A.

Low

Dcut Height at which to cut the den-
drogram.

High

4.1 Complexity Analysis

We argue our method is scalable based on the computational
complexity of each stage.

Proximity Embedding requires repeated execution of
SPE for each timestep. The time complexity of one run of
SPE is linear in the number of rounds N . In Section 4.2 we
will argue that N = kn rounds gives good performance,
where n is the number of nodes and k is some small integer
constant. Repeating SPE for every timestep implies that the
overall time complexity is O(knT ) for T timesteps.

Tracklet Extraction requires linear approximation of
each subtrajectory of each node at each moment in time.
Constructing each tracklet requires O(w) time and the max-
imum number of tracklets is nT . The total time complexity
is O(wnT ).

Spatial Clustering requires two separate scans over
all tracklets: once for determining ρs and once for deter-
mining δs. Both scans require, for each tracklet, query-
ing nearby tracklets. These phases can be accelerated sig-
nificantly by the use of a space partitioning data struc-
ture such as k-d trees [19]. Building a k-d tree takes
O(nT log(nT )) time since there are at most nT tracklets.
A single nearest-neighbor query has an average time com-
plexity of O(log(nT )) of which at most 2nT need to be per-
formed. The total time complexity is thus O(nT log(nT )).

Temporal Clustering consists of two phases: building
the similarity matrix A and hierarchical clustering of this
matrix. As discussed in Section 3.2.3, exact computation of
A is expensive, but an approximation can be constructed
in O(nTκ) time. Hierarchical clustering in general [11]
has high time complexity of up to O(C3) where C is the
number of motion clusters. In practice, the actual run-time
is negligible since the number of motion clusters is several
orders of magnitude less than the number of tracklets.

In practice, k, w, and κ are small constants which can
be ignored since they are negligible compared to the magni-
tude of nT . We conclude that run-time is dominated by spa-
tial clustering since it has time complexity O(nT log(nT )).
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4.2 Parameter Sensitivity
In this section, we discuss the parameters of our framework
and analyze their sensitivity.

Proximity Embedding involves N , ε, and dhop.
The number of embedding rounds N per iteration deter-

mines a trade-off between quality of the embedding and
computational effort: more rounds imply more accurate
positions at the cost of additional computation. In practice,
we observe that N need not be large for two reasons: (1)
nodes locations require only minor adjustments at each
timestep and (2) tracklet extraction helps to remove noise
from a low-quality embedding. We observed that N = kn
often provides a good balance, where k is some small integer
constant and n is the number of nodes. For example, in
the evaluation (Section 5.1), we obtain good results using
N = 10× 50 for 50 nodes.

Parameter ε has little impact since it exists solely to
reduce oscillation. We found ε = 1− 0.051/N (i.e., λ = 0.05
after N rounds) performs well and varying this value has
little impact.

The parameter dhop can be set either based on empirical
evaluation or theoretical analysis. For example, for the two
dimensional case where nodes have an exact detection ra-
dius of dmax, the average 1-hop distance can be estimated as
2
3dmax (see appendix A for details).

Tracklet Extraction involves the window size w which is
used for estimating the position vector p̂i,t and the velocity
vector v̂i,t for a node vi at time t. A large window helps to
remove noise by smoothing the position and velocity, while
a small window aims to preserve small-scale structures and
“sharp” movements. Note that decreasing N implies that
the quality of the embedding degrades, but that can be
compensated for by increasing w.

Spatial Clustering involves four parameters: δmax, ρmin,
α, and β. We set δmax = 1 since position and velocity are
already normalized by α and β, respectively. Parameter ρmin
is used to discard noise and can be chosen using a ρ-δ scatter
plot (see Fig. 4). Such plots should reveal a small number of
“noise” points for which δs is large but ρs is small.

The values of α and β determine the “radius of influ-
ence” for each tracklet in terms of position and velocity. As
discussed in Section 3.2.2, two tracklets τs and τr contribute
to each others density if ‖p̂s − p̂r‖ ≤ α and ‖v̂s − v̂r‖ ≤ β.
The values of α and β thus determine whether two tracklets
belong to the same “class”, based on their difference in
position (i.e., at most α) and their difference in velocity
vector (i.e., at most β).

