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Abstract. An often discriminating feature of a location is its social
character or how well its visitors know each other. In this paper, we
address the question of how we can infer the social contentedness of a
location by observing the presence of mobile entities in it. We study a
large number of mobility features that can be extracted from visits to
a location. We use these features for predicting the social tie strengths
of the device owners present in the location at a given moment in time,
and output an aggregate score of social connectedness for that location.
We evaluate this method by testing it on a real-world dataset. Using
a synthetically modified version of this dataset, we further evaluate its
robustness against factors that normally degrade the quality of such ubiq-
uitously collected data (e.g. noise, sampling frequency). In each case, we
found that the accuracy of the proposed method highly outperforms that
of a state-of-the-art baseline methodology.

Keywords: Spatial profiling · Link prediction · Mobility data mining ·
Wi-Fi scanning · Mobility modeling

1 Introduction

Just like people, locations have a social profile. This profile reflects the social
connectedness of people who visit those locations and it dynamically changes
over time as people with different social ties enter and leave a location. Having
knowledge about the social profile of a location before visiting it is a useful
addition to location-based recommender systems. If we want to meet new people
and make new friends, we may want to visit the most social pub among all the
pubs in town. However, if we want to go to a quiet library for studying, a less
social one may be more appropriate. Likewise, having knowledge about the social
profile of a location helps to improve the services offered there. This has been
shown to be important in, for example, elderly care facilitates [1–3].

To create social profiles for locations, in this paper, we design a method
that can infer the social connectedness of that location from ubiquitously gener-
ated mobility data (such as GPS coordinates, Wi-Fi scans, or check-in records
in location-based social networks). While research in spatial profiling [4] from
mobility data has previously addressed characterizing locations from such data,
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creating a social profile for locations has not been addressed before. In order to
know how socially connected a location is, we investigate to what extent we can
extract the social tie strength of people based on their visit to a single location.
Previous research has mainly examined methods to infer the strength of social
ties between pairs of individuals. This is achieved by using the global trajectory
of mobile entities over many locations. We, however, consider characterizing loca-
tions rather than individuals. This means that, in our case the available input
data is limited to that acquired from a single location.

Extracting the social context from visiting patterns of people in only a single
location is a challenging problem. Mobility data is of limited social interaction
content. For example, working in the same building does not guarantee that two
people have strong ties or even know each other. Due to the inherent differences
in the functionality of locations, the social context can be reflected in different
features of visits. It is not yet clear which features of a visit can be used for this
purpose. Furthermore, oftentimes additional data with strong social interaction
content does not accompany mobility datasets. In most cases ground truth on
social ties can only be collected from a small sample of visitors. To address these
problems, in this paper, we propose a data-driven technique for extracting an
aggregate measure for the social connectedness of a single location by detecting
only the presence of people in that location. More specifically:

– We study a large number of features that can be extracted from mobility data
acquired from presence of people in a single location.

– We propose a supervised method for selecting among this list of features and
consequently learning social ties from them.

– We validate the performance of our method in predicting social tie strengths
using a dataset of Wi-Fi mobility data. As ground truth, we use an estimate
score of social tie strengths derived from the similarity of devices’ SSID (Ser-
vice Set IDentifiers) sets and show how the method performs by learning from
a sample of these social tie indicators.

2 Related Work

There have been a number of previous studies that describe methods for inferring
social ties between individuals from either Wi-Fi protocol-specific information,
or more general mobility data.

Wi-Fi protocol-specific data: when Wi-Fi-enabled devices try to connect to
nearby access points, they often broadcast probe request messages, which can be
used to infer the social ties between the owners of devices. Detections of probe
requests can be used to create a mobility trace representing timestamped pres-
ence of mobile devices near Wi-Fi access points (or scanners) [5]. Furthermore,
probe requests contain the names of access points that the mobile device has
been connected to before (SSIDs). Previous research has shown that it is pos-
sible to extract information about the social ties between device-owners from
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their similarity in SSID lists. The authors of [6] have examined different similar-
ity metrics between the SSID lists of pairs of devices observing a high correlation
between SSID lists and social tie strengths acquired by surveying device owners.
The authors of [7] use SSID list similarity to extract a social network to confirm
the sociological theory of homophily [8]. The study in [9] proposes a framework
to use the social information acquired from the SSID list similarity and location
visitation frequencies for calculating a venue reputation score. The method in
[10] employs different techniques to infer social ties between device owners.

