
39

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks

SPYROS VOULGARIS, VU University, The Netherlands

MATTHEW DOBSON, VU University, The Netherlands

MAARTEN VAN STEEN, University of Twente, The Netherlands

Energy is the scarcest resource in ad hoc wireless networks, particularly in wireless sensor networks requiring a

long lifetime. Intermittently switching the radio on and o� is widely adopted as the most e�ective way to keep

energy consumption low. This, however, prevents the very goal of communication, unless nodes switch their

radios on at synchronized intervals, a rather nontrivial coordination task.

In this paper, we address the problem of synchronizing node radios to a single universal schedule in wireless

mobile ad hoc networks that can potentially consist of thousands of nodes. More speci�cally, we are interested

in operating the network with duty cycles that can be less than 1 percent of the total cycle time. We identify the

fundamental issues that govern cluster merging, and provide a detailed comparison of various policies using

extensive simulations based on a variety of mobility patterns. We propose a speci�c scheme that allows a 4,000-

node network to stay synchronized with a duty cycle of approximately 0.7 percent. Our work is based on an

existing, experimental MAC protocol that we use for real-world applications, and is validated in a real network of

around 120 mobile nodes.

1. INTRODUCTION
Advances in electronics and embedded systems have led to wireless devices that are small,

light, nonintrusive, and cheap. At present, we are capable of building and deploying very

large networks consisting of tens of thousands of such devices, and wemay expect to even-

tually see smart dust [Kahn et al. 1999] systems become reality.

A major concern of present and future wireless networks is their lifetime duration with

energy being the main determining factor. Energy, in turn, is primarily dictated by the op-

eration of a device’s radio circuitry. For this reason, much research concentrates on reduc-

ing the time needed to keep the radio circuitry active, implying intermittently switching

the radio on and o�. The period during which a node’s radio is on is known as its active
period, which together with a subsequent inactive period forms a cyclic round. The ratio of

the duration of the active period over the entire round is known as the duty cycle.
In order for several nodes to communicate, their active periods should be—at least

partially—overlapping. In fact, to maximize the shared communication window and thus

fully utilize the energy nodes spend on their radio circuits, their active periods should be

synchronized as accurately as possible. In this paper, we aim at reaching such synchroniza-

tion while demanding that all nodes are treated equally. In other words, we seek for fully

symmetric autonomous synchronization without any node ful�lling a special role. More-

over, we aim at synchronizing the active periods of all nodes at the same time, and allow

nodes to be mobile.

One can argue that having tens of thousands of wireless devices tightly and au-

tonomously synchronized is not practical. First, it is much easier to use a number of �xed

anchor points towhich the other,mobile devices can synchronize. Second, instead of having

tight synchronization of all devices, it is oftentimes better to deploy time-sharing scenarios

so as to better utilize bandwidth. We agree. However, part of our research is motivated by

future scenarios along the lines of aforementioned smart dust and so-called speckled com-

puting. In such cases, nanoscale digital particles forming a very large ad hoc network are

blended into our environment. We are already witnessing �rst steps toward such systems

in entertainment scenarios where members of an audience wear wireless devices of which

the leds are controlled to produce a light show [PixMob]. To us, it is important that we

obtain a better understanding of the issues involved toward making such future networks.

When networks become very large, maintenance should be minimal. Autonomous syn-

chronization without having to rely on speci�c nodes (such as �xed anchor points) is part

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:2 S. Voulgaris et al.

of our design. For the same reason, having a predictable lifetime is important as it allows to

anticipate maintenance e�orts instead of having only reactive solutions. Also for these rea-

sons, we strive for letting nodes have the same lifetime expectation so as to create a network

in which all nodes can be treated symmetrically, again contributing to its maintainability.

The requirements of long and predictable lifetime duration have led to the GMAC1 family

of protocols. In GMAC, nodes use a very small duty cycle (less than 1%) and broadcast mes-

sages at �xed intervals, following a gossip-based communication model, fromwhich GMAC

gets its name. By ensuring constant energy use per time period, the lifetime of a network

utilizing the GMAC protocol can be accurately determined before deployment. This allows

the network owner to select appropriate battery hardware. The predictable lifetime of nodes

also means that speci�c nodes (e.g., in an interesting location, proximal to some event) will

not exhaust their energy supply prematurely simply due to being in a particular locale.

We are interested in enabling large-scale, mobile wireless sensor networks. Our current

main use case is that of a wearable sensor network, in which each of the individual sensor

nodes is worn or carried by a person. Real-world experiments involve gatherings of approx-

imately 120 people. However, our solutions scale well to networks of thousands of nodes.

Ensuring that the active periods of nodes are synchronized is decomposed into two or-

thogonal subproblems:

—Once a group of nodes is synchronized, corrective actions are needed to alleviate e�ects

of di�erences in clock rates that could easily lead to desynchronization.

—Distinct groups of synchronized nodes operating on di�erent active periods should detect

the existence of other such groups and merge such that each node operates on the same

active period.

We have dealt with the �rst subproblem in [Dobson et al. 2010]. We have also partly ex-

plored the second problem in [Dobson et al. 2011], which we extend here to include an

exploration of how node mobility a�ects synchronization while also considering much

larger networks. This problem has not been addressed extensively by the research com-

munity. Although our solution is presented in the context of a speci�cMAC-layer protocol,

the methodologies, principles, and algorithms we propose can be generalized to virtually

any slotted MAC protocol with a very low duty cycle.

This paper’s contribution is an extensive exploration of the design decisions, parameters,

and con�gurations that govern the entire spectrum of network synchronization in mobile

ad hoc networks. Namely, achieving andmaintaining synchronization across all nodes, with

duty cycles lower than 1%. We provide extensive quantitative insight through both simu-

lations and a real-world experiment, as well as ample qualitative explanations of the pro-

tocol’s behavior. This work constitutes a comprehensive concentration of knowledge and

experience for scientists and engineers that wish to build, con�gure, and deploy large-scale

wireless, static or mobile, ad hoc networks adhering to the gossiping paradigm.

The contents of the rest of the paper are as follows. We begin by describing the operation

of the GMAC protocol that we have used for our research in Section 2. We then provide a

thorough analysis of the aspects and methodologies of synchronization in Sections 3 and

4, including a discussion of the default behavior of GMAC and where it can be improved.

We explain themeasurements andmetrics we use to evaluate our algorithms and provide a

description of our simulation environment and experimental setup in Section 5. Following

that, we present the results and evaluation of our simulations in Section 6. The results of

one of our real-world experiments are discussed in Section 7. Section 8 contains a survey

of related work and we come to conclusions in Section 9.

1
GMAC is protected by US Patent Application 12/215,040 and is available free of charge for academic use.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:3

RX RX TX RX RX RX RX RX JOIN

time

transmitguard guard

1 slot

1 round

receive

1 tick

node A

node B

offset

active period

inactive period

Fig. 1: GMAC’s slot allocation and scheduling.

2. THE GMAC PROTOCOL
GMAC [Anemaet 2008] is a MAC protocol designed by Chess2 to enable periodic, gossip-

based communication, focusing on providing a long and predictable network lifetime. Al-

though GMAC is a generic protocol that could run on any hardware platform, its o�cial

implementation is on Chess’ MyriaNed platform, discussed in detail in Appendix A.

The selection of GMAC as the MAC protocol for our research stems from the protocol’s

nature, which makes it particularly challenging to maintain nodes synchronized in a single

universal schedule in the face of node mobility. This is mainly due to GMAC’s emphasis on

an ultra-low duty cycle of less than 1%, and it is further aggravated by its completely de-

centralized mode of operation based on symmetric node behavior. Indeed, communication

in an always-on MAC protocol, or when synchronization is governed by a central coordi-

nator, is a nonproblem. However, such protocols would exhibit far lower lifetime, or more

complex deployment and maintenance, respectively.

2.1. GMAC Overview
GMACwas inspired by the slottedAloha protocol [Roberts 1975][Abramson 1977], but adds

the notion of a �xed-length duty cycle. An illustration of a GMAC duty cycle is presented

in Fig. 1. Primarily, GMAC operates by dividing time into a recurring series of communi-
cation slots, grouped together into rounds consisting of a �xed-number of slots. Some slots

are considered active slots, during which nodes keep their radios activated in order to send

and receive messages with their neighbors. Other slots are considered inactive slots, dur-
ing which nodes keep their radios powered down in an e�ort to save energy. Of primary

concern is the alignment of the active slots of all nodes, so that they can communicate ef-

fectively.

The length of a GMAC slot is the sum of the transmit time and guard time. In order to

simplify things, the transmit and guard times are rounded up to an integer number of

clock ticks. As stated above, the transmission time for a packet is about 300µs, which is

equivalent to 10 RTC clock ticks. A guard time of 18 ticks is used, although this can be

signi�cantly decreased. Thus, a single slot consists of 28 ticks and Tslot �
28

32768 seconds, or

about 850µsec.
A round consists of sround slots, having a duration of Tround � sround ·Tslot ticks. Scheduling

many consecutive inactive slots allows the node to completely power down its radio (and

2
http://www.chess.nl

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:4 S. Voulgaris et al.

even its CPU) in order to save a signi�cant amount of energy. Exactly which slots are active

and inactive is determined byGMAC’s strategymodule.Utilizing a lowduty cycle, generally

less than 1%, the synchronization of the active periods of neighboring nodes is crucial in

order to maximize potential communication. Themaintenance of synchronization between

nodes executing the GMAC protocol is the responsibility of the synchronization module.

Fig. 1 depicts two types of transmission slots. The �rst, labeled “TX”, is used to broad-

cast an application message, containing whatever data is provided by the application. The

second, labeled “JOIN”, is used to broadcast a JOIN message, containing synchronization

information used by a recipient to discover (and potentially join) the sender’s synchronized

group. The use of JOINmessages is discussed further in Section 4.1.

It should become clear that, using exactly two message broadcast slots and a �xed num-

ber of message reception slots (in this case seven), the power consumption due to the MAC

layer is �xed per time unit. Once a node has discovered an initial neighbor, the GMAC

protocol never deviates from this rigid schedule.

2.2. Slot allocation strategy
For the purposes of this paper, we use a very simple slot allocation strategy module, called

RandomTX. This strategy uses a �xed active period of sactive � 8 slots, followed by an in-

active period lasting until the end of the round. In our experiments we use a round time

of 1s, which yields sround � 1170 slots per round. With 8 active slots, we are left with

sinactive � 1162 slots, and a duty cycle of τ �
8

1170 � 0.68%. By using a �xed number of ac-

tive slots per round a node’s power consumption is constant and can be determined before

deployment. It is this constant upper bound on energy use that allows the lifetime duration

of a GMAC network to be computed.

Note that due to RandomTX’s use of a �xed number of active slots, the local density at

each node will strongly a�ect how much useful communication can take place. If a node

has signi�cantly more than sactive neighbors, there will be many collisions as many senders

will randomly select the same slot. There are more advanced slot selection strategies that

attempt to compensate for this by adjusting the number of active slots based on estimates

of the node’s neighborhood size (Swarm-MAC and Distributed GMAC in [Anemaet 2008]).

However, strategies of this type introduce more complexity because synchronized neigh-

boring nodes still may not communicate as expected if they use di�erent active period du-

rations. Due to this, for the purpose of this paper we restrict our investigation to the simple

RandomTX strategy, with the understanding that at very high node densities communica-

tion may be signi�cantly hampered.

2.3. Synchronization
The inter-node synchronization is the focus of this paper, and is implemented in two dis-

tinct parts. First, by including the sender’s current slot number within the round in every

message, a receiving node can always determine the o�set between its own notion of time

and that of the sending node. By comparing the o�sets of a number of di�erent sending

nodes, the receiving node canmake an adjustment to the length of its round so that it starts

the next round in synchrony with its neighbors. This maintenance of existing synchroniza-

tion is provided by GMAC’s synchronizationmodule (discussed further in Section 3.2). The

second part of inter-node synchronization, themerging of separately synchronized groups,

is discussed in detail in Section 4.

