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Abstract
For the Internet of Things to be people-centered, things
need to identify when people and their things are nearby.
In this paper, we present the design, implementation,
and deployment of a positioning system based on mo-
bile and fixed inexpensive proximity sensors that we use
to track when individuals are close to an instrumented
object or placed at certain points of interest. To over-
come loss of data between mobile and fixed sensors due
to crowd density, traditional approaches are extended
with mobile-to-mobile proximity information. We tested
our system in a museum crowded with thousands of vis-
itors, showing that measurement accuracy increases in
the presence of more individuals wearing a proximity
sensor. Furthermore, we show that density information
can be leveraged to study the behavior of the visitors,
for example, to track the popularity of points of interest,
and the flow and distribution of visitors across floors.

1 Introduction
Measuring and tracking the behavior of individuals is
central to the implementation of an Internet of Things
(IoT) that is people-centered. To this end, it must be
possible to identify when an individual is positioned in
proximity to an object, at a point-of-interest, or in front
of another person [1].

We analyze the use case of a museum. In a museum,
people proximity-aware applications could enable mu-
seum staff to make sure that visitors can approach all ex-
hibits and information without congestions and clogging,
that they have access to all resources such as restaurants,
restrooms and lockers when needed, and that they do not

experience queues and waits that are too long, as well as
to understand which artworks individuals stop at.

A common approach to monitoring visitor behavior
is to compute the positioning of visitors at exhibits and
points of interest [2]. Here, positioning is relative to
a point of interest, and not absolute in the coordinate
space (i.e., as provided by indoor localization systems).
However, as crowd density increases, sensors are known
to provide more noisy, incomplete, and ambiguous data,
problems that are exacerbated by complex indoor venues.
Museum staff are thus left with instruments that oper-
ate unreliably in those conditions where they are most
needed.

We present a MObile-Nodes-Assisted positioning sys-
tem (MONA) that can operate at conditions of high crowd
density by utilizing proximity sensing between mobile
sensor nodes as well as between mobile and fixed sensors
nodes. Our approach exploits the increased presence of
mobile sensor nodes in the surrounding of each individ-
ual. In fact, positioning accuracy increases when more
visitors wearing a sensor are present in the museum.
MONA can position a visitor (i) when mobile-to-anchor
proximity detections are missing and even (ii) at points
of interest not instrumented with anchors.

2 Overview

2.1 Museum

The museum we study has half a million visitors per year
and more than 3000 daily visitors during our experiment
(we chose the day before Christmas). With a median
visit duration of three hours, the museum can present
crowded scenarios with peaks of nearly 3000 people
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Figure 1: The map of the museum.

visiting at the same time. Approximately 25% of all
visitors participated in our experiment, with a peak of
around 600 participants at a single moment in time.

Our museum is an open six-story area. The first four
stories share a large hall in the middle connected by
several stairs, with floors 3 and 4 that are effectively
balconies projected over the underlying stories. With
this layout, network links spanning over multiple floors
are common. Figure 1 shows the 3D map of the museum.

Exhibits can comprise multiple items within a radius
of approximately 3-4 meters.

The museum curators were interested in three types
of information: (i) the popularity of a set of points of in-
terest and exhibits, (ii) the distribution of visitors across
the floors, and (iii) the flows of people between floors.

2.2 Sensing infrastructure

To collect positioning information, visitors were asked to
wear a bracelet equipped with a 2.4GHz transceiver and
a microcontroller running a neighbor discovery protocol
with a sampling rate of 1 Hz.

Anchors.
For each point of interest (PoI), an anchor device was

installed. These devices had the same hardware as the
bracelets. They were externally powered so that it was
possible to run the neighbor discovery algorithm with

longer duty cycles, increasing the probability of a PoI
to be discovered by bracelets. As a result we were able
to discover bracelets in the range of a PoI in just a few
seconds.

Every second, bracelets could receive broadcasts from
anchors or other bracelets within a distance of some 5-7
meters. Such broadcasts contain the unique identifier
(ID) of the sender, and we consider the reception of
such broadcast as a proximity detection between the two
nodes involved. Bracelets recorded together with the ID
of the other node also signal strength information about
the broadcast.