For example, consider two parallel pedestrian flows at 5
units apart. If α < 5, tracklets from different flows do not
influence each other and thus two clusters are detected. On
the other hand, if α > 5, a single cluster could be detected.
A similar argument can be made for β when considering
two flows having different velocities. The parameters α and
β thus must be chosen based on the scenario.

Temporal Clustering involves three parameters: γ, κ,
and Dcut. The value of κ determines a trade-off between
computational effort and loss in quality due to approxima-
tion. In general, since the number of tracklets is large (i.e.,
thousands or millions) and the number of motion clusters is
small (i.e., less than 100), we find that the approximation is
accurate for small values of κ.

(a) Curved lanes. (b) Parallel lanes.

(c) Intersecting lanes. (d) Divergent lanes.

Fig. 6. Scenarios for synthetic datasets.

The parameter γ represents how quickly the temporal
influence between tracklets degrades after each timestep.
Through empirical evaluation we found that values in the
range γ ∈ [0.75, 0.99] perform well.

The parameter Dcut can be determined by inspecting the
resulting dendrogram of temporal clustering. Intuitively, the
dendrogram should be cut at the height which cuts most of
the long branches of the tree. In some cases, there might
be multiple correct answers, depending on whether one
is interested in coarse-grained patterns (high cut) or fine-
grained patterns (low cut).

5 EMPIRICAL EVALUATION

In this section, we evaluate the performance of our pipeline.
We use synthetic models to perform various controlled
experiments (Section 5.1) and use real-world datasets to
demonstrate the applicability of our method in the real
world (Section 5.2).

Our prototype1 is implemented in Python 2.7 and is
available under an Open-Source license. We note that our
implementation is decently fast. For example, the Hurricane
dataset (Section 5.2) generates 7974 tracklets and can be
processed in 2.6 seconds on a regular desktop computer.

5.1 Synthetic Dataset

5.1.1 Experimental Setup
For the evaluation on synthetic datasets, we consider four
different scenarios (Fig. 6) where each is designed to test
a different aspect of our processing pipeline. In every sce-
nario, we consider two paths that are followed by simulated
pedestrians. Each pedestrian picks a random offset vector of
length at most 5 meter, meaning each path can be seen as a
“street” or “hallway” which is 10 meter wide.

At the start of the simulation, 25 nodes are positioned at
random locations on each path. The walking speed of each
node is taken from a normal distribution with a mean of
1.4 m/s and standard deviation of 0.2 m/s, corresponding
to the preferred walking speed of humans [20]. Once a
node reaches the end of its assigned path, the node is
deleted and new node is created at the start of the path. The

1. https://github.com/stijnh/scalable-crowd-analysis
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(a) Trajectories after embedding. (b) Density-distance plot. (c) Tracklets. Colors indicate motion clus-
ters. The black arrows are cluster centers.

(d) Centers of motion clusters.
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(e) Dendrogram. (f) Final motion patterns.

Fig. 7. Results for scenario A.

Fig. 8. Three examples of trajectories from Fig. 7a.

simulation runs for 1500 timesteps, where each timestep is
one simulated second. Each node has a proximity detection
radius of 25 meter and anchors are placed along each path
every 50 meter.

The simulation output is a proximity graph which is
passed the our pipeline. The pipeline generates a set of
labeled tracklets, where the labels indicate the motion pat-
terns. We use the normalized mutual information [21] (NMI)
score to measure the correlation between the reported labels
and the ground-truth labels. The range is between 0 (no
correlation) and 1 (perfect correlation).

Unless noted otherwise, parameters are chosen as fol-
lows: N = 500, dhop = 2

3 × 25, ε = 1 − 0.051/N , w = 10,
α = 15, β = 0.3, γ = 0.99, κ = 25, and Dcut = 0.5.

5.1.2 Scenario A: Curved Lanes
We consider two opposing sinusoidal paths to test how our
pipeline deals with curving flows. Both paths are 250 meter
in length and have an amplitude of 50 meter (Fig. 6a)

Fig. 7 shows results for this scenario. Fig. 7a visualizes
the resulting trajectories after embedding. Fig. 8 highlights
three arbitrary trajectories, showing the amount of noise the
pipeline is able to handle.