We aim at synchronizing all participating nodes to a single common active period for

one reason: to allow seamless node communication, even under high mobility. Our focus

is on large-scale mobile networks, and our main use case is a wearable-sensor network. In

this scenario there are no �xed areas in which nodes will operate, so infrastructure nodes

(e.g., gateways, sinks) are not assumed. As nodes can freely move about, they should be

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:5

able to immediately communicate with their new physical neighbors. If the participating

nodes do not share a common active period, they will have to discover other nodes in their

new location, which they may occupy only temporarily. Furthermore, if all or most of the

nodes are mobile, most hierarchical or cluster-based methods of synchronization will be

constantly readjusting. Synchronized nodes, on the other hand, can simply communicate

with their neighbors regardless of their previous location.

2.4. Application Model
GMAC, as theGossipingMAC, is designedwith the assumption that the applications utiliz-

ing this MAC layer will communicate using a gossip-based mechanism. This is not strictly

necessary, but it does serve to explain some of the design decisions made while developing

the protocol. For example, GMAC does not provide any routing features, nor does it try to

passmessages to a speci�c sink node. Because nodes use gossip to disseminate information,

GMAC assumes that important informationwill be readily rebroadcast, while unimportant

information will die out. If the operator of a sensor network running GMAC wants to in-

spect or modify the operation of that network, there are several options. Primarily, one can

make use of passive sni�er nodes. These nodes do not actively participate in the network,

but simply operate in a receive-only mode. The received messages sent by the active nodes
can be interpreted on the sni�er itself, or potentially forwarded over the Internet for further

processing.

GMAC provides a very simple API for application developers, primarily consisting of

three callback functions:

— appInit called at initialization time, when the application should initialize all relevant

data.

— appReceiveMsg called for each received message, allows an application to parse the re-

ceived message and take any appropriate action.

— appPrepareMsg called at the end of a round, allows an application to generate a message

that will be broadcast during the next round.

Note that it is assumed that an application will generate a message for broadcast every
round. Nodes rely on regular communication with their neighbors in order to remain syn-

chronized, so sending one message per round ensures nodes will regularly receive mes-

sages. Because of the gossip-based nature of communication, this message may be com-

posed of data generated by the sending node, data received and determined to be worthy

of rebroadcast by the sending node, or a combination of both. Again, GMAC assumes that

important data will eventually be spread through the network as nodes rebroadcast and

disseminate the most “interesting” data they observe.

This also explains why the RandomTX strategy does not attempt to build a collision-free

schedule. In networks of appropriate density some messages will be lost to collisions, but

many will be received correctly. Since nodes broadcast a message in every round, a single

lost message will not present a problem. Important messages will eventually be received by

one or more neighboring nodes, where they can be further rebroadcast and disseminated

throughout the network. If the density is above some minimum threshold (which we will

explore in Section 6) and below some maximum threshold (based on the number of ac-

tive communication slots, sactive), communication can proceed without excessive message

collisions.

2.5. Hardware Considerations
As GMAC has been developed around the MyriaNed platform, we discuss here to what

extent it has been tailored to that speci�c platform and inwhatways. A detailed description

of the MyriaNed hardware platform can be found in Appendix A.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:6 S. Voulgaris et al.

round i round i+1 round i round i+1

(a) One subnet with three syncgroups (b) Two subnets with one syncgroup

Fig. 2: The edges between the nodes represent wireless links. Nodes that are connected via

(a chain of) wireless links are known as a subnet. The coloring of a node represents the

group of nodes with which its active period overlaps, that is, its syncgroup. The axis at the
bottom represents time and is divided into rounds of length Tround by the large numbered

markers. The smaller markers denote individual communication slots. Finally, the shaded

bars atop the time-axis represent the duration of the active periods of the similarly-shaded

syncgroups.

The characteristics of the radio play the most important role in shaping the protocol.

The radio used on MyriaNed nodes was originally intended for use in wireless keyboards,

mice, etc., and is generally limited. More speci�cally, it has neither collision detection nor

collision avoidance. This can make adaptive duty cycles tricky, as we cannot distinguish

between channel over-saturation and under-utilization. In the former packets are lost due

to collisions, in the latter there are simply no packets.

A second limitation set by the radio is that packets carry payloads of precisely 32 bytes.

This constitutes a limitation mostly at the application layer.

Another point has to do with time accuracy. MyriaNed nodes are limited to a 32KHz

oscillator for timekeeping, which limits how tight GMAC synchronization can be.

Finally, at amore general note, by using custom-made hardwarewe did not have a chance

to bene�t from the debugging and re�nement that more “stable” or “common” platforms

typically receive.

3. ESTABLISHING AND MAINTAINING SYNCHRONIZED GROUPS
Duty cyclingmakes synchronization of nodes’ active periods essential. Nodes whose active

periods do not overlap cannot communicate with each other, e�ectively partitioning the

network into temporaly disconnected components, called syncgroups (Fig. 2a). Nodes that

are not within each other’s transmission range cannot communicate with each other either,

partitioning the network into spatially disconnected components, called subnets (Fig. 2b).
The existence of separate subnets and their evolution in the face ofmobility is beyond our

control, depending exclusively on nodes’ physical locations. With respect to node synchro-

nization, though, our aim is to synchronize all nodes at a single syncgroup irrespectively of

their physical subnet (Fig. 2b), so that when two subnets meet, their nodes are readily able

to communicate.

Ensuring node synchronization can be divided into three speci�c targets:

(1) Establish synchronization to an existing syncgroup at node startup.

(2) Maintain synchronization in an already synchronized group, negating the e�ect of

clock drifts.

(3) Detect and merge two or more separately synchronized groups when they meet.

Targets (1) and (2) are discussed in the following two sections, 3.1 and 3.2, respectively.

Target (3), being the most challenging, is discussed separately in Section 4.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:7

INITIAL_LISTEN

SAY_HELLO KEEP_LISTENING

SYNCHRONIZED

Fig. 3: The �nite state machine describing the operation of GMAC when a node starts up.

The INITIAL_LISTEN is the normal starting state, while SYNCHRONIZED is the goal state. A

node will follow the dashed arrows if it receives no messages in a round, and the solid

arrows if it does receive a message.

3.1. Establishing synchronized groups
In order to communicate, a node must �rst discover its neighbors. Nodes executing the

GMAC protocol follow a simple �nite state machine when initialized, shown in Fig. 3.

Nodes normally begin in the INITIAL_LISTEN state. In this state, a node i’s �rst round
will be spentwith its radio active and continuously listening for a randomly-chosen number

of slots s0,i , with sround < s0,i ≤ 2 × sround, where sround is de�ned to be the number of

slots in a round (Section 2). If the node hears a message while in INITIAL_LISTEN, it will

immediately deactivate its radio, calculate a timer adjustment to align the start of its next

round with that of the sender, move to the SYNCHRONIZED state, and then sleep until the

computed start of its next round. If, however, a node in INITIAL_LISTEN reaches the end

of its round without hearing a message, it will move to the SAY_HELLO state. In that state, a

node will broadcast a specially-tagged “hello” message in the �rst slot of the round. After

broadcasting themessage, the nodewill switch its radio back to receivemode and enter the

KEEP_LISTENING state. A node’s behavior in KEEP_LISTENING is similar to that of a node

in INITIAL_LISTEN. The di�erences are that in the KEEP_LISTENING state, a node i will

maintain the standard number of slots in each round r (e.g., sr,i � sround), andwill remain in

that state inde�nitely in the absence of receiving a message. A node in the KEEP_LISTENING
state reacts to received messages in the same manner as described for INITIAL_LISTEN,
aligning its next round with the sender and transitioning to SYNCHRONIZED. Upon reaching

the SYNCHRONIZED state, a node executes the normal active/inactive duty cycle behavior, as

discussed previously and shown in Fig. 1.

The reader will notice that in the above initialization behavior a node can spend a sig-

ni�cant amount of energy in the INITIAL_LISTEN and KEEP_LISTENING states, as its radio
will be active 100% of the time. This design decision runs contrary to GMAC’s general phi-

losophy of very low and constant power use. However, this decision was made to boost a

node’s initial discovery of a syncgroup, under the fundamental assumption that nodes will

not be started in isolation.

3.2. Maintaining synchronized groups
Establishing synchronization across a set of nodes is necessary but not su�cient for a sta-

ble network. In the absence of local corrections, node clocks will drift apart rendering the

network desynchronized.

In [Dobson et al. 2010] we showed that the median algorithm (Alg. 1) is capable of main-

taining tight synchronization within connected networks of static grids of nodes. The al-

gorithm is quite simple, yet very e�cient. In each round, a node adjusts its clock to stay

in closer synchronization with the set of neighboring nodes from which it successfully re-

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:8 S. Voulgaris et al.

Algorithm 1: The Median Algorithm

Median(numRxEntries > 0, array rxEntries, gain > 0)
// sort received messages by offset (in ticks) from local time
SortByOffset(rxEntries);
// select the median entry
medianEntry = rxEntries[numRxEntries/2];
// scale the correction by gain � 0.5
phaseError = medianEntry.tickOffset × gain;
// adjust the length of the current round based on phaseError
AdjustRoundLength(phaseError);

ceived a message. More speci�cally, at the end of its active period, a node considers the

timing o�sets of all messages it received in that round, and adjusts its clock half way toward

themedian o�set. By always selecting themedian timing o�set, the algorithm ignores outly-

ing data points and focuses on those in the center, e�ectively forcing the fastest and slowest

nodes in the network to match those. Note that the gain of 0.5 serves in dampening the

adjustments and in preventing oscillations of the synchronization maintenance behavior.

We emphasize that it is crucial for scalability that the algorithm is based completely on local
decisions.

It is worth noting here that GMACwas originally designed for static deployments on the

scale of dozens to hundreds of nodes. Asmentioned earlier, we are interested in networks at

least an order ofmagnitude larger, so the sheer size of the networkswe investigatemay pose

problems. Furthermore, although GMAC is designed to operate in a purely peer-to-peer

manner without any dependencies on speci�c peers, it remains to be seen how mobility

will a�ect its operation. With the introduction of dynamic topologies, good network-wide

synchronization becomes evenmore important. In a static network, a nodewill always have

the same neighbors, so tight local synchronization (i.e., among direct neighbors) withmuch

looser global synchronization is perfectly acceptable.However, if a node can suddenlymove

away from its local synchronized group and position itself anywhere else, strong network-

wide synchronization will be required.

4. MERGING SYNCHRONIZED GROUPS
While maintaining synchronization within syncgroups is fundamental, we must also en-

sure that GMAC can merge together separate syncgroups to form a single, cohesive net-

work. The situation is illustrated in Fig. 2. When all syncgroups have beenmerged together

and all nodes share a common active period, we say that the network has converged. Note

that we reject solutions that attempt to “bridge” separate syncgroups by requiring nodes in

the overlap to execute multiple active periods per round. Such behavior creates an asym-

metric energy burden for gateway nodes, jeopardizing our goal of a predictable network

lifetime. Furthermore, the premature failure of gateway nodes tends to be more detrimen-

tal than the failure of normal nodes, since it is precisely these gateway nodes that connect

the otherwise isolated groups.

In our previous work, [Dobson et al. 2010], we demonstrated that the group-merging be-

havior of GMACwas su�cient to achieve convergence for small networks, but that GMAC

struggled to consistently converge larger networks. A major contribution of this paper is a

thorough analysis of various methods of merging large networks composed of groups of

desynchronized mobile nodes. This problem of syncgroup merging can be further broken

down into three subproblems: detection, decision, and noti�cation, which we discuss in the

following sections.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:9

4.1. Detection
Before separately synchronized groups can be merged, they must �rst become aware of

each other. We distinguish two methods of detection. In an active method, nodes broadcast
a JOIN message during the inactive portion of their round, allowing other nodes using a

di�erent active period to detect the sending node’s syncgroup. Note that JOIN messages

are always transmitted during the sender’s inactive period, but can be received only during

another node’s active period. In a passive method, nodes listen during the inactive portion

of their duty cycle to detect application messages from nodes in other syncgroups.

4.1.1. Active detection. The e�ectiveness of active detection is mainly determined by the

duty cycle of the network, τ. If Tactive > Tinactive, then τ > 50% (i.e., nodes are active for

more than half of each round). This implies that the active periods of any two nodes overlap

to some degree, therefore all nodes belong by default to a single syncgroup.

