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ABSTRACT
In this paper, we address the problem of how automated situational
awareness in a speci�c location can be achieved by characterizing
the �ngerprint of recurrent situations from ubiquitously gener-
ated mobility data. Without semantic input about the time and
space (location) where situations take place, this turns out to be
a fundamental challenging problem. Uncertainties in data also in-
troduce technical challenges when data is generated in irregular
time intervals, being mixed with noise, and errors. Purely relying
on temporal pa�erns observable in mobility data, in this paper, we
propose Spaceprint, a fully automated algorithm for �nding the
repetitive pa�ern of similar situations in spaces. We evaluate this
technique by showing how the latent variables describing the actual
identity of a space can be discovered from the extracted situation
pa�erns.
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1 INTRODUCTION
Full automation of decision making in smart cities of the future
requires decision-support systems with the capability of describing
the meaning of situations in di�erent types of locations. A means
for learning the pa�erns of such situations from the abundance of
ubiquitously generated mobility data (GPS coordinates, check-in
records, WiFi detections, etc.) can open the door to many applica-
tions that require such automated situational-awareness. In this
paper, we investigate how mobility data can represent the general
repetitive pa�ern of situations in spaces.

What we refer to as a situation is a series of events that happen
in a space within a duration of time. O�entimes, a speci�c space
with a known category such as a library, or a classroom, will exhibit
repetitive visiting pa�erns. Such pa�erns operate as a �ngerprint of
situations in that space that periodically repeat in the same manner.
Moreover, we can expect that places with the same category will
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o�en have similar �ngerprints. Although in many cases these
�ngerprints would seem to be static, it is really the usage of a space
that determines its meaning, which at various occasions may di�er
from the location’s original intended category. For example, in
special situations an o�ce space is used for throwing a party or,
likewise, an apartment can be rented out as if it were a hotel room.
We argue that to be�er understand or reason about the situation at
hand, it is important to understand to what extent the situation in
a space adheres to its regular �ngerprint, and otherwise, to what
extent it resembles any other well-known �ngerprints.

Implementing a situation-awareness system requires algorithms
that are able to perform on raw data which is mixed with uncertain-
ties and are generic enough to capture the signi�cance of dynamic
situations happening in any type of space. Previous related research
in extracting the meaning of spaces do not provide the necessary
capability needed for implementing such a system. Relevant re-
search normally focus on automatic place labeling by considering
that a space has a static meaning (or a known label such as “home”,
“o�ce”, etc.) [1–5]. �is goal is achieved by extensive preprocessing
and selecting a set of intuitive features (e.g. number of visitors,
presence at nights or a speci�c day of the week) to classify spaces
with certain categories.

We address the question to what extent we can automatically
measure a location’s unique �ngerprint of situations purely using
available mobility data. To realize situation-aware systems that are
generally applicable, we focus on creating these �ngerprints in a
completely automated manner. �is implies that these �ngerprints
should be created from raw mobility data without additional hu-
man input of any kind such as those spent on feature-engineering,
parameter se�ing, and data cleaning. More speci�cally, we make
the following contributions. (1) We propose a feature set that can
generically characterize all possible presence pa�erns in a space. (2)
We use such a feature set to extract the �ngerprint of the repetitive
situations in spaces (Spaceprints) in a fully automated manner. (3)
We validate our method by showing its classi�cation performance
using a WiFi-based detection dataset.

2 PROBLEM DEFINITION
We de�ne a model based on data acquired from any system that
allows for the collection of mobility data in terms of presence or
detection of mobile entities in a well-de�ned region of space. �ese
include, for example, WiFi detection of mobile devices near access
points, GPS coordinates discretized in grid maps, and check-in
records collected from location-based social networks. A detection
record is a tuple 〈d, s, t〉 with d being the identi�er of the detected
mobile entity, s being the identi�er of the space where the entity d
was detected, and t being the timestamp of the detection. A variety
of previously mentioned mobility-data collection systems can result
in such a dataset.
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Given a set of detection records DT, we are interested in the
space �ngerprint SP(s) which de�nes the core repeating tempo-
ral presence pa�erns of space s. Assuming that latent variables
such as the unique identity of the space and its semantic category
result in such a �ngerprint, we demand that this scheme exhibit
the following: (1) each space has a unique �ngerprint, (2) spaces
within the same category have similar �ngerprints, and (3) spaces
within di�erent categories have di�erent �ngerprints.