Sniffers.
Once every second, bracelets reported the proximity

detections collected during the previous second via a spe-
cial packet sent on a dedicated channel to the backbone
of the system consisting of the sniffers. Like anchors,
sniffers used the same hardware as bracelets in addition
to a single-board computer that used either wifi or eth-
ernet to commit the packet to a central database hosted
on a server. The sniffers were placed uniformly in the
museum to cover all areas, with some overlap.

Due to packet size limitations at the MAC layer, each
sniffed packet could report up to three detections, favor-
ing two anchors and one bracelet when possible. The
resulting dataset contained more than 6 million anchor-
to-bracelet and bracelet-to-bracelet detections, together
with timestamp and signal strength information.

3 Related Work

There is a large body of work regarding indoor localiza-
tion and positioning with mobile sensors.

In the case of museums, earlier works focus on local-
izing visitors at very coarse-grained levels (room level)
through technologies like Bluetooth [3] to support mul-
timedia guides [4]. More recently, proximity sensors
have been used together with “physiological” sensors to
classify the behavior of visitors [5].

Computer-vision techniques are an alternative ap-
proach to tracking human mobility [6] and detecting
anomalies in a crowd [7]. However, cameras can suffer
from poor lighting, and temporary or permanent ob-
structions [8]. Also, fusing the views from multiple
cameras in a highly dynamic indoor scenario is challeng-
ing [9]. Finally, the privacy issue of collecting large-
scale footage of visitors often restricts researchers from
accessing these sources of data.
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Alternatively, we can localize the absolute position of
an individual. While this technique is a feasible option
in outdoor scenarios – where the GPS system can be
exploited – for indoor conditions accurate localization is
still an open problem.

Among the wide literature of radio-based localization
techniques, only few [10, 11, 12] are accurate enough
to be employed in museum scenarios. Unfortunately,
none of these techniques perform consistently through-
out the museum areas as localization error increases
significantly at the edges of rooms and in hallways. By
installing anchors specifically at exhibits and objects
of interest, we limit this problem drastically. For our
tracking application, this phenomenon can be even more
problematic, since even small estimation errors could
lead to visitors being associated to the wrong exhibit,
positioned in the wrong room or placed on the wrong
floor.

We borrow some ideas from the field of cooperative
localization [13], in which nodes share measurement
information in a peer-to-peer manner. We trade the ad-
vantages of deploying algorithms that can be computed
in a distributed manner by the nodes “in-the-network”
with the more global view provided by collecting and
managing this data from a central repository. This aspect
is particularly useful in high density scenarios, where
packet loss increases, potentially hindering cooperative
approaches.

Finally, many of these approaches are usually tested
outside of the extreme conditions of high mobility and
density of a complex real-world museum as the one
subject to our study.

4 Model
We consider N visitors V = {v1,v2, . . . ,vN}. While
bracelets have their unique IDs and were re-used during
the experiment, each element in V has a unique ID as-
signed at check-in, and we use these IDs for detections.
The museum has O points of interest I = {i1, i2, . . . , iO}
and M anchors A = {a1,a2, . . . ,aM}. In the simple case
where each anchor is assigned to a PoI, I ≡ A. We
consider S the set of proximity sensors S = V ∪ A =
{s1,s2, . . . ,sN+M}, as the union of detectable anchors
and visitors. We define the series of proximity detections
for a visitor v as a S×T matrix Dv, where Dv(i, j) = r
if the proximity sensor of visitor v detected sensor si at
time j with signal strength r. Note that Dv has N +M
rows, as it comprises all proximity sensors, either used

as anchors or worn by other visitors. Dv(∗, t) refers to
all detections collected at any time t, and Dv(i,∗) to all
detections of sensor si. Moreover, we define a position-
ing matrix Mv as the O×T matrix where Mv(i, j) = 1 if
the visitor was at a distance shorter than d from PoI i at
time j. Note that there can be times where a visitor is
not positioned at any PoI, and that a visitor cannot be
positioned at more than one PoI at the same time (when
a visitor is within d distance from multiple PoIs, we
choose the closest).