For duty cycles below 50%, we can compute that the probability p that a message trans-

mitted during one group’s inactive period will be received during another group’s ac-

tive period (ignoring collisions), is equal to p �
Tactive

Tinactive
. By de�nition, the duty cycle is

τ �
Tactive

Tactive+Tinactive
, from which we derive p �

τ
1−τ . Thus, the detection probability quickly

becomes very low when τ is very small, which is exactly the case for the type of networks

we are interested in. Nodes using a duty cycle of τ � 1% can expect a detection probability

of p � 1.01%.

4.1.2. Passive detection. Passive detection o�ers a trade-o� of increased energy consump-

tion for faster detection. For example, a node could virtually guarantee detection of any

other node in its range if it continued to listen for the entire duration of a round. However,

this obviously defeats the original purpose of duty cycling, and would rapidly deplete the

node’s battery. We could apply the duty cycling method to passive listening by instructing

nodes to listen to some percentage, pl , of the inactive period, reducing energy consumption

but also e�ectiveness. Note that this can be implemented as listening for an additional

pl × sinactive slots every round or by listening to the entire round (an additional sinactive
slots) with probability pl . We chose to implement the latter method because listening

to the entire inactive period eliminates the possibility that a node will fail to detect an

unsynchronized neighbor due to listening to the “wrong” portion of its inactive period.

Still, we will want to keep pl as low as is practical, because the higher pl is, the more energy

is spent listening.

We have implemented both types of detection in order to allow for a comparison of the

e�ectiveness of the two methods. The implementation of active detection sends one JOIN
message per round, as described in Section 2. In our implementation of passive detection a

node listens to the whole inactive portion of its round with probability pl . In order to have

a fair comparison between active and passive detection, we would like to spend approxi-

mately the same amount of energy in both cases. Sending a JOINmessage costs the energy

required to wake up the node, turn on the node’s radio, broadcast a message, and turn o�

the node’s radio again. On a node’s Nordic nRF24L01+ radio (see Appendix A), this costs

about the same as two active receive slots. Therefore, we tuned our implementation to listen

for the equivalent of two (inactive) slots per round, and since sinactive � 1162 slots, we set

pl �
2

1162 ≈ 0.17%.

Active detection does have a decided advantage over passive detection. A whole set of
neighboring nodes may detect the existence of another syncgroup at once, by a singlemes-

sage broadcast by one node of that group, provided the JOIN message hits the active pe-

riod of the neighbors. In the case of passive detection, each node would have to individually
detect the presence of the foreign syncgroup, by paying the price of keeping its radio in re-

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:10 S. Voulgaris et al.

ceive mode during its inactive period. The disadvantage, however, of active detection is an

increased chance of collisions, as the JOINmessages sent from one group may collide with

each other, or with application messages belonging to other groups. Both active and passive

detection schemes will be heavily a�ected by the density of the network, in particular, the

number of neighbors, or degree, of participating nodes. In addition, mobility will in�uence

the e�ectiveness of both detection techniques as well. When a node n from one syncgroup

detects a node m from another, there is a chance that, due tomobility, node m will no longer

be in node n’s range during the next round, leaving n trying tomerge into a syncgroup that

has no members in its vicinity.

4.1.3. Listen-before-Merge. In addition, we implemented a modi�ed version of passive de-

tection designed to augment both detection methods. This technique is based upon the no-

tion of superior and inferior syncgroups, which is explained below, in Section 4.2. Normally

a node will merge immediately upon discovering (either via normal active or passive de-

tection) a superior syncgroup. However, in very large networks where many syncgroups

may be collocated, before joining a superior syncgroup that was discovered in the current

round, it may make sense to listen for the whole inactive period in search of an even better

syncgroup, in order to merge directly to the best syncgroup of the vicinity. This technique

is called listen before merge. Technically it violates our principle of stable energy use, but

the asymmetry induced by it is expected to be negligible as merges would be happening

sporadically.

4.1.4. Targeted JOIN messages. We have also devised an improvement for active detection,

called targeted JOINmessages. Normally, if a node in a superior syncgroup, A, detects (hears a

JOINmessage from) a node in an inferior syncgroup, B, it will simply ignore this message,

assuming that the sender will eventually detect the existence of syncgroup A. Since, as

discussed above, the detection probability is quite low and detection events are relatively

rare, we should try to take advantage of A’s detection of syncgroup B even if A is superior to

B and therefore the node will not decide to merge.We can do this by allowing the detecting

node in A to try to target syncgroup B’s active period with its next JOINmessage. Using the

timing details from the sender’s message, the receiver can determine an o�set between the

two syncgroups and, thus, can estimate when B’s next active period will begin. By sending

the next JOINmessage in a slot that has a strong possibility of overlapping with B’s active
period instead of in a random slot, the node from syncgroup A greatly increases the chance

of a neighboring node from syncgroup B to detect it.

4.2. Decision
Regardless of how detection happens, once a node from group B is aware of another group

A, it must decide whether it should merge into A or if it should stay in B. Nodes cannot

merge unconditionally, because otherwise the whole networkmay never converge as nodes

merge back and forth between multiple groups. Our goal is to ensure that all the nodes

converge into a single (possibly multi-hop) syncgroup, so that we should try to minimize

the amount of time and energy spent on reaching a converged state.

The decision algorithm should implement a relation � that provides a total ordering of

the set of existing synchronized groups of nodes. That is, the decision relation A � B de-

termines whether group A is superior to group B. Thus, when a node in B receives a JOIN
message from a node in A, it should merge into group A if and only if A � B. The relation
� should provide the following three properties:

(1) antisymmetric: if A � B and B � A then A ≡ B
(2) total: A � B or B � A
(3) transitive: if A � B and B � C then A � C

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:11

C B A C B A

round i round i+1

Fig. 4: A graphical representation of the problem in the timing-based decision mechanism

called
t
�. The axis at the bottom represents time in the same fashion as Fig. 2. The addi-

tional colored lines above the axis show the span of time where the JOIN messages from

the associated syncgroup will be respected.

In order to promote convergence in the merging behavior, we propose enforcing a deter-

ministic ordering of syncgroups. In static networks, nodes should eventually detect all other

nodes/groups within their radio range. Provided that the network is connected, all nodes

will eventually become aware of all other synchronized groups in the network. Because of

the total ordering of these groups, nodes can always deterministically select the best group
when making a merge decision. In theory, this should lead to network convergence as all

nodes eventually merge into the best group.

Note that taking mobility into account does not directly a�ect the logic of deciding

whether or not to merge. Nevertheless, there are e�ects that we need to consider, specif-

ically on the design of the decision relation.

4.2.1. Timing-based decision relation, t�. GMAC’s default decision relation uses a heuristic

mechanism to decide when a node should merge into a newly discovered group: if a re-

ceived JOINmessage was sent during the �rst half of the sender’s round, then it is accepted

as valid, otherwise it is discarded. Note that while sending JOIN messages in the second

half of a node’s round that will only be discarded seems wasteful, the messages contain

debugging information so they are sent regardless of whether or not they will be consid-

ered valid. This timing-based relation,
t
�, is meant to ensure antisymmetry (Property 1)

for the decision relation. This is because, for any two groups, only one of them can send a

JOINmessage in the �rst half of its inactive period that the other can receive during its ac-

tive period. Furthermore,
t
� provides totality (Property 2), because the two groups cannot

be desynchronized by more than half a round, implying the active period of one overlaps

with the �rst half of the other’s round. However,
t
� does not provide transitivity (Property

3). If more than two groups exist in each other’s range, there can be a ‘loop’, i.e., where

nodes can merge from A to B to C and then back to A. In the best case, one of the groups

in the loop can be eliminated if all of its nodes merge into the other groups.

For example, if groups B and C could get all of the nodes in A to merge into their re-

spective groups before A can get any nodes from C to merge into it, then the loop would

have been removed. In the worst case, these loops can persist forever, leading to a network

that never converges. A visual example of this e�ect is seen in Fig. 4. Nodes in group A will

accept JOINmessages from group B, because the �rst half of the group B’s round overlaps

with the active period of group A (i.e., B t
� A). Similarly, nodes in group B will react to JOIN

messages from group C. Finally, due to the timing of their active periods, nodes in group C
will react to join messages only from nodes in A. It is thus seen that the three groups form

a loop, allowing for a node to merge from A to B in one round, from B to C in a subsequent

round, only to later merge back into group A, ad in�nitum. We will provide a solution to

this problem below.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:12 S. Voulgaris et al.

4.2.2. Cluster-based decision relation, c
�. Ideally, we would like the group with fewer nodes to

always merge into a group with more nodes, to minimize disruption to the network. How-

ever, computing such networkmetrics in a decentralized fashion is a di�cult problem. Even

if our nodes all knew the exact size of their group, wewould still need amethod of breaking

ties between groups of equal size. Such a tie-breaker method can also serve as the primary

criterion for the group-merge decision. This may lead to suboptimal merge operations, i.e.,

forcing many nodes to resynchronize to match a few. Deterministic convergence, however,

is more important than optimality, particularly because in a stable network the occurrence

of merge operations can be assumed to be infrequent. That said, the e�ects of mobile nodes

on network convergence will be a chief aspect of our evaluation.

We propose to solve the convergence problem using a relation,
c
�, based on cluster tags.

A cluster tag is simply an identi�er used by a group of nodes that share a common active

period, i.e., a syncgroup. Nodes that have the same cluster tag are said to be in the same

cluster. Note, however, that twonodes in the same syncgroupneednot be in the same cluster,

e.g., because the best cluster tag has not propagated throughout the entire syncgroup yet.

Similarly, two nodes in the same cluster need not be in the same syncgroup, e.g., because

they were synchronized but have drifted apart.

In our solution, a cluster tag C is composed of two integers, an ID and an epoch, and
written C = {C.id, C.epoch}. We assume that all nodes have a unique identi�er and, upon

starting, nodes initially use their own unique identi�er and an epoch of 0 for their cluster

tag. We will discuss the use and function of epochs below. Nodes in the INITIAL_LISTEN,
SAY_HELLO, or KEEP_LISTENING states (described in Section 3.1) ignore cluster tags, and

will respond to any received message by synchronizing with its sender. Once in the state

SYNCHRONIZED, a node will strictly respect the ordering of cluster tags by following the

protocol described here.

Using
c
� a node can make a deterministic decision with regards to merging. A node can

compare its own cluster tag, A, with a received tag, B, using this relation: B c
� A if B.id >

A.id (again, ignoring epochs for now). A synchronized node will always adopt a superior

cluster tag received from other nodes in the same syncgroup. That is, if a node with cluster

tag A receives an applicationmessagewith cluster tag B during its active period (signifying

that the sender’s active period overlaps with its own) and B c
� A, it should discard its

old tag and adopt the tag B. Similarly, if this node in A detects a node with cluster tag

C from a di�erent syncgroup (either by hearing a JOIN message during its active period,

or by overhearing any message while listening during its inactive period), it can simply

compare its own cluster tag to that of the other node. If A c
� C, its own ID is higher it

can ignore the message. However, if C c
� A, the other group’s cluster ID is higher and

the node can deterministically decide that it should merge into the other cluster and react

accordingly. By assuring that the nodes in a syncgroup with a superior cluster tag never

merge into a syncgroup with an inferior cluster tag, we can eliminate the looping problem

in the
t
� decision relation. The relation

c
� provides for all three properties, including the

transitivity missing from GMAC’s default relation,
t
�. Without loops, all other syncgroups

should eventually merge into the group with the best cluster tag.