3 FRAMEWORK OVERVIEW
Our goal is to de�ne a �ngerprint that summarizes the situations in
a space in terms of repeating presence pa�erns over a duration of
time. �e challenge in our case is to identify (1) the features, (2) an
appropriate resolution and duration window, and (3) a suitable
distinguishing classi�er. �e �ngerprint for spaces, therefore, is
de�ned as:

De�nition 3.1. (Space �ngerprint) �e �ngerprint for the space
s is a triplet SP(s) = 〈V, FD, FR〉, with feature vector V =

[v1, . . . ,vn], of which each element vi represents the value of a spe-
ci�c feature. FD is the �ngerprint duration, indicating the total
time over which the �ngerprint is con�gured. FR is the �ngerprint
resolution, indicating the minimum time interval over which detec-
tions are sampled to extract features. ∃r ∈ N : FD = r · FR.

As seen, such a �ngerprint is composed of three components
which are a feature vector V and two �ngeprint parameters FD
and FR. We have a separate procedure for extracting each of these
components as explained in the following sections.

4 METHODOLOGY
4.1 Presence patterns
To select features from mobility data one intuitively may think of
static features such as opening or closing hours, peak hours, group
sizes, number of individuals, etc. Without any intuitive assump-
tions about features that de�ne the situation in a space, the only
measurable feature from detections is related to the presence pat-
tern of mobile entities. For instance, consider the presence pa�ern
of shopkeepers in a shop versus that of their clients. A shopkeeper
enters the shop around opening time and leaves around closing
time. �e clients may appear during opening hours and stay for
some time based on their intention (browsing or shopping). We
assume that the situation in space is re�ected in the overlapping
visits of di�erent groups of mobile entities. To consider this variety,
we de�ne a presence pa�ern such that it re�ects the synchronous
presence of a group of mobile entities during a speci�c pe-
riod of time. Such a pa�ern represents a group of mobile entities
entering a space, staying there for a speci�c amount of time, and
then leaving it at the same time. Extracting the distinguishing
group presence pa�erns from a detection dataset can be achieved
by counting the number of mobile entities in a window with a
speci�c starting time, tstart , and duration, τ . As detections are reg-
istered in discrete time intervals, the presence should be detected
in all sampling intervals of length Ts in τ . Correspondingly, we
de�ne presence features with the following template to quantify
the intensity of such pa�erns.

De�nition 4.1. A presence feature PF (tstart,τ ,Ts ) over a space
represents the number of mobile entities that were detected in all
dτ/Ts e consecutive sampling intervals of length Ts within a measure-
ment window, starting at time tstart and lasting for τ time units.

By ranging over all possible values of the parameters tstart ,τ , and
Ts , the feature template mentioned above will lead to numerous
presence features. �e feature vector V can be considered as a
list of normalized presence features. �e range of the parameters
mentioned before can be determined as follows. Assume that we
measure detections at a given location for a speci�c duration of time,
FD, and that the mobile entities are detected at a frequency fp (and
period Tp = 1/fp ). For now, also assume that the �ngerprinting
resolution FR is equal to this period as well (Tp = FR). We later
show how to extract the optimal value for FR which is possibly
bigger thanTp . �e basis of our approach is to sample the number of
mobile entities within a speci�c duration windowW = 〈tstart ,τ 〉
with a sampling frequency fs (with period Ts = 1/fs ). BothW
and fs can vary. �e duration window can have any starting time
and length as long as the window is smaller than FD. �erefore,
we require that τ ≤ FD and tstart + τ < FD. To count the number
of mobile entities, we need to sample detections with a period Ts .
Obviously, as it does not make sense to sample with a speed faster
than the mobile entity’s detection generation speed, we require
that Ts ≥ FR (or Tp ). Additionally, Ts cannot be larger than the
duration window, i.e., Ts ≤ τ .

4.2 Feature vector
�e presence features can be created by counting mobile enti-
ties based on every possible combination of starting time, stay
duration, and sampling period, tstart ,τ ,Ts . Considering that we
have n possible combinations by ranging over these parameters,
we will have an n-dimensional vector composed of di�erent pres-
ence features. Algorithm 1 (vectorize) represents the way of con-
structing a feature vector for a given space based on a collection
of mobile entity detections. Let DT denote a set of detections
and tmin (DT) = min{t |〈d, s, t〉 ∈ DT}, i.e., the timestamp of the
�rst detection. Likewise, we have tmax (DT) for the timestamp
of the last detection and τ (DT) = tmax (DT) − tmin (DT) for the
duration of collecting DT. Denote by DT the set of detections
{〈d, s, t − tmin〉|〈d, s, t〉 ∈ DT}, i.e., the set of same detections, but
now transformed such that the �rst detection starts at time 0. Fi-
nally, we use the notation DT(s) = {〈d, s, t〉|〈d, s, t〉 ∈ DT} to de-
note the set of detections by space s. IfW is a duration window,
we write DT[W ] to denote the subset of detections that occurred
insideW . IfTs is a sampling period, then [DT]Ts denotes the list of
d(tmax (DT)− tmin (DT))e/Ts buckets, with the ith bucket containing
all detections that occurred during the ith interval of length Ts .