General mobility data: data acquired from location-based social networks,
GPS, and cellular networks have also been used for extracting social informa-
tion. Research presented in [11] describes a method to improve social tie predic-
tion, focusing on user check-ins in location-based social networks. Two different
mobility features are extracted for each pair of users that have visited the same
location: the minimum place entropy across all venues they have both visited,
and the sum of the inverse of each place entropy value. In [12] mobility data from
cellular networks is used along with phone call communications to infer a recip-
rocal friendship social network. Authors of [13] use two information-theoretic
indicators to infer social link types of people relying on similarities of their visits
extracted from their GPS mobility data.

While the first group of research show that it is possible to infer social rela-
tionships from the SSID list, they have not investigated extracting such infor-
mation purely from the mobility data acquired from probe requests. While SSID
lists are specific to the Wi-Fi protocol, datasets made by the detection of probe
requests can represent a more general class of mobility datasets such as those
acquired from GPS, Bluetooth, cellular networks, etc. Our approach in this paper
is to investigate to what extent mobility data acquired from probe requests can
be used for extracting social information. The second group of studies, on the
other hand, successfully makes use of mobility features to predict the existence
of social relationships. By having access to the global trajectories, these methods
are successful while only employing a limited number of mobility features. We,
however, consider extracting the social context from mobility data collected from
a single location. This is implied by our goal, which is characterizing locations
rather that individuals.

3 Preliminaries

The goal of this study is to derive an aggregate social connectedness score for a
location using mobility information collected from visitor’s devices. In a specific
location, we consider having a system that detects presence of visitor devices in
it. Wi-Fi scanning [5] near a Wi-Fi scanner allows collection of such a dataset.
Before explaining the problem, we define a number of terminologies used in the
rest of the paper:

Definition 1. A location is a defined spatial area where presence of devices can
be detected. An example of a location is the area covered by a Wi-Fi scanner.
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Definition 2. A detection in a location is a tuple 〈d, t〉, in which d represents
the identifier of the visiting device and t represents the moment in time that the
device is detected.

Definition 3. A mobility trace, denoted by 〈MT, tstart, tend〉, is a collection
of detections acquired in a timespan ranging from tstart to tend.

Definition 4. The pairwise social tie strength between two device owners,
denoted by {sij |sij ∈ [0, 1]}, is the strength of the social tie between the owners
of devices i and j.

Definition 5. The social connectedness score, denoted by s, is the normal-
ized social tie strength between a group of users. It is a score s = 1

|D|
∑

i,j∈D sij
for each set of devices D = {d1, d2, ..., dn}, in which each dk represents a differ-
ent device.

Problem: Given a mobility trace 〈MT, tstart, tend〉 and a timestamp t ∈
[tstart, tend], we are interested to infer the aggregate social connectedness score
st for the group of devices that are present in the location at time t.

4 Approach

In this section, we present our approach in extracting the social connectedness
score of a location based on visits of people to only that location. Our app-
roach is based on learning the relationship between mobility features and social
tie strengths in a supervised manner. For this purpose, we train a model that
identifies the relationship between mobility features and samples of social tie
strengths. We explore a variety of possible mobility features and use a feature
selection algorithm in order to identify a subset of important mobility features
related to social ties. In order to determine an indicator for ground truth on
social tie strengths, we consider the similarity between devices’ Wi-Fi SSID lists.
Based on the mobility dataset, other type of ground truth can also be used for
this purpose.