4.2.3. Cluster-based decision relation with epochs, e
�. However, node mobility will complicate

matters. One can imagine that the situation presented in Fig. 2a has been resolved and all

nodes have merged into the same syncgroup, sharing a common cluster tag as well. After

some time, due to mobility, the nodes may have changed their locations and are now phys-

ically separated into two di�erent subnets as shown in Fig. 2b. It is likely that the median

clock frequencies in the two subnets are di�erent. Thus over time, the physically separated

nodes, though once synchronized, will slowly drift apart. The nodes in each subnet should

continue to maintain synchronization within their subnet, however, a problem can later

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:13

arise because both of these groups have the same cluster tag but will no longer be in the

same syncgroup. If, later in the scenario, mobility brings the two subnets into contact again,

nodes in each syncgroupwill ignore JOINmessages from the other syncgroup, since neither

possesses a superior cluster tag. This scenario is what we call a cluster split.
Our solution to this problem is to introduce epochs. Epochs are given precedence over

IDs in implementing the � relationship, so a tag with a higher epoch is always superior to

a tag with a lower epoch. This essentially invalidates tags with lower (older) epochs when

a higher (newer) epoch is created. We call this modi�ed relation
e
�: A e

� B if and only if

(A.epoch > B.epoch) OR ((A.epoch �� B.epoch) AND (A.id > B.id)). Using the epoch

counter in its cluster tag, a node can increase the weight of its cluster tag by incrementing

its epoch when detecting a cluster split. That is, when a node X with cluster tag A � {a , e}
detects another node Y also claiming cluster tag A butwith a di�erent active period, node X
generates a new cluster tag A′ � {a′, e + 1}. This new tag will contain a randomly generated

ID, a′, and an epoch counter one higher than that of the old tag, e + 1. The higher epoch

makes this new cluster tag superior and ensures that the node’s synchronized neighbors

will adopt and disseminate this new tag. Nodes generate a new random ID in order to

prevent the epoch counter running up to in�nity without resolving the split in the case

that nodes from two syncgroups experiencing a split of cluster tag B � {b , e} independently
and simultaneously detect each other. If they did not generate a new ID, each node would

increment the epoch of its cluster tag but keep the same cluster ID, resulting in both nodes

having the same tag, B′ � {b , e+1}. This process could repeat inde�nitely, causing the epoch

counter to count upwards to in�nity without resolving the cluster split.

Note that the generation of a new cluster tag, B′, does not cost any extra energy or com-

putation for the synchronized neighbors of this node. Neighboring nodes that still have

the cluster tag B will (eventually) receive a message from the node with tag B′. When this

occurs, the receiving node will simply compare B and B′, determine that B′ is superior, and
adopt this new tag. Because the receiver is synchronizedwith the sender (that is, their active

periods overlap allowing them to exchange messages) the receiver will not need to make a

large resynchronization, but only to adopt the new tag. If many nodes detect a cluster split
at the same time, there may (temporarily) exist a variety of cluster tags: B, B′, B′′, etc. The
best of these will quickly dominate and cause the elimination of the others, however.

4.3. Notification
By default GMAC does not use any noti�cation of discovered groups. Nodes that decide

to change groups just silently merge. That is, they leave their old group by adjusting the

length of their current round to align their next round with their new group. In situations

with large groups, it can take very long to reach complete synchronization.

4.3.1. Merge messages. Once a node has decided that it must merge into a new group, it

should notify its own group of the merge. Though not strictly necessary, noti�cation of

the node’s decision to switch from group B to group A can be rapidly propagated through

group B (leveraging the group’s existing synchronization), saving the need for repeated de-

tections of group A. Because the probability of detection is proportional to the duty cycle,

the networks we investigate will have very low detection probabilities. Propagating a noti-

�cation of detections will reduce the number of detection events necessary to synchronize

the entire network.

In order to add noti�cation functionality to GMAC, we have added a merge �eld to the

header of application messages. This allows a node to notify its neighbors when it detects

a superior group. After discovering a group with a better cluster tag, a node can record the

time di�erence, or o�set, between its own group and the one with the superior cluster tag.

Then, rather than immediately merging into the new group, it can stay synchronized to its

current group for one more round, in order to communicate with its neighbors and inform

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:14 S. Voulgaris et al.

them about the new superior group. By sending this merge o�set along with its message

in the following round, its current neighbors can be made aware of both the existence and

the o�set of this superior group without the need to detect it on their own. This noti�cation

should greatly reduce the time and energy spent on detection.

Again, when taking mobility into account, we expect that the main e�ect on merge noti-

�cation will be the same as for detection. Namely, that a node may receive a noti�cation of

a merge decision and adjust its next round to synchronize with the new group, only to �nd

that the member(s) of that group are no longer within communication range. How drastic

this e�ect is will depend on the density of the particular scenario as well as the speed of

the nodes in question. When considering node density, the positive e�ect from the merge

messages should be proportional to the density of the network. That is, the denser the net-

work, the greater the number of nodes that can be noti�ed of a merge detection/decision.

We will examine both of these issues experimentally later in the paper.

5. SIMULATION SETUP
Before presenting the actual evaluation results (Section 6), we provide preliminary infor-

mation on the GMAC con�gurations tested, the topologies used, the metrics considered, as

well as the simulator itself.

5.1. GMAC Configurations
In order to facilitate discussion of GMAC’s behavior with various alternatives switched

on or o�, we will analyze several speci�c combinations of behaviors, called con�gurations.
Table I presents a comprehensive list of our con�gurations.

— Active: The default GMAC behavior, as described in Sections 2, 3, and 4.

— Passive: A con�guration using passive detection, rather than active, with pl �0.17%, as

described in Section 4.1.2.

— Active+Cluster: Active detection augmented by cluster tags (relation
c
�, Section 4.2.2)

in order to make consistent merge decisions. The only cost of cluster tags is an additional

3 bytes in the message.

— Active+Cluster+Notify: The same as Active+Cluster, but nodes do not immediately

merge into a newlydiscovered group, rather theywait one round in order to send amerge

message (Section 4.3.1) to their neighbors. This noti�cation adds a cost of an additional

2 bytes in the message.

— Active+Cluster+Listen: The same as Active+Cluster, but nodes do not immediately

merge into a newly discovered group, rather they listen for a whole round in order to

discover the best cluster tag in range (Section 4.1.3). The cost of listen-before-merge is the

energy of up to one full round in receive mode each time a node detects a new cluster.

— Active+Cluster+Notify+Target: This con�guration combines active detection, cluster

tags, merge messages, and targeted join messages. The idea of targeting join messages

Table I: GMAC con�gurations investigated

Name Abbreviation Synchronization Aspect Section

Active Detection Active Detection 4.1.1

Passive Detection Passive Detection 4.1.2

Listen before Merge Listen Detection 4.1.3

Target Join Messages Target Detection 4.1.4

Cluster Tags Cluster Decision 4.2.2

Notify on Merge Notify Noti�cation 4.3.1

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:15

Table II: Network sizes investigated

Nodes Area (m2
) Node Density (node/m2

)

100 ≈ 100, 000 (316m × 316m) ≈ 0.001
500 ≈ 500, 000 (707m × 707m) ≈ 0.001

1000 1, 000, 000 (1000m × 1000m) 0.001
4000 4, 000, 000 (2000m × 2000m) 0.001

was introduced in Section 4.1.4. The targeted join message has no additional cost, since

the join message would have been sent anyway.

5.2. Topology
To better assess the strengths and weaknesses of the various con�gurations, we investi-

gate the e�ect of topology on group merging. In particular, we look at network size and

node mobility. We investigate a number of mobile scenarios, created using the BonnMo-

tion [Aschenbruck et al. 2010] framework. We selected three (Gauss-Markov, Random Walk,
and Reference-Point Group Mobility) of the fourteen mobility models provided by BonnMo-

tion and generated traces of several sizes, shown in Table II (for detailed parameters, see

Table V inAppendix B). Notice that in all caseswe ensure that the scenarios have an average

node density of one node per thousand square meters (
1node

1000m2), in order to increase com-

parability between results from various models. With the same goal, we also use similar

movement speeds (i.e., a maximum of 5 m
s , unless otherwise stated) and other parameters

across all three scenarios.

With respect to density, in particular, we vary it by varying the transmission power for all

nodes in the network on a per-run basis, e�ectively varying the average number of neigh-

bors per node. We use the term transmission density to denote the average number of neigh-

bors per node. Table VI in Appendix B lists the simulated transmission powers we use,

along with the associated transmission range, transmission area, and transmission density

for each.

5.3. Simulator
OMNeT++ ([Varga and Hornig 2008], [Weingartner et al. 2009]) is an open-source discrete

event simulator, and the MiXiM extensions ([Köpke et al. 2008]) provide a framework for

wireless and mobile networking simulations. The OMNET++ platform is expressive, ef-

�cient, modular, and the de facto simulation environment for mobile ad hoc and sensor

networks, while MiXiM provides support for mobility and wireless network protocols.

In addition to modules implementing the GMAC protocol itself, we also designed our

own OMNeT++ modules to represent the clocks found in our sensor nodes. OMNeT++

keeps track of the global simulation time, t, while the clock module for an individual node

i computes the local time, ti . A node’s local time is based on its own clock’s frequency o�-

set (fi) and phase o�set (pi), provided as OMNeT++ simulation parameters. Thus, i can
compute ti � (t × fi) + pi . A node’s phase o�set determines the length of time between

the global start of the simulation and the start of that particular node. The frequency o�-

set determines how much faster or slower than simulation time a node’s clock runs. Un-

less otherwise speci�ed, the clock at each node, i, will use a random frequency multiplier

0.99998 < fi < 1.00002, i.e., ±20 parts per million. It is the di�erences in this local clock

frequency o�set that cause the simulated nodes to want to drift apart.

One weakness of this model is that we do not account for potential temperature dif-

ferences experienced by nodes throughout the network. Ambient temperature is one of

the largest in�uences of variability in electronic timing hardware. Nevertheless, such

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:16 S. Voulgaris et al.

temperature-based variability in the clocks should not signi�cantly a�ect the median algo-

rithm, since it is insensitive to a node’s historical clock rate. That is, the median algorithm

considers only the instantaneous timing o�set amongst its neighbors, so the fact that its

own (or its neighbor’s) clock was running at a slightly di�erent rate a minute ago should

not a�ect the functionality of the algorithm. This is demonstrated in Section 7 by the opera-

tion ofGMAC in a conference venuewithmultiple rooms of (presumably) di�erent ambient

temperatures.

5.4. Performance Metrics
Nodes report two important pieces of data at the beginning of each new round, r. Each sim-

ulated node i logs the global simulation time, tr,i , it began round r, as well as its current

cluster tag, cr,i . Using the logged timing data, we can see not only which nodes are synchro-
nized to which other nodes (i.e., whether their active periods overlap), but how tightly they
are synchronized (i.e., how much their active periods overlap). Through the recorded clus-

ter tags, we can determine which nodes think they are synchronizedwith which other nodes.

In addition to time and cluster tag, each node i records its (x , y) position at the start of

the round, xr,i and yr,i . Nodes also log a number of packet-level statistics, like the number

of sent and received packets (both application and join packets), number of collided pack-

ets, and the number of attenuated packets (those lost due to weak/distant transmission

signals).

Given these measurements, we derive the following three metrics to quantitatively eval-

uate both the default GMAC protocol, as well as our suggested modi�cations to it:

— Local synchrony: In order to get a measurement of local synchronization, we compute

the standard deviation of start times amongst the direct (1-hop) neighbors of each node.

That is, for each logged round, r, and for each simulated node, i, we compute the set of

neighbor nodes (including i itself), Nr,i , and then compute the standard deviation of the

round start times within that set,

{
tr, j : j ∈ Nr,i

}
. This gives us a measure of the variabil-

ity in the synchronization for each local neighborhood. By averaging this result across

all nodes in the simulation, we can see how network-wide synchronization progresses

during a simulated run. We denote this local standard deviation as λr .
As λr is measured in seconds, it is important to put it in perspective relative to a sim-

ulated node’s “hardware” timing. As with the real hardware (see Appendix A), a sim-

ulated broadcast takes about 300µs, a full communication slot lasts about 850µs, and
a full active period (8 slots) has a duration of approximately 7000µs. Nodes can poten-

tially communicate if their active periods overlap even slightly, but wewould prefer their

active periods to be perfectly aligned. We consider a local neighborhood to be synchro-

nized if the nodes are o�set by at most one communication slot. As such, we choose

λr ≤ 300µs to be the point where we consider a network to be tightly synchronized.