�e essence of vectorize is to count the number of mobile entities
that were detected during an entire duration window, W , when
sampled with the period Ts . We explore every possible duration
window and sampling period for a given �ngerprint duration FD
and resolution FR. �ere are three loops for covering all possible
values for parameters tstart ,τ and Ts (lines 2-4). In each iteration,
by counting the mobile entities that appeared in the intersection of
all buckets of [DT[W ]]Ts (line 7), a presence feature is created and
appended to the feature list (line 8).
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Algorithm 1: vectorize

Data: DT(s), FD , FR

Result: V

1 V = [];

2 for (tstart = 0; tstart < FD ; tstart = tstart + FR ) do
/* iterate over all durations */

3 for (τ = FR; τ ≤ FD − tstart; τ = τ + FR ) do
4 for (Ts = FR;Ts ≤ τ ;Ts = Ts + FR ) do

; /* iterate over all sampling periods */

5 if (τ mod Ts = 0) then
6 W = 〈tstart, τ 〉;
7 u =

⋂
([DT[W ]]Ts ) ; /* get the ID of mobile

entities present in all buckets of window W */

8 append (V, count (u )) ; /* append to V the total

number of mobile entities */

9 return(V/max(V));

Our goal is to use such feature vectors to compare spaces to each

other based on visiting patterns of devices. In doing so, we need to

take into account that the values in a single vector can vary widely,

which is entirely due to the fact that we wish to include all possible

values for duration windows and sampling periods into a single

data structure. As a consequence, we need to avoid that high values

(which are perfectly natural due to our method of counting) domi-

nate our perspective of difference between two vectors. In order to

take these natural differences between elements into account, we

choose a distance metric based on Canberra Distance.

Definition 4.2. Given two feature vectors V and V∗ of equal length
n, calculated using the same pair of fingerprint parameters FD and

FR, their mutual distance is Δ(V,V∗) = 1
n

∑n
i=1

|vi−v∗i ||vi |+ |v∗i |

4.3 Fingerprint parameters

We now concentrate on finding appropriate values for the finger-

print duration FD and the fingerprint resolution FR. Concerning
the fingerprint duration, note that we are looking for the period

(in the formal sense) of repetitive or self-similar situations. We look

for a series of consecutive fixed-length windowsW1,W2,W3, . . .

such that for a given set of detections DT, we have a minimal accu-

mulated distance between all possible pairs of vectorized subsets of

detections DT[Wi ] and DT[Wj ]. Our only variable is the length of

all such windows, and the length that minimizes the accumulated

distance is our fingerprint duration.

Determining the best fingerprint resolution is a bit trickier.

The resolution, as shown in Algorithm 1, determines the minimum

sampling period and directly determines the number of features in

the vector. Therefore, other than increasing the computational costs,

a too detailed FR may also introduce the problem of over-fitting.

It is desirable to choose the resolution such that all significant dif-

ferences between feature vectors are preserved. Therefore, we are

looking for a resolution that maximizes the distance between two

vectorized datasets. The assumption is that we have already de-

termined the periodicity FD in a series of detections. By looking

at two consecutive datasets of duration FD, a resolution FR that

maximizes the mutual distance of their vectorized versions effec-

tively captures all differences that would have also been captured

by a smaller resolution. At the same time, such a resolution will

capture more differences than any larger resolution (which would

show a smaller distance between the two vectorized datasets). Algo-

rithm 2 summarizes the procedure of extracting the fingerprinting

parameters.

Algorithm 2: fingerprintParameters

Data: DT(s), r (such that FD = r · FR)
Result: FD ,FR

1 for (i = 1; i < τ (DT)/(2r ); i = i + 1) do
2 m = i · r ;
3 for (j = 0; j < τ (DT)/m; j = j + 1) do

4 DTj = {〈d, s, t 〉 ∈ DT(s) |j ·m ≤ t < (j + 1) ·m };
5 V

i
j= vectorize(DTj ,m, i );

6 FD= r · argmini
∑
j,k Δ(Vij , V

i
k
); ; /* Optimal duration */

7 for (i = 1; i ≤ FD ; i = i + 1) do
8 if (FD mod i = 0) then

9 for (j = 0; j < τ (DT)/FD ; j = j + 1) do

10 DTj = {〈d, s, t 〉 ∈ DT(s) |j · FD ≤ t < (j + 1) · FD };
11 V

i
j= vectorize(DTj , FD, i );