4.1 Ground Truth Metric

In order to train a model, we need to obtain ground truth for the social
tie strengths between pairs of devices. We take the approach of using the
anonymized Wi-Fi SSID lists of each pair of devices, and computing a value
that measures their overlap [6,7,9,10,14]. The general intuition is that elements
of this list represent presence in places such as device owner’s homes which
are only probable to be shared when people have strong social ties. The more
two lists share such kind of rare SSIDs, the probability that they have stronger
ties increases. The research in [6] has compared a variety of similarity met-
rics, among which a modified version of Adamic-Adar metric known as Psim-3
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performs best in determining social ties between individuals. This metric is cal-

culated as
∑

z∈X∩Y

1
f3
z

, in which X and Y are the two SSID sets, and fz is the

number of times that identifier z occurs in the dataset. This measure can be
normalized between zero and one based on the maximum strength found in the
whole dataset.

4.2 Method

Our method performs in two phases of learning and inference. During the ini-
tialization phase, the model is trained and its features are selected based on a
mobility trace and knowledge about the pairwise social tie strengths. This is
followed by the utilization phase, in which the mobility trace is supplied to the
model, inferring pairwise tie strengths. By combining these strengths with the
devices present at a given timestamp, an aggregate social connectedness score is
then calculated. Figure 1 provides an overview of the proposed method.

Fig. 1. High-level overview of the proposed method

4.3 Features

To train the model, we have selected 5 general feature classes leading to 124
mobility features which are extracted from each pair of devices. Table 2 provides
an overview of these features. This table can be interpreted using the notations
introduced in Table 1. The feature classes group the features by their source of
information; overlapping visits, devices themselves, and the environment. There
is no class related to the location only, because its features would be independent
of the pair of devices, and have the same values for each sample. These features
are:

– Overlap Only (51 features) These features characterize the mutual overlap-
ping visits of the pair of devices to the location. Examples are the number
and total length of the overlapping visits, and the average amount of time
that one device waits before and after the other arrives.

– Individual Only (16 features) These features characterize the individual
visits of each of the two devices to the location. They include the total number
and length of visits by the devices, and their average and median visit lengths.
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– Overlap and Individual (8 features) These features relate the overlapping
visits to the individual devices’ overall visiting pattern. For example, this
group contains the ratio between overlapping visits and the total number of
visits made by each device, or the ratio between overlap length and total visit
length of each device.

– Overlap and Location (7 features) These features characterize the state
of the location when the devices had overlapping visits to it. Specifically,
it considers how busy the location was when the visit took place. Example
features are the average and maximum number of devices present during
overlapping visits.

– Individual and Location (42 features) These features characterize the state
of the location during the individual visits of devices. Examples are the aver-
age and maximum popularity during individual visits.

The features are defined based on the mobility of any pair of devices i and
j, such that {(i, j) ∈ D}. For each of these devices, we consider the set of all
of its n visits to the considered location, Vd = {v1, v2, ..., vn} with d being the
id of the detected device. Each vp in this set is defined by tuples of the form
〈s, e〉p,d, with s and e being the timestamp of when the visit started and ended,
respectively. Additionally, we consider the set of overlapping visits Oi,j of these
two devices, by determining which visits in Vi took place during a visit in Vj .
The set Oi,j = {ov1, ov2, ..., ovm} is composed of m number of overlapping visits
these two devices had. Therefore, each ovq is composed of tuples of the form
〈si, sj , ei, ej , so, eo〉q, in which each element is a timestamp. The elements so and
eo are defined as follows: so = max(si, sj) and eo = min(ei, ej).

Finally, Odi,j and Odj,i are similar to Oi,j , but each overlap is calculated
from the point of view of a single device. For example, if a visit from device i
starts during one visit of device j and ends during another, it counts as 1 over-
lapping visit for Odi,j and as 2 for Odj,i. Table 1 defines a number of auxiliary
functions that are required to compute the features. The function denoted by f
generates seven statistical values from a given sequence of values, so it defines
seven features.

Table 1. Function definitions

Function Output Definition

length(v) e − s Duration of the visit v

present(t) {d ∈ D|(∃vp = 〈s, e〉 ∈ Vd : (s ≤
t ≤ e))}

Id of devices present at time t

max present(MT) max(|present(t)|)t∈MT Maximum number of devices
present in the location at any
time

f(x) min(x),max(x), std(x), sum(x),
mean(x),median(x),max(x) −
min(x)

Statistics applied on the set x
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4.4 Initialization Phase

We use the above-mentioned features in the initialization phase. The first part
of this phase is creating the input samples from available data and the second
part performs feature selection and trains a model.