Our goal is to produce the positioning matrix Mv start-
ing from the series of detections in Dv. In principle, in
the case of I≡A and with perfectly working sensors (i.e.,
with signal strength correctly mapping to distance and
no inter-floor detections) we could use Dv to generate
directly Mv by assigning a visitor to the anchor detected
with highest signal strength, and computed to be at dis-
tance shorted than d. As the visitor walks around the
museum, we would generate contiguous series of “bits”
in Mv reflecting the intervals of proximity with the an-
chors and PoIs. However, in real-world scenarios we
need to take into account missed as well as spurious
detections, caused for example by interferences, walls,
people, and the nodes themselves.

5 Particle filter
We designed and implemented a particle filter that takes
into account the topology of the museum, the location of
anchors and PoIs, and the estimated location and move-
ment of the visitors. Particle filters have been used in
indoor localization to estimate the absolute position of
individuals with unreliable sensors [14, 15]. For local-
ization, usually a mobile sensor communicates with a
few anchors installed at known locations. It is assumed
that the sensor can communicate with all, or a major-
ity of, anchors from all positions and directions, and
that the sensor can measure distance from these anchors,
for example, through signal strength or time-of-flight.
Our setup is more complex, as we have a larger number
of anchors that are detectable at shorter distance, and a
number of detections from proximity sensors at unknown
locations, i.e., the visitors, together with a multi-story
venue.

The filter requires topology information about the mu-
seum, such as the sets of anchors A and PoIs I, each
defined by a triple f ,x,y with f being the floor number
and x,y the coordinate within that floor, and a set of
walls W = {w1,w2, . . . ,wM}, each defined as a segment
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between two points. Every floor is modeled as a distinct
two-dimensional space, with an independent origin. As
floors are connected by a number of different stairs and
elevators, it is difficult to model the transition spaces
between floors reliably. Instead, we assume a visitor can
“appear” at a certain floor and model this transition con-
fidence in the filter, based on the measurement. For each
visitor we define a set of particles P = {p1, p2, . . . , pK},
each defined by a tuple f ,x,y and a weight w that mod-
els the likelihood of the visitor to be at that coordinate.
Initially, particles are spread uniformly at random across
the museum floors.

For each time of the day 0≤ t < T , the following four
steps are executed for each visitor checked-in at that
time, given the respective detection matrix Dv.

• Estimation: At each time, we estimate the floor
the visitor is positioned at, if any, by computing the
floor with the largest number of particles, given
enough confidence is provided by the particles.
Then, we compute the likelihood of each parti-
cle’s estimate (i.e., its position) given the measure-
ment at time t, that is the set of detections in Dv
contained in the t-th column. For each particle p,
the weight is updated using the likelihood function
Φ(p,Dv(∗, t)). We return to details below.

• Positioning: We estimate the position of v by com-
puting the weighted average among the floor’s parti-
cles (i.e., the centroid) and find the closest PoI ii on
the floor within distance d. We then set Mv(i, t) = 1,
unless the confidence of the estimate is smaller than
a threshold δ .

• Re-sampling: We create a new set of particles
by drawing with replacement from the current
weighted set of particles. While drawing particles
from the set, we favor particles proportionally to
their weight (i.e., their likelihood). As a result, par-
ticles with higher likelihood are picked more often
than particles with lower likelihood. Depending on
the confidence in the current set of particles, we
may choose to (i) pick only from the particles in
the current floor, (ii) additionally spread particles
with smaller likelihood across other floors, or (iii)
re-distribute all particles across all floors (i.e., when
we believe we have lost track of the visitor). More
details follow below.

• Movement: We move particles at walking speed in
random directions, avoiding illegal moves, such as
walking through walls.

In general, we can compute the confidence of the
particles’ centroid by measuring the dispersion of the

particles and the amount of time spent without collecting
any detection from a sensor located on the same floor as
the visitor. We consider the visitor to be at the floor with
the largest number of particles, normalized by floor sizes,
given enough confidence. Note that having a visitor
assigned to a floor does not mean we position the visitor
at any PoI, as that depends on the position of the particles
within the floor, their likelihood, and dispersion.