Fig. 7b shows a density-distance plot of the resulting
tracklets. The plot shows that there are several points for
which ρs is small while δs is large. These points could be
considered noise and choosing ρmin = 500 discards them,
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Fig. 9. NMI-scores for scenario B.
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Fig. 10. NMI-scores for scenario C.

removing 0.08% of the total tracklets. Spatial clustering
discovers 13 motion clusters: 5 moving left-to-right and 8
moving right-to-left. Fig. 7c shows these motion clusters and
Fig. 7d shows their centers.

The dendrogram which results from temporal clustering
is shown in Fig. 7e. The figure reveals that any cut between
0.39 and 0.75 yields two motion patterns, thus we pick
Dcut = 0.5. Fig. 7f shows the final two motion patterns.

The NMI score is 0.963, indicating a high-quality result.
We experimented with various amplitudes up to 250 meter
and found that this had little impact on the NMI score.

5.1.3 Scenario B: Parallel Lanes
Next, we consider two parallel lanes which are 250 meter
long and d meter apart (Fig. 6b). This scenario tests the
minimal distance required between two lanes in order to
separate them.

As discussed in Section 4.2, parameter α plays an impor-
tant role for this scenario. The value of α needs to be small
enough to separate the two lanes, but not too small such
that the two lanes themselves are no longer detectable.

Fig. 9 shows a heat map, visualizing the NMI score for
various values of α and d. The results show that d needs to
be at least 20 meter in order to separate the two lanes, which
is a reasonable distance considering the lanes are 10 meter
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(a) Two lanes for β = 0.3. (b) One lane for β = 0.5.

Fig. 11. Motion cluster centers for scenario C (θ = 40◦). At the intersec-
tion, either one center (β = 0.5) or two centers (β = 0.3) are detected.

wide. The value of α needs to be at least 10 meter, smaller
values fail to detect any lane. The upper bound on α scales
linearly with d, meaning far apart lanes become easier to
detected.

5.1.4 Scenario C: Intersecting Lanes
Next, we consider the scenario of two crossing lanes (Fig. 6c)
which are 250 meter long and intersect at some angle θ,
testing the minimum difference in direction required to
separate two lanes. The lanes are identical if θ = 0◦ and
they are perpendicular if θ = 90◦.

The value β plays an important role when considering
the direction of movement. Fig. 10 shows the NMI score
for β versus θ. The figure shows that the two lanes cannot
be separated if θ ≤ 20◦. For θ ≥ 50◦, the results show high
NMI scores meaning the two lanes are correctly detected. An
interesting case is for 20◦ < θ < 50◦, since the results show
decent NMI scores (around 0.5) but only if 0.15 ≤ β ≤ 0.3.
If β is too small, many tracklets are labeled as noise since
their density falls below threshold ρmin. If β is too large, it is
impossible to separate the two lanes. The second problem is
demonstrated in Fig. 11, showing spatial clustering cannot
distinguish two clusters at the intersection point if β is large.

We note that the reason lanes cannot be separated for θ ≤
20◦ is mostly due to the noise introduced by the embedding.
More accurate positioning would decrease this minimum
angle.

5.1.5 Scenario D: Divergent Lanes
Finally, we test our pipeline on diverging flows by con-
sidering a T-intersection (Fig. 6d) having two lanes: one is
straight while the other contains a bend at the mid-point.
Our pipeline should detect three patterns: one before the
bend and two after the bend.

Fig. 12 shows the results for this scenario. Spatial clus-
tering detects 8 motion clusters, see Fig. 12a. The resulting
dendrogram (Fig. 12b) shows that any cut between 0.75 and
0.92 yields three motion patterns. Fig. 12c shows that these
patterns are the desired outcome.

We note that a scenario with converging lanes instead
of divergent lanes would give the same result, since the
datasets would be identical with the only difference being
that the velocity vectors are inverted.