Creating samples: Input samples consist of n = 124 number of mobility fea-
tures which are labeled with social tie strengths. In this paper, both the tie
strength and mobility features are computed based on a data set of Wi-Fi
access probe requests, in which each device is identified by its MAC address.
The social tie strength is derived from SSID list similarity by calculating Psim-
3, as described in Sect. 4.1. The mobility features are computed based on the
timestamped Wi-Fi probe requests, which represent the presence of a device
nearby a Wi-Fi scanner. The timestamps are recorded in discrete and irregu-
lar time intervals. In order to compute the mobility features, the start and end
time of visits need to be detected from such timestamps. When the distance
between two consecutive timestamps is shorter than a specific threshold tr they
are grouped as a single visit. Otherwise, these timestamps are considered to be
part of separate visits. We chose the gap length threshold tr such that it was
higher than 95% of all gaps in the dataset (2 and 4 min). Algorithm1 in the
appendix provides algorithmic details on this procedure.

Table 2. Features extracted for each pair of devices i, j

Feature class Indices Feature definition

Overlap only 1 |Oi,j |
2

∑
i length(Oi,j)

3–16 f({〈so − sk〉q,k|ovq ∈ Oi,j , k ∈ i, j})a
17–29 f({〈ek − eo〉q,k|ovq ∈ Oi,j , k ∈ i, j})a
30–36 f({〈so − min(ei, ej)〉q|ovq ∈ Oi,j})
37–43 f({〈max(ei, ej) − eo〉q|ovq ∈ Oi,j})
44–51 f({〈(so − min(si, sj)) + (max(ei, ej) − eo)〉q|ovq ∈ Oi,j})

Individual only 1–2 {|Vk||k ∈ i, j}a

3–16 f({length(vp)|vp ∈ Vk, k ∈ i, j})a
Overlap and

Individual

1–2 {|Odk|, k ∈ 〈i, j〉, 〈j, i〉}a

3 |Oi,j |/max(|Vi|, |Vj|)
4–5 |Oi,j |/|Vk|, k ∈ i, ja

6 (
∑

length(Oi,j))/
√

(
∑

length(Vi) ∗∑ length(Vj))

7–8 (
∑

length(Oi,j))/(
∑

length(Vk)), k ∈ i, ja

Overlap and

Location

1–7 f({〈|present(t)|/max present(MT)〉q|t ∈ {range(so, eo)|ovq ∈ Oi,j}})

Individual and

Location

1–14 f({〈|present(s)|/max present(MT)〉p|vp ∈ Vk,k∈i,j})a

15–28 f({〈|present((s + e)/2)|/max present(MT)〉p|vp ∈ Vk,k∈i,j})a
29–42 f({〈|present(e)|/max present(MT)〉p|vp ∈ Vk,k∈i,j})a

aThis feature is generated for both devices, leading to a pair of values. In order to make the order of

those values independent from the order of the devices, the actual features are their maximum and

minimum values
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Feature selection and learning: In this phase, a number of features are
selected and a model is trained to relate the input mobility features to the social
tie strength. As we are interested in learning the social tie strengths as numerical
values from numerical features, we are dealing with a regression problem. We
initially select the important features in a greedy manner and continue to do so
until no feature improves the quality of the regression [15]. Next we train the
regressor using the selected set of features. Algorithm 2 in the appendix provides
more detail on this procedure.

4.5 Utilization Phase

After the regressor has been trained, it can be used to predict the social tie
strengths between each pair of devices from their mobility features, and those
tie strengths can be used to determine the aggregate social connectedness score of
the location. In this phase only mobility features are used and the actual ground
truth indicator of social ties are not. While such ground truth is available in
a special case for a dataset collected using Wi-Fi scanning, in other mobility
datasets (e.g. GPS, Cellular networks) it is not and can only be collected in
a small scale (e.g. through surveying visitors). Therefore, a utilization phase
without such ground truth indicator is a valid approach. Algorithm3 provided
in the appendix shows the utilization phase in detail.