If the standard deviation is 300µs, then 99.7% of the contributing round start times are

within three standard deviations (i.e., 900µs), or approximately the duration of one com-

munication slot. We select λr ≤ 2000µs to be the point where we consider a network to

be loosely synchronized. Again, a standard deviation of 2000µs implies that almost all

node neighborhoods are synchronized to within 6000µs.
Note that this measurement is more meaningful in static scenarios, where a node will

have persistent neighbors, than in mobile scenarios, where a node’s neighborhood will

be constantly changing. Thus, the more mobile the nodes, the more we need to focus on

tight global synchronization.

—Global synchrony In order to evaluate the degree of synchronization across the entire

network, we compute the global standard deviation, σr , of reported start times for round

r across all nodes. We compute σr as above with λr , but Nr,i is always the set of all nodes.
As such, when σr is also within the bounds described for λr , then we can be con�dent

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:17

that the network is synchronized at a global level. This is extremely important in the

mobile scenarios, where tight local synchronization but a lack of global synchronization

could pose a problem.

—Network synchronization It is useful to be able to condense an entire simulated run

down to just a single metric in order to easily compare the e�ect of di�erent parameters

on the execution. We consider one such metric to be the number of nodes that are mu-

tually synchronized. As we study networks of di�erent sizes, it makes sense to compute

the percentage of mutually synchronized nodes. For the purposes of this metric, we consider

a set of nodes to be synchronized when the di�erence between the largest and smallest

reported times for round f is less than δ � 12ms. Here we take δ to be a hard limit on the

maximum timing o�set within a group of synchronized nodes. This value represents 1.7
active periods, indicating that there should be at least some overlap between the active

periods of all nodes in this range. To compute this percentage, we sort all of the nodes’

logged timestamps for round f , �nd the largest cluster of results that falls within the

window of length δ, and divide the size of this cluster by the total number of simulated

nodes.

6. EVALUATION
Our evaluation of GMAC synchronization and our proposed improvements follows the

order in which they have been described throughout the paper. That is, it is split up in

stability and convergence analysis.
In stability analysis (Section 6.1), we explore GMAC’s capability at maintaining synchro-

nization. More speci�cally, we investigate synchronization performance with respect to �ve

factors: (i) node density, (ii) active period length, (iii) node velocity, (iv) network diameter,

and (v) broadcast channel reliability.

In convergence analysis (Sections 6.2-6.4) we explore GMAC’s capability to merge sync-
groups, through the proposed techniques for (i) detection and (ii) decision. All techniques

are combined to demonstrate their performance in large networks of 4000 nodes (Sec-

tion 6.5).

All results are generated by simulating each GMAC con�guration eight times, each it-

eration with a di�erent random seed. The lines plotted represent an average across these

eight repetitions of the same con�guration.

6.1. Maintenance
We evaluate how well GMAC maintains synchronization in static and mobile scenarios

by simulating a network that is initially perfectly synchronized. That is, all nodes begin

execution at the same time in the SYNCHRONIZED state (Section 3.1).

We assess the level of synchronization based on the local and global synchrony metrics,

as de�ned in Section 5.4. More speci�cally, we record and plot the standard deviation of

round start times, λr and σr , at the beginning of each round. As the nodes are initially

synchronized, all graphs start with λ0 � σ0 � 0. Two dashed horizontal lines at y � 2000µs
and at y � 300µs have been added on all graphs, to indicate the thresholds explained

previously.

6.1.1. Effect of node density. In Fig. 5 the upper set of graphs presents the local standard

deviation λr , while the lower part presents the global standard deviation σr . In the left-

most and middle graphs we see the performance of the median algorithm on randomly-

deployed static topologies of 100 and 1000 nodes, respectively, while the right-most graphs

depict the performance on a 1000-node mobile scenario.

In the static random deployment of 100 nodes we can immediately see that node density

has a direct e�ect on synchronization maintenance. Low-density topologies (lighter lines)

are far more susceptible to clock drifts, failing to preserve an initially perfect synchroniza-

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:18 S. Voulgaris et al.

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

lo
c
a
l
s
td

 d
e

v
,

λ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000

round

Static (random), 100 nodes

 0 1000 2000 3000 4000 5000 6000

round

Static (random), 1000 nodes

 0 1000 2000 3000 4000 5000 6000

round

Random Walk, 1000 nodes

0.25 nbrs
1 nbr

4 nbrs
12 nbrs
24 nbrs
48 nbrs

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a

l
s
td

 d
e

v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000

round

Static (random), 100 nodes

 0 1000 2000 3000 4000 5000 6000

round

Static (random), 1000 nodes

 0 1000 2000 3000 4000 5000 6000

round

Random Walk, 1000 nodes

Fig. 5: Maintenance performance on several static and mobility (random walk) scenarios.

From lighter to darker lines: 0.25, 1, 4, 12, 24, and 48 average neighbors per node.

tion, contrary to high-density topologies (darker lines) that manage to keep nodes tightly

synchronized.

To explain this recall that GMAC compensates for clock drift by leveraging exchanged

packets to continuously readjust node clocks through the median algorithm (Section 3.2).

In low-density topologies the network is split into several disjoint subnets, e�ectively sup-

pressing themedian algorithm, forcing the network to gradually dissolve into disjoint sync-

groups as node clocks drift apart. This is not an issue for high-density topologies.

Note that at a middleground density of 12 neighbors per node on average, the network

is very tenuously connected resulting in loose synchronization right on the borderline of

what we consider acceptable. As 12 neighbors per node is only an average value, there are

nodes with a very small number of neighbors, which stay barely synchronized to the rest.

Averaging data with very di�erent orders of magnitude (due to weakly-connected nodes’

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40

degree

Transmission density 01

 0

 50

 100

 150

 200

 250

 0 10 20 30 40

degree

Transmission density 04

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40

degree

Transmission density 12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40

degree

Transmission density 24

Fig. 6: Degree distributions for the static topology of 1000 nodes.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:19

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

 0 1000 2000 3000 4000 5000 6000

σ
r
 (

a
c
ti
v
e
 p

e
ri
o

d
s
)

round

yaxis template

0

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 01

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 12

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 48

2 slots
4 slots
8 slots

16 slots
32 slots
64 slots

Fig. 7: E�ect of active period length on synchronization maintenance. Random walk, 1000

nodes. From lighter to darker lines: active period of 2, 4, 8, 16, 32, and 64 slots.

sensitivity on random variations in timing, slot selection, etc.) across di�erent runs, results

in the spikes observed on the respective plots.

In the middle graphs, we show the results of testing our protocols on a larger static ran-

domdeployment, this timewith 1000 nodes. Increasing the scale of the network by an order

of magnitude does not change the results by much. In fact, they look remarkably similar. In

the larger network, however, a density of 12 is no longer su�cient for GMAC to maintain

synchronization. The larger network sizemeans that there can bemore and larger sparse re-

gions in the topology, balanced by regions of higher density elsewhere. Fig. 6 shows the de-

gree distributions of this 1000-node static random deployment. For a transmission density

of 12, there are a few nodes with degrees below four, notably one node without neighbors.

We can also see from the results that, even at a transmission density of 24 nodes, GMAC

struggles to keep all nodes tightly synchronized. The periodic synchronization behavior

at this density appears to be caused by a group of nodes weakly connected to the main

component. A few “unfortunate” scheduling decisions leading to message collisions can

allow these nodes to drift out of sync with the rest of the network, apparent as bumps in

the plot. In both 100- and 1000-node topologies, it is only the transmission density that has

any signi�cant e�ect on the results.

Finally we look at GMAC’s behavior in a network of mobile nodes in the right-most plots

of Fig. 5. The di�erence in the performance between static and mobile networks is striking.

It is clear that GMAC achieves far superior results on a dynamic network topology com-

pared to static topologies. The median algorithm maintains the initial synchronization for

all tested transmission densities, with the exception of the lowest setting of 0.25. Allow-

ing the nodes to move has an e�ect similar to increasing the density, because it increases

the number of neighbors a node will see in a given duration, e�ectively giving the median

algorithm a chance to repair clock drifts.

As seen in all subplots of Fig. 5, the di�erences between σr and λr are the magnitude of

the deviation, not the behavior over time. From the above results, we can clearly see that

the global standard deviation follows the same pattern as the local standard deviation. This

is expected, and for this reason, we present only the global standard deviation (that is, σr)
from now on.

6.1.2. Active period length. Asmentioned in Section 2.2, GMAC’s default slot allocation strat-

egy de�nes an active period of 8 slots. For scenarios where the anticipated node density is

high, though, nodes may have to be con�gured with more active slots to prevent excessive

collisions. Although sporadic successful transmissions are usually su�cient to maintain

synchronization, excessive collisions may severely hinder an application’s data transfer. It

is, therefore, interesting to explore the e�ect of the active period length on synchronization

stability.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:20 S. Voulgaris et al.

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a
l
s
td

 d
e
v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 01

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 12

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 48

1m/s
2m/s
3m/s

4m/s
5m/s

10m/s

Fig. 8: E�ect of node velocity on synchronization maintenance in 1000-node network with

8 active slots. From lighter to darker lines: 1, 2, 3, 4, 5, and 10m/s node speed.

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a

l
s
td

 d
e

v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 01

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 12

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 48

0.1m/s
0.2m/s
0.5m/s

1m/s
2m/s
5m/s

Fig. 9: E�ect of node velocity on synchronization maintenance in 100-node network with

64 active slots. From lighter to darker lines: 0.1, 0.2, 0.5, 1, 2, and 5m/s node speed.

We carried out experiments for the random walk scenario of 1000 nodes. Fig. 7 presents

the global standard deviation, σr , for active periods ranging from 2 to 64 slots. Note that

we use 1 active period as the y-axis unit, rather than 1µs, as the synchronization metric σr is
meaningful only as a fraction of the active period. As explained in Section 5.4, a standard

deviation equal to one third of the active period means that 99.7% of the nodes are loosely

synchronized within an active period’s time, that is, their active periods overlap at least a

bit. Thus, we plot a dashed horizontal line at y � 1/3×active period, to visually distinguish
loosely synchronized networks (below that line) to nonsynchronized ones.

As intuition suggests, the longer the active period (darker lines) the easier it is for nodes

to stay in sync. This is a trend we consistently observe for all transmission densities we

considered, namely 1, 12, and 48 neighbors per node on average. As a result, low active

period con�gurations fail to maintain synchronization in sparse topologies.

Given these results, we adopt the default active period of 8 slots for the rest of our evalua-

tion, resting assured that any higher value will only perform better with respect to stability.

6.1.3. Effect of node velocity. As nodemobility has an evident (positive) impact on node syn-

chronization, we inquire the speci�c e�ect of node speed to it. In the set of experiments

presented in Fig. 8 we explore six di�erent mobility scenarios, where all nodes move con-

tinuously at a �xed speed in randomdirections, based on the randomwalkmobilitymodel.

Nodes’ speed is constant in each experiment, and ranges from 1 to 5m/s, as well as 10m/s.

The three plots correspond to transmission densitites of 1, 12, and 48 average neighbors per

node.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:21

As expected, higher-velocity scenarios (darker lines) have a clear advantage over lower-

velocity ones. As explained earlier, mobility allows nodes to contact a more diverse set

of other nodes, compensating for a sparse topology. Essentially, we are witnessing a clear

correlation between mobility and density, in the sense that both have a positive e�ect on

maintaining synchronization. It is not the number of neighbors a node has at a given mo-

ment that determines synchronization, but rather the number of contacts a node can make

per time unit, irrespectively of whether this is due to network density or node mobility.

Fig. 9 illustrates the e�ect of node velocity for a di�erent network setting,which better ap-

proximates our real experiment presented in Section 7. First, we are dealing with a smaller

network of 100 nodes. Second, GMAC is con�guredwith an active period of 64 slots. Hence,

the two dashed horizontal lines have been placed at y � 16000µs and at y � 2400µs to

indicate synchronization thresholds for this longer active period. Finally, node speeds are

not constant, but range from zero to a maximum speed, the maximum speed being 0.1, 0.2,

0.5, 1, 2, and 5m/s. The lower speeds better approximate a human crowd in a conference

event. The plots illustrate the precise same e�ect as that of Fig. 8: the higher the node speed

the easier the maintenance of synchronization.