5.2 Real-World Dataset
In this section, we evaluate the applicability of our approach
to real-world data. We show results for two datasets: a
hurricane track dataset and an animal movement datasets.
These datasets were previously used by Lee et al. [22]
for evaluation of their sub-trajectory clustering algorithm,

enabling direct comparison of their work and our solution.
Since these datasets provide absolute coordinates, we omit
the embedding within our pipeline and focus on motion
pattern detection.

5.2.1 Hurricane Track Data
The hurricane “best track” dataset2 contains the latitude
and longitude of important Atlantic hurricanes at 6-hourly
interval from the years 1950 through 2004. The data set
consists of 570 trajectories and 17,736 points.

Fig. 13a visualizes the hurricane trajectories taken from
the dataset. Spatial clustering was performed for w =
12 hours, α = 300 km, and β = 40 km/hour. Fig. 13b shows
a density-distance plot, revealing that this dataset contains
some noise as indicated by the few points for which δs is
large and ρs is small. Selecting ρmin = 100 removes the
noise, discarding 8.3% of the total tracklets.

Fig. 13c shows the remaining tracklets and Fig. 13d
shows the centers of the detected motion clusters. Tempo-
ral clustering was performed for γ = 0.75, see Fig. 13e
for the resulting dendrogram. The cut was performed at
Dcut = 0.87.

Fig. 13f shows the final four motion patterns detected
on the hurricane dataset. This figure reveals that the dataset
contains a clear dominant “curvature”: hurricanes originate
from the north-east, move towards the south-west, and
terminate either in the west or in the south-east.

5.2.2 Animal Movement Data
The animal movement dataset originates from the Starkey
project3. The dataset contains radio-telemetry data for var-
ious wildlife animals in the Starkey nature reserve from
1993 through 1996. Each data record corresponds to one
measurement and consists of the animal’s identifier, the
animal’s species, time, and absolute coordinates.

The data is not recorded with any regular interval, a
requirement for our method. We preprocessed the dataset
by resampling the positions at an interval of one hour,
estimating the position by interpolating between the pair
of closest measurements. The dataset also contains many
“gaps” where no data is available for an animal for several
hours or even days. We divide the data for each animal into
multiple trajectories based on gaps of 3 hours or longer.

Fig. 14a visualizes the trajectories for deer in 1995 (32
animals, 50505 points). Fig. 14b shows the results of spatial
clustering for w = 3 hours, α = 0.5 km and β = 0.1 km/h.
Comparing Fig. 13b and Fig. 14b shows that the animal
dataset contains more noise than the hurricane dataset,
indicated by the large number of tracklets for which δs is
large and ρs is small. Based on this plot, ρmin = 75 was
selected which discards 15.5% of the tracklets.

Fig. 14c and Fig. 14d visualize the remaining track-
lets and resulting motion clusters. Comparing the motion
pattern centers in Fig. 13d and Fig. 14d reveals that the
movement of deer is much more chaotic and unstructured
than the movement of hurricanes. This is expected since
animals wander randomly without a clear direction, while
the hurricanes all follow a similar path.

2. http://weather.unisys.com/hurricane/atlantic
3. https://www.fs.fed.us/pnw/starkey/
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(a) Centers of motion clusters.
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Fig. 12. Results for scenario D.

(a) Hurricane trajectories. (b) Density-distance plot. (c) Tracklets. Colors indicate motion clus-
ters. Gray is noise. Arrows are centers.

(d) Centers of motion clusters.
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Fig. 13. Results for hurricane dataset.

(a) Deer-1995 trajectories. (b) Density-distance plot. (c) Tracklets and motion clusters.

(d) Centers of motion clusters.
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Fig. 14. Results for Animal Movement dataset.
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Fig. 15. Trajectories of nine animals from the deer-1995 dataset. ID is
the unique animal identifier assigned by the Starkey nature reserve.

Temporal clustering was performed for γ = 0.75, see
Fig. 14e for the resulting dendrogram. Fig. 14f shows the
motion patterns when performing the cut at Dcut = 0.65.
The figure shows that each motion pattern corresponds to
a certain “region” of the nature reserve, but there is no
dominant direction of motion within each region.