5 Evaluation

In this section, we present the result of two experiments to validate our method.
Firstly, we evaluate the accuracy in prediction of social tie strengths using a
dataset generated by Wi-Fi scanners in our university campus since the start of
2016 (both MAC addresses and SSIDs are anonymized through secure hashing
and visitors are provided with an opt-out list). Secondly, we synthetically mod-
ified this dataset to analyze sensitivity of our method to various factors that
degrade the quality of such datasets.

For each of the experiments we applied 10 fold cross-validation, by train-
ing both the proposed method and a baseline method and generating pairwise
social ties as output. The generated score by the algorithms is then compared
to the ground truth indicator acquired from SSIDs. The indicator of accuracy
in these experiments is the coefficient of determination, which is defined as
R2 = 1 −

∑
i (fi−yi)

2
∑

i (yi−ȳ)2 , in which yi is the ith predicted result and fi is the ith
observed result. This metric describes which portion of the variation in the actual
social tie strengths is explained by the predicted social tie strengths. The reason
for choosing the metric was that we found that a high proportion of social ties
measured are weak and relatively a much smaller proportion are strong. Com-
pared to other alternative metrics (e.g. Mean squared error), this metric is not
biased towards such unbalance in proportion of weak and strong social ties. The
reasoning behind weak ties is better depicted by Fig. 2(a). This figure shows how
the MAC addresses are distributed among the top 25 SSIDs. As seen, a large set
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of devices share one SSID. Plugging this number to Psim-3 indicator mentioned
in Sect. 4.1 results in a week tie between all of these devices. Whereas, a much
smaller number of devices share rare SSIDs leading to stronger ties.

Choosing a baseline: As mentioned before, none of the previous research has
considered extracting social tie information from mobility data acquired of a
single location. However, among the features used in previous research consid-
ering visits to multiple locations, the overlap feature calculated through mea-
suring co-occurrence probability is the one that can also be calculated from
a single location [10,11]. Therefore, as our baseline, we trained the regressor
using this feature. For a pair of devices i and j this feature is calculated as
(
∑

length(Oi,j))/
√

(
∑

length(Vi) ∗ ∑
length(Vj)).

Table 3. Wi-Fi dataset statistics

Statistic Value

Number of locations (scanner) 20

Data collection period 260 days

Number of unique MAC addresses 2,790,703

Number of non-random unique MAC addresses 281,562

Number of probes collected 130,279,931

Number of probes collected from non-random sources 126,807,946

5.1 Wi-Fi Dataset

In this section, we evaluate the accuracy of our proposed method in predict-
ing SSID-derived social tie strengths, and compare it to the baseline’s accu-
racy. Table 3 describes various features of this dataset. For each location, the
timestamps, scanner IDs and anonymized MAC addresses are used to create
the mobility trace, after the Organizationally Unique Identifier (OUI) field has
been used to filter out randomized MAC addresses1 (by examining the OUI field
of addresses [16]). The anonymized SSIDs are solely used to infer the ground
truth indicator of social tie strength between devices. As previously described
in Sect. 4.1, we use the Psim-3 metric for this purpose.

Progression of the algorithm: We initially present the results on three loca-
tions (denoted by A–C) to demonstrate how the algorithm works. Figure 2(b)
shows the performance of the methods during the progression of the feature
selection algorithm (Algorithm 2). The algorithm keeps adding features and stops
when no performance increase is observed. As seen, the proposed method reaches
its optimal performance by using 7–14 features, reaching a coefficient of deter-
mination between approximately 0.3 and 0.45. Using a single feature the perfor-
mance of the baseline is a constant value and significantly lower.
1 This anonymization approach is taken by recent mobile phone operating systems.
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Fig. 2. (a) MAC addresses per SSID (b) Progression of performance by adding features