6.1.4. Effect of network diameter. In this set of experiments we explore the e�ect of network

diameter on maintaining synchronization. To limit the number of parameters, we focus

on a network of 1000 nodes following the random walk mobility model. To allow for a

fair comparison, we �x the playground area’s size for all experiments, but we �uctuate its

aspect ratio from1:1 to 100:1. Table III lists the aspect ratios investigated and their associated

dimensions. Each playground setting is annotated with the estimated diameter for each

transmission density considered, computed based on the playground’s diagonal length and

the respective transmission range.

Table III: Playground aspect ratios investigated

Aspect ratio Dimensions (m2
)

Approx. diameter (hops)
TX dens. 4 TX dens. 12 TX dens. 24

1 : 1 1000m × 1000m 39 22 16
2 : 1 1414m × 707m 44 25 18
5 : 1 2236m × 447m 63 36 26
10 : 1 3162m × 316m 89 51 36
50 : 1 7071m × 141m 198 114 80

100 : 1 10000m × 100m 280 161 114

We notice a clear e�ect of the network diameter on node synchronization. The longer the

diameter (higher aspect ratio – darker lines), the worse the synchronization. This behavior

comes as no surprise, as propagating (and healing) the e�ect of diverging clock drifts is

expected to be harder when more hops have to be crossed.

6.1.5. Effect of broadcasting reliability. Finally, we explore synchronization stability in the face

of unreliable communication. We reran the 1000-node random walk experiments, but this

time inducing a uniform random packet drop rate of up to 80%.

Fig. 11 presents the results of these experiments, demonstrating the striking resilience

of the median algorithm (Alg. 1) on packet loss. Although our induced packet drop rate

reaches values as high as 80%, we observe that this has hardly any noticeable e�ect on

synchronization stability, both for sparse and dense topologies. This is attributed to the fact

that keeping nodes in sync requires only occasional communication among them to even out

their clock drifts.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:22 S. Voulgaris et al.

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a
l
s
td

 d
e
v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 04

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 12

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 24

1:1
2:1
5:1

10:1
50:1

100:1

Fig. 10: E�ect of network diameter on synchronization maintenance on a mobile (random

walk) network of 1000 nodes. From lighter to darker lines: 1:1, 1:2, 1:5, 1:10, 1:50, 1:100

playground aspect ratio.

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a

l
s
td

 d
e

v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 04

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 12

 0 1000 2000 3000 4000 5000 6000

round

Transmission density 24

error-free
drop 20%
drop 40%
drop 60%
drop 80%

Fig. 11: E�ect of average broadcasting reliability on synchronization maintenance on a mobile

(randomwalk) network of 1000 nodes. From lighter to darker lines: 0%, 20%, 40%, 60%, and

80% packet drop rate.

On a side note, this also sheds some light on why our scenarios of high density still

manage to keep in tight synchronzation, despite the increased number of collisions.

6.2. Detection
Aswe have chosen complete network convergence as our goal, we should ensure that detec-

tion of other synchronized groups happens quickly, but also with as little energy expendi-

ture as possible.Herewe evaluate both the active andpassivemethods of detection by arti�-

cially creating two already synchronized groups. We are interested in only two syncgroups

because we want to eliminate the possibility of nondeterminism in GMAC’s timing-based

decision relation,
t
� (Section 4.2), obscuring our evaluation of the detection mechanism.

The �rst syncgroup is composed of a single node, node 0, while the second syncgroup is

composed of the rest of the nodes in the simulated network. Both groups start, indepen-

dently, in the SYNCHRONIZED state. The large group begins executing at t � 0.5s, while node

0 begins at a random time 0s < t ≤ 1s. We choose a random start time for the singleton

group in order to vary which group is superior according to
t
�. In runs where node 0 starts

up before the synchronized group, the large group will be forced to merge with node 0. In

contrast, in runs where node 0 starts after the other nodes, node 0 must detect the other

group and merge with it. As above, we perform our experiments using the same variety of

static andmobile topologies, and at several di�erent transmission power settings. Ourmain

metric to evaluate detection will again be the standard deviation of round start times, σr .

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:23

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a
l
s
td

 d
e
v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE (static, 500 nodes)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

PASSIVE (static, 500 nodes)

16 nbrs
24 nbrs
32 nbrs
48 nbrs

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a

l
s
td

 d
e

v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE (static, 1000 nodes)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

PASSIVE (static, 1000 nodes)

Fig. 12: EvaluatingGMAC’s detectionmechanisms in static networks. From lighter to darker

lines: transmission density of 16, 24, 32, and 48 neighbors per node on average.

Note that we carefully implemented active and passive detection to have (nearly) identical

energy costs, so that we can compare the two purely on performance.

The twoGMAC con�gurations wewill examine here are Active and Passive. Both con�g-

urations succeed in synchronizing the 100-node topologies, both static and mobile, so we

do not present those results here.We instead look at the 500-node and 1000-node networks.

In Fig. 12, we present the results of the static topologies. We see on the left side that using

active detection quickly leads to tight synchronization at the three highest density settings,

but can achieve only loose synchronization at the lowest investigated density. Clearly den-

sity is a determining factor in not only whether synchronization will succeed or not, but

also in what bounds can be achieved. Passive detection, on the other hand, takes several

times longer to converge, while it does not reach equally good synchronization for the two

least dense scenarios.

As in our evaluation of synchronization maintenance, detection performs signi�cantly

better too in the case of mobile topologies, seen in Fig. 13. As nodes move around the sim-

ulated area, they directly exchange messages with a much larger number of nodes than in

a static scenario. This allows synchronization information to propagate via physical move-

ment as well as by radio communication, and lends a strong performance bene�t. Further-

more, the e�ects of transmission density are less pronounced in the mobile scenarios. Us-

ing active detection (left side of Fig. 13), GMAC synchronizes both the 500- and 1000-node

networks within about 1000 rounds. Passive detection (right side of Fig. 13), while also suc-

cessful, takes four to six times as long to synchronize the same network. Finally, mobility

has also remedied the strange passive detection behavior where higher density topologies

can take longer to synchronize than lower density ones.

Note that the observed detection performance appears to be very poor even in the best

case of Active con�gurations, taking around 1000 rounds (∼16 minutes) to reach synchro-

nization. This is indeed the default GMAC behavior, due to the fact that each node is es-

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:24 S. Voulgaris et al.

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a
l
s
td

 d
e
v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE (Random Walk, 500 nodes)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

PASSIVE (Random Walk, 500 nodes)

16 nbrs
24 nbrs
32 nbrs
48 nbrs

10
1

10
2

10
3

10
4

10
5

 0 1000 2000 3000 4000 5000 6000

g
lo

b
a

l
s
td

 d
e

v
,

σ
r
 (

µ
s
)

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE (Random Walk, 1000 nodes)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

PASSIVE (Random Walk, 1000 nodes)

Fig. 13: Evaluating GMAC’s detection mechanisms in mobile networks. From lighter to

darker lines: transmission density of 16, 24, 32, and 48 neighbors per node on average.

sentially left to discover other syncgroups and merge with them on its own. Our proposed

improvements leverage—among other points—the synchronization of existing syncgroups

to speed merges up, bringing them down by one to two orders of magnitude to ∼1 minute,

as demonstrated in the following sections.

6.3. Decision
To examine the decision aspect of merging, we study networks under an asynchronous ini-

tialization. In these simulations, we create the conditions for a chaotic network start. All

nodes start unsynchronized and must initially detect their neighbors in order to form local

syncgroups. The better syncgroups, determined by the relation �, will continue to grow in

size as nodes discover neighbors in superior syncgroups and decide to merge with them. By

measuring what percentage of the nodes have synchronized (to a common active period)

as the simulation progresses, we can see the e�ects of deterministic decisions made by the

nodes. For each round, we count the percentage of synchronized nodes as described in Sec-

tion 5.4. The GMAC con�gurations we will examine here are Active and Active+Cluster.

Aswe are interested in networks of large scale, we focus our evaluation of decisionmech-

anisms on mobile 1000-node topologies. In Fig. 14 we compare side-by-side GMAC’s per-

formance based on the default timing-based decision relation
t
� (left), and the improved

cluster tag-based relation
c
� (right). It is evident that the timing-based algorithm fails to

converge, as nodes cycle between di�erent syncgroups. The cluster tag-based algorithm,

however, quickly converges the entire network to a single active period at all but the lowest

transmission densities in Gauss-Markov topologies.

The failure of the reference-point group mobility trace to maintain the whole network

synchronized in the long run is attributed to the fact that this mobility trace lends itself to

physically isolated groups of nodes.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:25

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a

lly
 s

y
n

c
h
r.

 n
o

d
e

s

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE (Gauss-Markov, 1000 nodes)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE+CLUSTER (Gauss-Markov, 1000 nodes)

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a
lly

 s
y
n

c
h

r.
 n

o
d

e
s

round

y-axis template

0

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE (Ref.-Point Group Mob., 1000 nodes)

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

round

ACTIVE+CLUSTER (Ref.-Point Group Mob., 1000 nodes)

0.25 nbrs
0.5 nbrs

1 nbr
2 nbrs

4 nbrs
8 nbrs

16 nbrs

Fig. 14: Evaluating GMAC’s decision mechanisms in mobile networks.

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a
lly

 s
y
n

c
h

r.
 n

o
d

e
s

round

y-axis template

0

 0 400 800 1200 1600

round

ACTIVE (RW)

 0 400 800 1200 1600

round

ACTIVE + CLUSTER (RW)

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+NOTIFY (RW)

2 nbrs
4 nbrs
8 nbrs

16 nbrs
32 nbrs

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u
tu

a
lly

 s
y
n
c
h
r.

 n
o
d

e
s

round

y-axis template

0

 0 400 800 1200 1600

round

ACTIVE (RPG)

 0 400 800 1200 1600

round

ACTIVE + CLUSTER (RPG)

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+NOTIFY (RPG)

2 nbrs
4 nbrs
8 nbrs

16 nbrs
32 nbrs

Fig. 15: Evaluating noti�cation mechanisms in mobile networks.

To examine the noti�cation aspect of merging, we will again make use of asynchronous

initialization scenarios. We look at simulations similar to those as above, but this time with

an eye to the performance of the merge messages optimization.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:26 S. Voulgaris et al.

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a

lly
 s

y
n

c
h
r.

 n
o

d
e

s

round

y-axis template

0

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+LISTEN (RW)

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+TARGET (RW)

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+NOTIFY+TARGET

2 nbrs

4 nbrs

8 nbrs

16 nbrs

32 nbrs

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a
lly

 s
y
n

c
h

r.
 n

o
d

e
s

round

y-axis template

0

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+LISTEN (RPG)

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+TARGET (RPG)

 0 400 800 1200 1600

round

ACTIVE+CLUSTER+NOTIFY+TARGET

2 nbrs

4 nbrs

8 nbrs

16 nbrs

32 nbrs

Fig. 16: A look at the performance of further proposed improvements to GMAC’s detection

behavior, 1000-node mobile networks

In Fig. 15, we see the performance of Active (for reference), Active+Cluster (without

merge messages), and Active+Cluster+Notify (with merge messages). The top graphs de-

pict the random walk mobility pattern we have seen throughout this section. The addition

of merge messages (top right plot) allows the network to converge in an average of just

over 100 rounds for a density of 32 neighbors per node, while the con�guration without

merge messages (top middle) takes more than three times as long. It is interesting to note

that, with merge messages, the percentage synchronized line becomes almost vertical at

high densities. This is because the merge messages greatly reduce the chance of nodes be-

ing “left behind” as the other nodes in their group detect a better group and merge into it.

This e�ect is seen in the much more gradual slope of the results without any noti�cation

method on the left. The e�ect is also strongly tied to a node’s transmission range, as the

results for lower densities re�ect little improvement. The bottom graphs show the behavior

on nodes following the reference-point group mobility pattern. This mobility trace keeps

nodes in tight physical groups that move in reference to a common point. The e�ect on

the synchronization behavior is clear, as this pattern restricts interactions between nodes to

mainly those in the same reference point group. Only when these groups cross paths are

there opportunities for synchronization information to pass between them. The results for

this mobility model also show a strong correlation with the network density, as the e�ect

of the merge messages is more pronounced at high density. There is a cost to these merge

messages, however, of an additional two bytes in the MAC message header, to store the

o�set of the new syncgroup.