When considering the individual trajectories of deer (see
Fig. 15), we can conclude that deer mostly stay within
certain regions and rarely cross boundaries between regions.
The detected motion patterns are meaningful since they
closely match these regions from the original dataset. One
possible explanation for this behavior is that deer are ter-
ritorial animals, each protecting its own territory. Another
explanation is that there are physical boundaries between
the regions (i.e., rivers, roads, fences, hills, etc.).

5.2.3 Comparison against Existing Work
We compare our results against TRACLUS [22], which is
commonly used for trajectory clustering [23], [24], [25], [26],
[27] (Section 6). TRACLUS partitions each trajectory into a
series of line segments, clusters the set of segments, and
calculates a “representative path” for each cluster. For eval-
uation, we use an implementation of TRACLUS in Java4.
The parameters (MinLns, ε) for the two datasets were taken
from the original manuscript on TRACLUS [22].

Fig. 16a shows results for the hurricane dataset (ε = 30,
MinLns = 6). TRACLUS detects eight clusters: two large
and six small clusters. The large clusters are straight lines:
one from the north-east to the west and one from the
west to the south-east. Comparing our results (Fig. 13f) to
TRACLUS’ (Fig. 16a) shows that only our method was able
to capture the “curvature” of the trajectories.

Fig. 16b shows results for the Deer-1995 dataset (ε = 29,
MinLns = 8). TRACLUS has detected two elongated clus-
ters: one along the north-side and one along the east-side of
the nature reserve. However, previously we saw that deer
mostly wander randomly and stay within certain territorial
regions (Fig. 15). The representative trajectories discovered

4. https://github.com/luborliu/TraClusAlgorithm

(a) Hurricane dataset. (b) Deer-1995 dataset.

Fig. 16. Results of the TRACLUS algorithm. Different colors indicate
different clusters. Bold lines are the representative trajectories.

by TRACLUS do not represent the original dataset and seem
to be the result of concatenating multiple sub-trajectories of
different animals. Our method, on the other hand, was able
to detect meaningful motion patterns (Fig. 14f).

6 RELATED WORK

To the best of our knowledge, our method is the first
complete end-to-end solution for extracting motion patterns
from real-world crowd based on proximity data. However,
crowd analysis is a popular research topic in many different
domains. In this section, we discuss relevant contributions
from three areas of research: proximity sensing, computer
vision, and data mining.

6.1 Proximity Sensing
Crowd analysis by using proximity sensors has proven to
be a promising area of research. Martella et al. showed
how proximity graphs could be used for analyzing social
interactions at an IT conference [3], positioning people in a
six-story building using only a handful of anchor points [28],
and clustering the paths of museum visitors [5]. However,
further research has been scarce.

6.2 Computer Vision
The analysis of crowds is also an active research topic
in computer vision. For a comprehensive overview of all
crowd-related work from computer vision, we refer to the
excellent literature reviews by Zhan et al. (2008) [29], Thida
et al. (2013) [30], Li et al. (2015) [31], and Grant et al.
(2017) [32]. Most of this work focuses on automatic analysis
of videos from surveillance cameras. Many methods have
been proposed, for example, to understand crowd behavior,
track crowd members, or estimate crowd density.

One particular topic which is related to our method is
crowd flow segmentation [31]: the problem of diving the cam-
era view into regions of coherent motions. For example, Ali
et al. [33] show how techniques from computational fluid
dynamics are suitable for crowd segmentation based on the
intuition that high-density crowds behave similar to fluids.
Hu et al. [34] presented a method which detects motion flow
vectors and groups these into clusters using a hierarchical
agglomerative clustering algorithm. Benabbas et al. [35]
followed an approach which divides the camera view into
rectangular blocks, detects the dominant motion vectors
within each block, and clusters adjacent blocks containing
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similar motions. Zhao & Medioni [36] describe a method
which tracks moving objects, extracts tracklets from these
trajectories, and embeds these points into (px, py, θ) space
(p is position, θ is direction). These points form intrinsic
manifold structures which are segmented using a robust
manifold grouping algorithm.