Figure 3(a) shows the distribution of performances of the regressors generated
during the first round of the feature selection for location A (within Algorithm2).
The figure shows that in the first round features based on individual mobility
patterns outperform those based on overlapping visits. This result is interesting
as it is not intuitively expected that individual mobility features represent social
ties. One possible reason for this is that Individual features act very strong
in determining the social tie indicator of devices that are always present in the
location. Examples of these would be stationary Wi-Fi enabled devices such as
access points, and printers that have a social tie strength indicator close to zero.
Figure 3(b) shows the same distributions for the second feature selection round,
in which each regressor uses the feature from the previous round and a newly
selected feature. The main difference with the previous graph is that the feature
classes related to overlap seem to improve their performance. This is consistent
with the idea that once static devices without real social ties are filtered out,
overlap features could indicate which social ties are stronger. Finally, Fig. 4(a)
shows how aggregate social connectedness score can be extracted from one of
the locations over time. As seen, compared to the baseline method the score
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Fig. 4. (a) Aggregate connected score of one location (b) Accuracy of prediction over
20 locations

calculated using the proposed method is closer to the actual score acquired from
the indicator acquired from SSIDs.

Results on the complete dataset: In order to compare the algorithm’s perfor-
mance for multiple locations, we trained regressors for all 20 locations separately
for the best performing feature set on the previous locations (each dot represents
results on a different location). Figure 4(b) shows the resulting scores, set out
against the number of unique MAC addresses that visited the location. The
figure shows a strong correlation between location popularity and the accuracy
of the proposed method, but not with the accuracy of the baseline method. It
also shows that the regressor performs well when a static feature set is used,
instead of using the feature selection algorithm.

5.2 Sensitivity Test

In order to determine how sensitive our method is to different levels of uncer-
tainties (noise, variability of probe request frequency, etc.), in this section we
perform evaluations for several modifications of the original dataset. The mod-
ified datasets are generated by applying following adjustments to the original
mobility trace MT:

– Adjustment 1: Removes probe requests received from each device by
decreasing the probe frequency. For example, 50% of probe requests are
removed by removing every second probe, and 75% is removed by only retain-
ing the first, fifth, ninth, etcetera probe. This adjustment reflects an environ-
ment in which devices consistently broadcast fewer probe requests. This could
be caused by different implementations of the 802.11 protocol leading to dif-
ferent probing frequency.

– Adjustment 2: Removes samples before supplying them to the regressor.
This change reflects a decrease of data available to the method, which could
be caused by running the initialization phase for a lower amount of time,
by placing the scanner in a location where few people gather, or by a larger
number of people enabling MAC address randomization.
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– Adjustment 3: Removes probe requests from each device randomly. Each
probe request is removed in a random pattern. This adjustment simulates a
situation in which fewer probe requests are received. This could be caused by
a noisy environment, by using scanners that are more susceptible to noise,
or by making use of communication technology or protocols with less reliable
transmission.

For each adjustment, a new set of samples was generated by applying the
same process as the one applied for the original dataset, after which the same
feature selection algorithm was used. Figures 5(a–c) show the final performance
of the proposed method, which is the accuracy of the regressor after the feature
selection algorithm has completed. Each figure shows this performance for dif-
ferent degrees of one of the three adjustment types, for each of the locations.
For example, Fig. 5(a) shows the proposed and baseline performances when 0%
(unadjusted), 50%, 75%, etc. of the probes have been removed by decreasing
frequency. As expected, the proposed method performs better than the baseline
in every case. Also, higher degrees of the adjustment decreases the performance
of both methods in nearly every case.
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adjustment 3

6 Conclusion and Future Work

In this study, we proposed a new method to characterize the social connectedness
of a location based on the mobility traces acquired from it. The proposed method
works by extracting and choosing from a large subset of mobility features. This
method was evaluated on a real-world dataset and a number of modified ver-
sions of that dataset, in order to determine the method’s sensitivity to various
parameters that degrade the quality of such datasets. Our results show that it
is possible to characterize the social connectedness of a location from the pres-
ence pattern of its visitors. While our evaluations were performed using a Wi-Fi
dataset, the proposed method is also applicable to other types of mobility data
(e.g. check-in records in location-based social networks and GPS tracks). Our
future research entails studying the relationship between social connectedness
and location attributes such as category of the location.
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Appendix

In this section, we provide algorithmic details on the procedures of the initial-
ization and utilization phase presented before in Sects. 4.4 and 4.5.