6.4. Detection revisited
Two of our detection optimizations, listen-before-merge and targeted joinmessages, should

be far more e�ective if combined with cluster tags. For that reason, we revisit the is-

sue of detection here, this time, however, using an asynchronous start in order to allow

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:27

for more syncgroups to be established. We study the behavior of Active+Cluster+Listen,

Active+Cluster+Target, Active+Cluster+Notify+Target to see whether we can improve

syncgroup detection even further.

The performance of these con�gurations is depicted in Fig. 16, which can be seen as an

extension to Fig. 15 presented above. We �nd the results of the listen-before-merge op-

timization (left plots) to be disappointing, especially considering the energy cost of this

behavior. Listening for an entire round costs about the same as sending 600 join messages,

quite expensive indeed. The performance is comparable, but inferior, to that provided by

targeted join messages. However, the targeting does not imply any additional radio time

and thus no additional energy cost, making it the superior choice.

Targeted join messages (middle plots – Section 4.1.4), however, o�er a notable perfor-

mance bene�t, particularly at high transmission density. The reason for this is that this op-

timization balances out the asymmetric decision behavior. That is, nodes would normally

ignoremessages from inferior clusters. Targeting joinmessages allows us to e�ectively dou-

ble the detection probability bymaking the process symmetric. Aswehave seen throughout

this section, the e�ect of the optimizations is limited by the density of the network. The bet-

ter connected the network topology, the less bene�t a�orded by the targeting. The results

for the reference point group mobility (lower plots) also show a stronger performance in-

crease at high densitywhen using the targeting behavior. However, the performance bene�t

quickly diminishes or disappears entirely at lower densities.

The right plots of Fig. 16 show the performance of the combination of merge messages

with target joins. This is clearly the optimal of our proposed con�gurations, therefore it con-

stitutes the recommended con�guration for deploying sensor networks based on GMAC.

6.5. Larger networks
As we have emphasized several times, our chief interest is scalability. As sensor nodes con-

tinue to fall in price, very large-scale networks will become economically feasible. Thus,

we end the discussion of our simulated results focusing in that direction. The only signif-

icant di�erence between these experiments and those described earlier is in the number

of simulated nodes. We still look at the same mobility patterns, but here we observe the

behavior of 4000 nodes. We will again look at an asynchronous initialization, since this

type of scenario presents a worst-case for network-level synchronization. Because running

and processing these simulations are quite demanding, we look at only three transmis-

sion density settings (2, 8, and 32) and two GMAC con�gurations (Active+Cluster and

Active+Cluster+Notify+Target).

In Fig. 17, we present results for all three mobile topologies. We can see that the re-

sults for the Gauss-Markov mobility pattern (top) and those for random walk (middle)

are very similar. Both of these mobility patterns lead to network topologies with relatively

uniform node density. This can be seen in the results, as the percentage of synchronized

nodes follows a smooth line. The results of the reference point groupmobility pattern (bot-

tom) present a more bumpy and irregular pattern. As mentioned previously, this type of

mobility manifests a much less uniform node density as groups of nodes move together

around their common reference points. Nevertheless, both tested con�gurations manage

to converge all three simulated deployments at transmission densities 8 and 32. The uni-

formity of the Gauss-Markov and random walk topologies provide the best setting for the

Active+Cluster+Notify+Target con�guration to outperform the simpler Active+Cluster

con�guration. The left-hand graphs show the behavior of Active+Cluster, which reaches

100% synchronization in about 500 rounds at density 32 and 1000 rounds at density 8, on

both topologies. The right-hand side shows that the addition of merge messages and join

message targeting reduces the time required to about 80 and 400 rounds, respectively. Sim-

ilar, though less dramatic, improvement is seen with the reference point group mobility

pattern as well, but GMAC’s performance is limited by the lower connectivity of the net-

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:28 S. Voulgaris et al.

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a

lly
 s

y
n

c
h
r.

 n
o

d
e

s

round

y-axis template

0

 0 500 1000 1500 2000 2500 3000

round

ACTIVE + CLUSTER (GM)

 0 500 1000 1500 2000 2500 3000

round

ACTIVE + CLUSTER + NOTIFY + TARGET (GM)

2 nbrs
8 nbrs

32 nbrs

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a
lly

 s
y
n

c
h

r.
 n

o
d

e
s

round

y-axis template

0

 0 500 1000 1500 2000 2500 3000

round

ACTIVE + CLUSTER (RW)

 0 500 1000 1500 2000 2500 3000

round

ACTIVE + CLUSTER + NOTIFY + TARGET (RW)

0%

20%

40%

60%

80%

100%

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
u

tu
a
lly

 s
y
n

c
h

r.
 n

o
d

e
s

round

y-axis template

0

 0 500 1000 1500 2000 2500 3000

round

ACTIVE + CLUSTER (RPG)

 0 500 1000 1500 2000 2500 3000

round

ACTIVE + CLUSTER + NOTIFY + TARGET (RPG)

Fig. 17: GMAC at very large scale: 4000-node mobile networks.

work. Finally, we can see that our proposed improvements make little if any di�erence at

the lowest examined transmission density, regardless of the topology.

7. REAL-WORLD EXPERIMENT
In the course of our research, we have performed a number of real-world experiments. As

our primary goal is to design a set of networking protocols suitable for large-scale mobile

wireless sensor networks, real-world testing and experimentation are essential. Because

we are interested in highly scalable solutions, we must necessarily test our algorithms with

hundreds of nodes. Ideally we would be able to perform experiments with thousands of

nodes, but practicalities and costs of running experiments with thousands of people makes

such an approach at this stage infeasible. As such, we have performed much of our inves-

tigation via simulation. Part of the challenge of performing real-world experiments in the

domain of sensor networks lies in the e�ort involved in planning, preparing and execut-

ing experiments involving many individual wireless sensor nodes. Each device needs to be

independently charged, programmed and tested. After the experiment, we must re-collect

all the nodes, properly shut them down, and fetch the recorded log from each node indi-

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:29

vidually. The entire process is time consuming, cannot be automated, and is often plagued

by unforeseen problems, as discussed in [Langendoen et al. 2006].

Nevertheless, in October of 2012, we executed an experiment at the ICT Open conference

which took place in the World Trade Center in Rotterdam, The Netherlands. The confer-

ence lasted six hours and drew about 220 attendees, approximately 120 of which volun-

teered to participate in our experiment. Each of these volunteers was issued an electronic

badge node, consisting of a MyriaNed device, a plastic case, and a lanyard to allow it to

be worn around the neck. The participants were to wear the device for the duration of the

conference, while we provided real-time visualization of the topology of the network and,

afterward, an analysis of the “social mingling” of the participants. The goals of this experi-

ment were to perform a large-scale experiment successfully and visibly, to demonstrate our

work to the Dutch research community, and, most importantly, to capture accurate times-

tamps for analysis of real-world synchronization.

In this section we will describe the nodes, equipment, and software we used to perform

this experiment, explain the measurements we took during the experiment, describe the

preparation and setup of the venue, and �nally present the results we obtained.

7.1. Nodes and application
In this experiment we used MyriaNed V3 devices (see Appendix A) primarily as active
nodes (sometimes called badge nodes) in the network. An active node is worn by an at-

tendee of one of our experiments and is a full participant in the peer-to-peer GMAC net-

work. The secondary use of the MyriaNed nodes is as passive nodes, or sni�er nodes. A
passive node does not fully participate in the network and never broadcasts any messages.

The passive nodes are used to observe, in real-time, the message tra�c generated by the

active nodes. The data from the sni�er nodes can be routed to a central PC in order to

visualize the behavior of the network of badge nodes.

7.1.1. Active Nodes. The active nodes in this experiment executed theGMACprotocol using

the Active+Cluster+Notify+Target con�guration as described in Section 5.1. The only

di�erence is that the active nodes used a longer active period, sactive � 64. This was chosen

because the transmission range of the nodes is about 15 meters and so some smaller con-

ference rooms could result in 1-hop neighborhoods, too large for only 8 active slots. Using

this extended active period reduces the energy e�ciency of the nodes, but greatly reduces

the likelihood of a failed experiment due to too many collisions.

For this experiment, we designed a new application, called NeighborReport:
— The application takes advantage of GMAC’s gossiping protocol to share neighborhood

data items throughout the network.

— Each neighborhood data item includes the creator’s node ID (C), the round number in

which the neighbor nodeswere observed (r), and up to �ve node IDs thatwere neighbors

of C in round r. Node IDs are stored as 1-byte integers and round numbers as 2-byte

integers, so one neighborhood data item requires eight bytes.

—A node will include both a data item representing a sample of its own neighborhood for

the previous round and a recent data item from its cache.

The inclusion of a second data item serves to increase the speed at which data items spread

through the network. It also allows the sni�ers to gain insight into what is happening in

parts of the network that are not directly within their range. Data items created by nodes

far away can be carried into the range of a sni�er either by node mobility or multi-hop

propagation.

7.1.2. Sniffers. In order to inspect the operation of the network in real-time, we utilize a

second network of passive nodes. Each sni�er node is controlled by a host computer via

USB. The host computer logs the data and forwards it over Ethernet to a central PC that runs

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:30 S. Voulgaris et al.

Table IV: GMAC packet data

Name Type/Size Description

transmit slot 12-bit int slot index selected for transmission

magic number 20-bit int constant magic number for error detection

mac-level CRC 2-byte int cyclic redundancy check for error detection

cluster tag ID 2-byte int sending node’s cluster tag id
cluster tag epoch 1-byte int sending node’s cluster tag epoch
Round number 2-byte int sending node’s round number

merge tag ID 2-byte int

merge tag epoch 1-byte int i� non-zero: noti�cation of superior cluster (id, epoch)
with speci�ed slot o�set

merge o�set 2-byte int

app data 16 bytes application data

TOTAL 32 bytes

a visualization application. By observing the stream of gossiped data items, the visualizer

can reconstruct and display the topology of the network. In this experiment, we had only

three sni�er nodes, resulting in coverage of approximately only 30% of the main hall of the

conference venue.

In addition to the MyriaNed nodes that we use as sni�ers, we also employ a raw radio-

frequency sni�er device, called an RF sni�er for short. These devices use an FPGA and

high-speed processor to monitor a speci�ed frequency range. All radio-frequency data in

this band is captured, and the device attempts to parse packets from the incoming stream

of data. This is accomplished by matching the known header in GMAC packets, as well as

checking each message’s packet-level CRC to make sure the message is correct. The most

important aspect of this device is its high-precision clock, which allows the device to times-

tamp received packets with a granularity of 1µs (about 30 times �ner-grained than the

resolution of the clocks on the V3 nodes).

7.2. Measurements
We captured the measurements presented below from data recorded by the RF sni�er de-

scribed above. The RF sni�er allows us to capture messages sent by the active nodes, along

with a high resolution timestamp indicating the time the message was received. The ba-

sic packet format used by the active nodes is shown in Table IV. RF sni�er timestamps are

recorded as the number of microseconds that have elapsed since the device was started.

The RF sni�er device is connected via USB to a host PC that runs software designed to in-

terpret and parse the raw radio frequency data and log the parsed packet and timestamp

to disk. Much of this processing will eventually happen on the RF sni�er node’s internal

FPGA, as the software for this device matures.

Each message contains the sending node’s transmission slot number. Because a node al-

ways broadcasts itsmessage a �xednumber of clock ticks after the beginning of its transmis-

sion slot, we can compute the exact time the sending node started that round by subtracting

9 + (28 × TX_SLOT) V3 clock ticks (approximately 30µs each) from the packet reception

timestamp, where 9 ticks correspond to the �rst slot’s initial guard time, and 28 ticks are

the duration of an entire slot (see Fig. 1). We call this calculated time the node’s slot-0 time,

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:31

and it is the real-world equivalent of the timestamp logged by the nodes in the simulator.

By comparing the slot-0 times of all nodes from which the sni�er logged a message on a

per-round basis, we can evaluate how the network synchronization proceeds throughout

the experiment.