The likelihood function Φ(p,Dv(∗, t)) computes the
likelihood of particle p given the set of sensors detected
at time t that were positioned on the same floor as p.
In Φ we consider both anchors, of which we know the
location, and neighbor visitors, for which we use the
centroid computed at time t − 1. In other words, we
use neighbor visitors as anchors. We consider neighbor
visitors only if we are confident enough of their centroid.

Intuitively, the likelihood of a particle depends on the
particle’s distance from a reference point proportionally
to the strength of the detections. This reference point
can be a single sensor or an average across sensors. We
first map signal strength values to the (0,1] continuous
interval by means of a Gaussian kernel1. Then, if mul-
tiple sensors were detected, we compute the average
coordinate across these sensors’ coordinates weighted
by the respective signal strength, and use the particle’s
distance from this average coordinate. We use a linear
kernel to map distances to (0,1].

If only one sensor was detected, instead, we compute
the difference between the signal strength value and the
particle distance from the sensor (both mapped to (0,1])
and use this difference.

When we update particle weights and re-sample the
particles, we proceed depending on the centroid confi-
dence c as follows (the two thresholds δ and δ ′ to be
chosen empirically).

• c > δ : This means we know the visitor is on the
floor. We ignore the likelihood of particles from
other floors, practically “teleporting” these particles
from other floors to the current one.

• δ ′ < c≤ δ : This means we are starting to believe
the visitor may have left the floor. We spread parti-
cles with smaller likelihood from the current floor
to other floors.

• c ≤ δ ′: This means we have lost the visitor com-
pletely. We re-distribute particles uniformly at ran-
dom across floors.

As a visitor moves around a floor, particles spread
towards areas that are more likely to have produced the

1Signal strength decreases non-linearly with distance
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current measurement. As the visitor moves to a new
floor, absence of detections on the previous floor causes
particles to disperse until we start spreading particles on
the other floors, including the new one.

Finally, we apply a density-based filter and a majority-
voting filter to account for particles “jumping” between
between PoIs and floors [2].

6 Evaluation: setup
Before the 3-days main experiment, we conducted a
controlled experiment scripting a visit of the first floor
while the complete sensing infrastructure in the museum
was turned on. The script defined arrival and departure
times at each PoI. Originally, the first floor had all PoIs
associated with an anchor, and one additional anchor
to improve positioning accuracy. To test the ability to
position visitors at PoIs without anchors, we added to
the script three “virtual” PoIs not associated with any
particular exhibit or anchor (that is, solely defined by a
coordinate in space). In addition, one PoI with an anchor
was not used in the script, but the anchor was turned on
and hence could affect accuracy.

Together with the scripted visit, we distributed 15
bracelets around each interested PoI area within a ra-
dius of some 15-20 meters from the respective anchor
(or virtual PoI coordinate), at 1 meter of height, and
moved them at random across the space for the whole
duration of the stop. This setup allowed us to control
bracelet density and movement, and at the same time
minimize external factors like body shielding effects
(which were tested during the real-world experiment).
Each stop lasted eight minutes, divided in four periods
of two minutes. During the first periods only the visitor’s
bracelet was on, while during the following 3 periods
we turned on the additional bracelets, in groups of 5 per
period.

To evaluate real-world accuracy, for the duration of
the main experiment we positioned 5 bracelets at known
locations at PoIs, and additionally scripted a visit of the
whole museum of the duration of around one and a half
hours with 14 stops of the duration of around 5 minutes
each (hence, not all time was spent at PoIs). Also for
this scripted visit, we added a number of “virtual” PoIs
such that the visitor did not stop at PoIs associated with
an anchor, except for the stops at the restaurant and the
live attraction called “Chain Reaction”.

For both experiments, we set filter parameters to the
same values.

To measure the performance of our solution at the task
of positioning visitors at PoIs, we compute the number
of false/true positives and negatives, and with these we
compute the sensitivity (or true positive rate, also known
as recall) and specificity (or true negative rate, or negative
class precision) for each PoI.