12 FR= argmaxi
∑
j,k Δ(Vij , V

i
k
); ; /* Optimal resolution */

13 return(FD ,FR)

5 EVALUATION

We evaluate the performance of Spaceprint by comparing it with

with a baseline. We show how Spaceprint feature vectors can be

used for finding repetitive situation patterns in spaces using ia

WiFi dataset. To the best of our knowledge, there is no prior work

in classifying or creating situation fingerprints for spaces purely

based on presence patterns. As a baseline, we consider a density-

based approach that calculates hourly densities [4]. A density-

based feature vector Vd = [d0, ...,d FD
FR
−1] is extracted where each

element di represents the number of mobile entities appearing in
the windowW = 〈i · FR, FR〉.

5.1 Test on a WiFi dataset

In this section, we apply our fingerprinting framework on a dataset

of WiFi detections. This dataset is collected from 8 different coffee

corners for a period of 150 days. There are 95 million detections

generated by more than seven hundred thousand devices.

5.1.1 Extracting fingerprint parameters. Figures 1(a) and (b) il-

lustrate how the optimal fingerprint duration can be extracted. The

average pairwise distance of feature vectors calculated by varying

the parameter, FD is shown. The comparison of fingerprint dura-

tions is fair only if it is performed based on the pairwise distance

of vectors of the same length. To have feature vectors of the same

length, we changed the fingerprinting resolution, FR, (17186 and
791) based on the fingerprint duration such that the size of the

resulting feature vector stays constant. For both graphs shown in

Figure 1(a) and (b), the optimal fingerprint duration (minimum)

is acquired at a duration equivalent to one week (168 hours). Fig-

ures 1(c) and (d) show how the optimal fingerprint resolution can
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Figure 1: Choosing the optimal �ngerprinting (a-b) duration
(c-d) resolution

be chosen. �e optimal �ngerprint resolution is the one that max-
imizes the distance between feature vectors. We have looked at
the optimal resolution when the �ngerprint duration is equal to
the optimal �ngerprint duration (1 week time). �e results in Fig-
ure 1(c) suggest that a resolution of 4 hours can still reveal the
di�erences between feature vectors. As most of the weekdays are
similar, we also looked at the spaces (only over weekdays) with
a �ngerprinting duration of 24 hours. Figure 1(d) suggests that a
resolution of 30 minutes su�ces to reveal the necessary level of
detail when the �ngerprint is only extracted from weekdays.

5.1.2 Two-dimensional representation of feature vectors: �e fea-
ture vectors extracted have n elements that can be represented as
points in an n-dimensional coordinate system. In order to repre-
sent such points, we map them to a two-dimensional space using
multi-dimensional scaling. In Figure 2, we compare the result of vec-
torizing using Spaceprint and the density-based approach. Using the
parameters FD = 24 hours and FR = 1 hour, each day is vectorized
separately and represented as a point on the image. We also present
the weekdays and weekends in separate graphs. As seen, Spaceprint
results in a clearer distinction between points of the same color. In
other words, the identity of the location is re�ected in the similarity
between days of data from the same space. Spaceprint provides a
be�er distinction between the situation in spaces by placing points
representing days in di�erent spaces further from each other. �is
is speci�cally visible in the case of weekends (Figure 2(c)-(d)).

5.1.3 Classification accuracy: To evaluate how feature vectors
can create a unique �ngerprint for spaces, we cluster them using
K-means algorithm. �e goal is to see if we can distinguish from
which space they have been extracted. Each space in this dataset
has a space id. We cluster feature vectors extracted from 150 days
and look for 8 di�erent clusters representing 8 di�erent space ids.
�is is equivalent of assigning points of the same color (in Figure
2) to the same cluster. Performance of the clustering task in terms
of Accuracy, Random Index, F-measure, and Normalized Mutual
Information (NMI) is presented in Figure 3. As seen, the results are
in favor of Spaceprint for all of these indicators.
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Figure 2: Two-dimensional representation of feature vectors
of Spaceprint and density-based approach. Each point repre-
sents one day of data. FD = 24 hours and FR = 1 hour.
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Figure 3: Performance of clustering for FD = 168 hours. SP ,
and DB denote use of Spaceprint and density-based features.

6 CONCLUSIONS
In this paper, we presented Spaceprint, a technique for creating
�ngerprints for repetitive situations in public spaces. What makes
Spaceprint unique is its fully automatic operation with minimal
input from anyone who operates it. Our evaluations show that
the automated �ngerprinting of spaces is possible, opening the
path to more sophisticated approaches for automated situational
awareness. Our future work entails extending such �ngerprints to
situations spanning over multiple spaces.
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