Using proximity sensors reveals several advantages over
cameras. First, proximity sensing allows holistic analysis
of large areas, such as music festivals, stadiums or musea.
Cameras are inherently limited to one single static perspec-
tive and there seems little research on how to “join” the
image analysis from multiple cameras. Second, our method
focuses on scalability, allowing it to be used for analyzing
the movements of massive crowd over long periods of time.
Computer vision algorithms are often complex and compu-
tationally expensive. Third, the majority of these methods
segment the camera view into disjoint regions, meaning
they cannot handle “overlapping” flows while our method
can handle these cases.

6.3 Data Mining

Due to the developments in mobile computing and location-
acquisition device, there has recently been much research in
data mining of trajectories from moving entities, such as
humans, animals, or vehicles. For a complete overview of
work in trajectory data mining, we refer to the extensive
surveys by Zheng (2015) [23], Feng & Zhu (2016) [37], and
Mazimpaka et al. (2016) [38].

The second stage of our pipeline could be seen as a clus-
tering problem: given a set of trajectories, group “popular”
subtrajectories into clusters. According to Zheng [23], there
are three approaches to trajectory clustering.

The first approach is to define a similarity metric for
trajectories and group them using traditional clustering
algorithms. For example, Morris & Trivedi [39] performed
an in-depth evaluation of this idea for various metric, algo-
rithms, and datasets. However, this approach treats trajecto-
ries as atomic units and captures movements patterns only
if individuals travel together simultaneously. As such, it is
not suitable for our pipeline.

The second approach is to project trajectories onto a
map (e.g., road network) and employ graph algorithms
to find popular paths (i.e., subgraphs). For example,
NETSCAN [40] is an algorithm based on this idea of de-
tecting “dense” paths in graphs. While this approach works
well for vehicles which are constraint to roads, it is not
suitable for people in open spaces.

The third approach is a micro-macro framework [23].
These methods first partition the trajectories into sets of
short subtrajectories (micro-level), and then group the com-
plete set of segments into clusters (macro-level). The de
facto standard algorithm in this category is TRACLUS [22].
TRACLUS segments each input trajectory into a series
of line segments, according to the Minimum Description
Length principle, and then clusters the complete set of
line-segments using a density-based clustering algorithm.
TRACLUS (and slight variations) have been used for many
different purposes including trajectory classification [24],
trajectory outlier detection [25], analysis of animal move-
ment [26], and discovery of popular traffic routes [27].

There are key differences between our pattern detec-
tion method and TRACLUS. First, since TRACLUS relies
on clustering of straight line segments, it cannot handle
sharp turns (demonstrated in Fig. 16a). Our method can
handle these cases since it takes temporal relations into
account. Second, TRACLUS clusters the line segments with-
out considering their “owner”, meaning it suffers from the
problem of concatenating different sections from different
nodes (demonstrated in Fig. 16b). Third, TRACLUS does
not take velocity of objects into account, meaning it cannot
differentiate objects of different velocities on the same road
(e.g., cyclists and cars). Our method explicitly takes velocity
into account.

7 CONCLUSIONS & FUTURE WORK

In this work, we present a complete end-to-end processing
solution for extracting motion patterns from real-world
crowds. Our method is designed to be fast and resilient
against noise, allowing it to be used for large real-world
crowds. For measuring crowd movements, we utilize prox-
imity graphs followed by a fast embedding algorithm. For
detection of patterns, we designed a three-stage procedure
which considers spatial and temporal relations separately.
Results show that our method works well, both on synthetic
simulations and real-world datasets.

For future work, we are exploring methods for auto-
matically tuning the parameter α, β, and Dcut based on
the datasets. We are also considering methods for including
time-of-day into motion pattern detection. For example, mo-
tion pattern “enter office” would be popular in the morning
and “exit office” during the evening. Furthermore, we are
designing an incremental variation of our framework, al-
lowing new data to be added without re-executing the entire
pipeline. This would allow for a system which receives and
processes data from proximity sensors in real-time. Finally,
we are working on obtaining real-world proximity measure-
ments to evaluate our method on non-synthetic proximity
datasets.

Overall, we consider proximity graphs to be promising
method for analysis of crowds and we see our work as a
first step towards rich crowd pattern detection.
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