7 Results

7.1 Controlled experiment

We test our technique against an approach where we posi-
tion the visitor at the anchor/PoI detected with strongest
signal strength. As this technique is subject to missed
detections and noise, we additionally extend it by mak-
ing positioning decisions over a sliding window of 10
seconds. Figure 2 presents the sensitivity and specificity
of each anchor/PoI for the two techniques as well as
for MONA. Note that for this test, we compute values for
MONA only for the first period, that is we position the
visitor solely based on anchor detections.

One can notice that raw data suffers from missed
detections, yielding a sensitivity that is nearly half the
sensitivity obtained when smoothening the decisions
over a window. As expected, specificity is close to the
maximum value of 1, as it is difficult to wrongly position
a visitor at a PoI far away with a controlled transmission
range. Looking at the results of MONA one can notice
that sensitivity is improved on average of around 20%,
compared to the smoothened technique, but the most
interesting result is the impact on positioning at virtual
PoIs (impossible with the other techniques). This is due
to the spatial nature of the filter.

Figure 3(a) presents the sensitivity results when MONA
takes into account also detections of neighbor bracelets
to position both the visitor and the neighbor bracelets.
We do not present specificity values here as they are
consistently close to 1 as in Figure 2. One can notice
that adding mobile node proximity information consis-
tently improves positioning ability reaching a value of
(or close to) 1 when 15 additional neighbors are used.
The performance is slightly worse in the case of virtual
PoIs (in particular VR2), but note that here we leveraged
the anchors used for the other PoIs (except for only an
additional anchor). Moreover, more data points (i.e.,
visits) should yield more statistically consistent results
(e.g., for PoI 7 and 3 adding 10 bracelets yields worse re-
sults than using anchors only). Finally, one would expect
a slightly lower impact in the real world, where body
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Figure 2: Positioning accuracy during the controlled experiment at the PoIs on the first flloor and three additional
“virtual” PoIs not instrumented with an anchor. We compare our technique (not using here mobile-to-mobile
proximity) to a technique that positions the visitor at the anchor with strongest signal with and without a rolling
window.
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Figure 3: Impact of neighbor bracelets around a visitor
on the first floor. We added 5 more bracelets in the
surrounding of the visitor every 2 minutes of each stop.
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Figure 4: Positionings accuracy of our system with MONA
and without it during the real-world experiment. Only
PoIs 7, 9, 13, 14, 16, 19 were instrumented with an
anchor.

shielding effects and other irregularities would influence
mobile-to-mobile detections.

7.2 Real-world experiment

Figure 4 presents a comparison of sensitivity values, for
both the stops of the scripted visit and for the 5 bracelets
installed at PoIs, when mobile-to-mobile detections are
used and ignored for positioning. Note that 13 out of 19
PoIs are virtual, hence they represent the hardest task
for MONA (i.e., only PoIs 7, 9, 13, 14, 16, 19 represent
stops at actual PoIs instrumented with a dedicated an-
chor). One can notice that MONA consistently improves
the sensitivity of the measurements, though for a few
virtual PoIs the performance is lower. Again, more data
points should produce more statistically relevant results.

A main reason why we do not always see a strong im-
pact as presented in Figure 3(a) is due to the “sampling”
effect of the real-world experiment. Considering that
“only” 25% of the visitors were wearing a bracelet, the
chances to leverage mobile-to-mobile proximity detec-
tions are reduced. This is aggravated by that fact that in
the first and last part of the day crowd density is lower,
as fewer visitors are in the museum. Lastly, at each
second bracelet often report only one neighbor visitor,
as bracelets favor reporting two anchors out of three
detections when possible. We would expect a higher
impact by increasing the number of reported neighbors.
The current value of three was due to limitations to the
packet size of the current implementation and can be
increased in future versions.
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Figure 5: Number of individuals positioned at different PoIs over time. (a) The number of visitors wearing a
bracelet during the day (experiment participation was around 25%). (b) The Chain Reaction PoI. Events started at
11:15AM, 12:15PM, 2:45PM, 3:15PM and 4:45PM for the duration of about 15 minutes. (c) The restaurant at the
top floor. (d) An Auditorium open to the public only in 5 occasions during the day.