Algorithm 1. Initialization Phase, Sample Generation
Data: <mobility trace MT, social tie strengths ST>
Result: collection of samples SC

1 SC = [];
2 D = determineDevices(MT);
3 DP = computePairs(D);
4 forall the pair in DP do
5 MF = computeAllMobilityFeatures(pair, MT);

/* set of values of all mobility features for this pair */
6 st = ST[pair]; /* the pairwise social tie strength */
7 append(SC,〈st,MF〉);
8 return SC;

Initialization phase: Algorithm 1 shows the pseudo code for the first part of
the initialization phase, in which the samples are generated. The inputs of this
algorithm are the mobility trace (a collection of detections with form 〈d, t〉, with
d being a device and t being a timestamp) and a collection of pairwise social
tie strengths between some of the devices in the mobility trace. Its output is a
collection of samples, each of which is a tuple 〈st,MF〉, with st being a pairwise
social tie strength for some pair of devices, and MF being the set of values of
all the mobility features for the same device pair, calculated in lines 4–7.

Algorithm 2 shows the pseudo code for feature selection and learning a regres-
sor. The input of this algorithm is the collection of samples generated in Algo-
rithm1 and its output is a regressor trained using the combination of features as
selected during feature selection. After computing the mobility features for each
pair of devices, we need to determine which features should be supplied to the
regressor. The feature selection algorithm performs as follows [15]. Initially the
set of selected features is empty. The algorithm moves through the search space
in a greedy manner by evaluating features (lines 10–21) and it halts when no
new features improve the regression performance (line 18). The performance of
the regressor is evaluated using 10-folded cross validation and determining the
average of their mean squared errors (line 15). Once the features are selected we
proceed to learning the regressor (line 22).

Utilization phase: Algorithm 3 shows the pseudo code for the utilization phase.
The algorithm takes the regressor generated in Algorithm 2, the mobility trace,
and a timestamp and outputs the aggregate social connectedness score for this
mobility trace at that specific timestamp. The algorithm first determines which
devices were present at the location at the specific moment in time (line 2).
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It again uses device timestamps to determine visit starts and ends. After doing
so, the method determines the value of mobility features that were given by the
feature selection algorithm for each pair of devices present (line 5). Then, these
feature values are supplied to the regressor, which predicts the tie strength for
each pair (line 6). Finally, the tie strengths are averaged in order to obtain a
score of aggregate social connectedness (line 8).

Algorithm 2. Initialization Phase, Feature Selection
Data: collection of samples SC
Result: regressor r

1 FRC = range(0, length(SC[0])); /* range of all feature indices */
2 FIC = []; /* current best feature indices overall */
3 BTFIC = []; /* best feature indices for the current round */
4 s = 0; /* overall best score overall */
5 bts = 0; /* best score for the current round */
6 sib = true; /* boolean indicating whether score has improved */
7 ftb = true; /* boolean indicating generation of best score */
8 frb = true; /* boolean indicating completion of first round */
9 while sib do

10 forall the index in FRC do
11 if index in FIC then
12 continue;
13 TFIC = union(FIC, [index]); /* feature indices to test */
14 TS = selectByIndices(SC, TFIC); /* samples to test */
15 ts = 10FoldCrossValidateRegressor(TS); /* score from test */
16 if ts >bts or ftb then
17 bts = ts, BTFIC = TFIC, ftb = false;

18 if bts >s or frb then
19 s = bts, FIC = BTFIC, frb = false;
20 else
21 sib = false;

22 r = trainRegressor(SC, FIC); return r;

Algorithm 3. Utilization Phase
Data: <regressor r, mobility trace MT, timestamp t>
Result: aggregate social connectedness score as

1 D = computePresentDevices(MT, t);
2 DP = computePairs(D);
3 PSC = [];
4 forall the pair in DP do
5 MF = computeMobilityFeatures(pair, MT);
6 ps = predictTieStrength(regressor, MF);
7 append(PSC,ps);
8 as = computeAggregateTieStrength(PSC);
9 return as;
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