8 Application

8.1 PoIs “popularity” over-time

Because at each time we know which visitors are posi-
tioned at which PoI, we can estimate how many indi-
viduals are visiting a PoI. In Figure 5(a) we present the
number of checked-in devices during the day. One can
notice that peak-time is between 1PM and 3:30PM, with
around 600 visitors wearing a bracelet (and around 2400
individuals overall in the museum). Figure 5(b) shows
the number of individuals spending at least two minutes
at the popular “Chain Reaction” (CR) events throughout
the day. A CR event takes place in the middle of the
museum hall and is widely announced. They took place
at 11:15AM, 12:15PM, 2:45PM, 3:15PM and 4:45PM
for the duration of about 15 minutes. One can notice
that CR events have the typical footprints of crowded
events. First, in the build-up phase, density gradually
increases during the minutes before the event, as people
either stop-by or approach the event location in advance.
Then, the event takes place and density remains more

or less constant. Finally, in the break-up phase, den-
sity decreases quicker, as all individuals leave the event
location for another PoI.

Figure 5(c) shows data for the restaurant at the top
floor. For this data, we aggregate positioning informa-
tion for all the anchors at that floor, as the restaurant
covers the whole space. Here, one can notice that lunch
time peaks between 12:30PM and 1PM, but decreases
gradually, as it is used by families for breaks at the end of
the visit, enjoying the view from the rooftop. Figure 5(d)
presents data for the Auditorium. The Auditorium is
a closed theater space, that is open to the public only
during scheduled events. For this reason, one can notice
no visitors outside of scheduled shows and a less gradual
build-up phase.

8.2 Crowd distribution across floors

Figure 6 shows the number of individuals at each floor
throughout the day. First, one can notice how the CR
event greatly influences the distribution of visitors across
the first two floors and also at the third floor. When the

7



10:00 12:00 14:00 16:00 18:00
Time

0

50

100

150

200

250

300

350

N
u
m
b
e
r 
o
f 
v
is
it
o
rs

1st 2nd 3rd 4th 5th

Figure 6: Distribution of visitors across floors over time.
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Figure 7: Flow of visitors from and to the first floor.

CR event takes place, we can see corresponding peaks at
the first floor and dips at second floor (and smaller dips
even at third).

Second, one can notice that the “popularity” peak of
floors happen at different times of the day depending on
the floor. The first floor hosts more people during the first
half of the day, while second floor peaks around 2PM,
and third floor around 3PM (and the fourth floor has
very few visitors at all before 12PM). This is because the
building is built to be visited somehow in order floor after
floor, though visitors are not obliged to do so. Again, the
fifth floor hosts the restaurant and has a different pattern.

8.3 Flows between floors
Figure 7 shows the number of visitors moving per minute
from and to the first floor in particular. We compute this
by considering only visitors that remain on the floor for
at least 10 minutes (hence filtering out visitors just pass-
ing by). One can notice again that CR events, in gray,
dominate the pattern. Small peaks in the movement to
the first floor appear at the minutes before CR events,
while higher and more sudden peaks appear in the move-

ment from the first floor right after the event (again, the
footprints of build-up and break-up phases). As stairs
to the second floor are positioned right besides the CR
event location, visitors tend to move to the second floor
right after the event finishes.

9 Conclusion

In this paper, we have presented the design and evalu-
ation of a positioning system that leverages mobile-to-
mobile proximity sensing to overcome missed mobile-
to-anchor detections due to high crowd density. We have
shown that our approach is able to increase positioning
accuracy when more visitors wearing a proximity sen-
sors are present in the museum. The museum where
we conducted the study presented extreme conditions
of density and challenging conditions due to a complex
multi-story open space. We have tackled these chal-
lenges by tailoring a filtering pipeline to our use-case.
Yet, the approach is general and applicable to any prox-
imity sensing technology that is able to detect neighbor
sensors with and an estimate of distance.

Moreover, we have used the data to gain insights about
the behavior of the visitors during the experimentation
days. The insights show a clear behavioral trend, open-
ing new questions regarding how museum staff can in-
tegrate such an approach in their work. The work we
presented is however not limited solely to the use-case
of a museum, but it is applicable to the general problem
of indoors crowd monitoring.
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