7.3. Setup
In this experiment, the layout of the venue prohibited us from achieving full coverage

with our sni�er nodes. The lobby of the World Trade Center is a wide, open-air area with

extremely high ceilings and very few locations to setup the sni�er nodes and laptops to

run them. As an alternative, we used a demonstration area for placing our sni�ers, which

proved to be convenient as this area was also used during the lunch and other breaks.

As with most conferences, the day was broken up into presentation sessions interrupted

by short break periods. This scenario provides a di�cult test-case for any synchronization

mechanism, since groups of nodes will be physically separated and unable to communi-

cate for large portions of the day. During these periods of separation, groups of nodes in

the same room will tend to stay synchronized with each other, but may drift apart from

the other nodes in di�erent rooms. When the participants (and the nodes) come together

again during the break periods, the synchronization protocols must allow a node to detect

other unsynchronized nodes in its vicinity, decide whether to merge with them or to wait

for them to merge with it, and �nally to notify its own neighbors of any decision. From

an experimental perspective, a multi-session conference is therefore an ideal scenario for

testing synchronization mechanisms.

7.4. Results
Although we were not able to convince a majority of the conference’s attendees to wear

one of our electronic badges, we considered the experiment to be a success. We had about

120 active nodes participating in a wearable sensor network, which was our second largest

experiment to-date. Most importantly, we were able to capture synchronization data dur-

ing periods of socialization and mingling, showing us how GMAC performs in real-world

scenarios with high mobility.

We present an example of the timing data recorded during the ICT Open experiment in

Fig. 18. Along the x-axis we show the round number, grouping receivedmessages based on

the round number in which they were sent. For each round number, we compute statistics

about the set of messages received during that round, just as with our simulated networks.

Because the nodes have a limited transmit range, a sni�er is able to capture only those

packets broadcast nearby, rather than all messages as in a simulator. In the bottom plot, we

show the number of logged messages for each round number. In the top plot, we show the

standard deviation of the slot-0 times of the senders, in microseconds. This is essentially

the σr measurement from Section 5.4. The dashed horizontal lines correspond to the syn-

chronization thresholds explained in Section 5.4, adjusted to re�ect a 64-slot active period.

The results presented here represent the entirety of the conference event. As can be seen in

the received packet counts, there were periods with very few nodes in the main hall (e.g.,

during the breakout sessions) and periods with many nodes in range of the RF sni�er (e.g.,

co�ee breaks between presentations). In this graph, we do not present rounds in which

zero or one packet was received, as we cannot compute a standard deviation. Nevertheless,

there were over 14000 roundswith two ormoremessages logged by the RF sni�er, covering

almost four of the six hour event.

These results are extremely positive, demonstrating that synchronization is working

properly. The results from this experiment indicate that nodes are generally synchronized

to within a standard deviation of < 10, 000µs (about 12 communication slots), almost all

of the nodes should be synchronized to within 30, 000µs (about 35 slots). Since we used

an active period of 64 slots (Tactive ≈ 54, 000µs) for this experiment, this strongly indicates

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:32 S. Voulgaris et al.

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 0 2000 4000 6000 8000 10000 12000 14000

g
lo

b
a
l
s
td

 d
e

v
,

 σ
r
 (

µ
s
)

round

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000 14000

c
o

u
n
t

round

Fig. 18: Timing results from the ICT Open experiment

that the active periods of all nodes overlap to a large degree, which in turn means commu-

nication amongst all participating nodes should be possible.

A second positive outcome of these results is that they validate our simulations, as they

are in accordance with our simulated experiments for a small network of slowly-moving

nodes with an active period of 64 slots, presented in Fig. 9. Despite inevitable precision

errors in timestamping (by the RF sni�er), and approximated modeling of radio propaga-

tion, interference, re�ections, etc., our simulations closely re�ect the real-world experiment

measurements. This con�rmation of the accuracy of our many simulated experiments is a

very important step in this research.

Finally, it should be noted that there are some outlying data points, indicating rounds

where all nodes were merging after being separated. The results show that these periods

are brief and nodes then return to global synchronization, just as seen in our simulations.

We also are quite con�dent in these results because the synchronization appears to be most

stable and reliable in the periods where there are many observed packets per round, rep-

resenting ten to twenty percent of the total nodes in the network.

8. RELATED WORK
Although amultitude ofMAC-layer protocols have been designed for a plethora of di�erent

target scenarios, to the best of our knowledge no work exists that exhaustively addresses

the issue of dynamically merging clusters independently synchronized to non-overlapping

schedules.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:33

Nevertheless, there is a wide range of work related to ours, which we subsequently

present organized in the following main families.

8.1. Synchronous, contention-based protocols
In this group, protocols split time in discrete synchronous slots, and let nodes compete for

each slot, without imposing any speci�c schedule.

There are two classic MAC-level protocols that are particularly relevant for our discus-

sion. S-MAC [Ye et al. 2002], one of the main representatives of slotted access protocols, di-

vides time in �xed-length slots of 1-3s and uses a 300ms active period (equivalent to a duty

cycle of 10% to 30%), during which nodes compete for the channel using carrier-sensing

to avoid collisions. T-MAC [Van Dam and Langendoen 2003] improves upon S-MAC by

adding adaptivity to tra�c. Active nodes time out if they hear no tra�c during a brief con-

tention phase at the beginning of each slot, drastically reducing energy use in idle networks.

In both S-MAC and T-MAC, when a new node joins a network it listens for at least the du-

ration of a whole frame to detect the presence of other nodes. If other nodes are present,

it follows their schedule. Otherwise it picks an arbitrary schedule of its own. When mul-

tiple schedules are detected, a node follows them all, acting as a bridge between indepen-

dently synchronized clusters. This, however, imposes on bridge nodes an energy cost that

is a multiple of the cost for nodes following a single schedule, which goes against our goal

of �xed energy consumption and predictable lifetime. Most importantly, both protocols do

not address the fact that in the course of time (notably in large networks wheremaintaining

synchronization across a long diameter is nontrivial) such a policy will eventually lead to

the coexistence of a number of diverse schedules, multiplying the amount of energy used,

while at the same time hindering the operation of broadcast-based communication pro-

tocols. Although this issue does not arise in small-diameter and short-lived networks, in

networks of the size, longevity, and mobility we target, it constitutes a major shortcoming.

SCP-MAC [Ye et al. 2006] is a further optimization of the aforementioned protocols, low-

ering duty cycles to as low as 0.3% by allowing channel polling at very short, scheduled in-

tervals. Although SCP-MAC is signi�cantly more sensitive to a tight synchronization than

S-MAC and T-MAC, the authors implicitly assume a set of nodes that operate with tight

synchronization. Thus, the issue ofmerging independently synchronized “virtual clusters”

to a common schedule is not tackled in SCP-MAC. It is precisely on this problem that the

bulk of this paper is focused. Asmentioned previously, the existence of multiple separately

synchronized clusters can be detrimental to internode communication, particularly in the

presence of a high degree of node mobility.

8.2. Asynchronous protocols
These protocols follow an entirely asynchronous approach, without requiring clock syn-

chronization or time slots, while they still strive for a very low duty cycle.

The authors of [Cattani et al. 2014] take a radically di�erent approach to keeping duty

cycles low, by introducing SOFA, a reactive MAC protocol that circumvents the need for

synchronization. Nodes wake up periodically, yet asynchronously, and listen for a tiny frac-

tion of time. To send a message, a sender transmits repetitive advertisements, until a node

that wakes up as a result of its standard periodic operation responds with an acknowl-

edgment. Then the sender unicasts the message to that node. An interesting property of

SOFA is that it favors dense networks, as the sender’s expected advertising time is shorter.

Note that the sender has no control over who the receiver will be, essentially implementing

anycast semantics, applicable in gossiping protocols.

8.3. Centralized TDMA
These protocols split time in discrete slots and rely on a master node to impose a TDMA

schedule that deterministically assigned slots to speci�c nodes to avoid contention.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:34 S. Voulgaris et al.

Mobile LMAC, presented in [Mank et al. 2007] and [Mank et al. 2008], removes assump-

tions about static topologies and uses gateway nodes to bootstrap synchronization. The

proposed merge protocol comes close to ours with respect to making a decision concern-

ing which cluster to prevail. However, their evaluation is limited to networks of up to nine

sensors, which is too limited to draw any conclusion with respect to scalability. Addition-

ally, the Mobile LMAC protocol focuses on enabling nodes to achieve a high throughput

channel even in the case of high network load, contrary to GMAC which is designed for

constant-rate gossiping between nodes.

In [Arumugam and Kulkarni 2005] an algorithm is presented that deterministically es-

tablishes a TDMA schedule by a gateway node circulating a token. However, no attention

is paid to merging clusters and keeping them synchronized, as nodes are assumed to be de

facto synchronized.

WirelessHART [Song et al. 2008] is an industry-backed TDMA-based wireless mesh net-

working technology for real-time process control. Like GMAC, it is based on �xed TX slots,

and achieves network-wide synchronization, which however is achieved through a master-

slave protocol relying on ACK responses. The most notable di�erence is that its operation

is based on a central network manager. WirelessHART is a fully-�edged wireless sensor

framework, featuring (in addition to node synchronization) reliable streaming, large data

transfer, channel hopping, and security. A number ofWirelessHART-based industrial prod-

ucts have been developed, by companies such as DustNetworks (with their SmartMesh

product line), Pepperl+Fuchs, Endress+Hauser, Nivis, etc.

8.4. Distributed TDMA
These protocols aim at a similar deterministic schedule as the protocols of the previous

group, however they achieve it by means of a decentralized algorithm that involves all par-

ticipating nodes.

A method of desynchronizing the active periods of participating nodes is presented

in [Degesys et al. 2007]. With the presentation of DESYNC, the authors present a novel

approach to scheduling the active periods of participating nodes. By spacing the active

period of each of N neighbors equally within a total period of T, the algorithm will dy-

namically ensure that each node gets an uncontested active period of T/N for communi-

cation. DESYNC is not well suited to our needs for several reasons. First is that the algo-

rithmassumes all participating nodes are arranged in a one-hop network,whilewe focus on

multi-hop topologies. Second, the convergence time of the algorithm takes O(N2) rounds,
signi�cantly longer than our algorithms and certainly too slow for a network of N � 1000
nodes. Finally, though the authors discuss the possibility of nodes entering/leaving the

synchronized group, mobility is not speci�cally addressed.

The protocol presented in [Ma et al. 2009] focuses on sleep scheduling and tries to sched-

ule contiguous active slots. Their work depends on a �xed topology for their algorithm to

converge and to be e�cient, and is, thus, not appropriate for themobile scenarios we target.

The algorithm proposed in [Cidon and Sidi 1988], allows amultihop network of N nodes

to dynamically agree on a con�ict-free TDMA schedule. However, it requires O(|N |) slots
per round, which renders it inappropriate for large values of N , i.e., scenarios involving

thousands of nodes.

In SS-TDMA [Kulkarni andArumugam 2006] the authors propose a self-stabilizingMAC

protocol for sensor networks. It assigns slots deterministically based on (known) locations

in a grid topology and is bootstrapped from a gateway node that also acts as a sink. The

protocol is tailored to TDMA schedules for gossiping, however no duty cycling or other

energy awareness is discussed.

In DISCO [Dutta and Culler 2008] nodes pick a pair of prime numbers such that the sum

of their reciprocals is equal to the desired radio duty cycle. Each node increments a local

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:35

counter with a globally-�xed period. If a node’s local counter value is divisible by either

of its primes, then the node turns on its radio for one period. This protocol ensures that

two nodes will have some overlapping radio on-time within a bounded number of periods,

even if nodes independently set their own duty cycle. Once a neighbor is discovered, and

its wakeup schedule known, rendezvous is just a matter of being awake during the neigh-

bor’s next wakeup period, for synchronous rendezvous, or during an overlapping wake

period, for asynchronous rendezvous. As such, the main di�erence from GMAC is that it

sets a provable upper bound on how long discovery can take, unlike GMAC in which it can

theoretically take inde�nitely.

8.5. The 802.11 family
These protocols aim at improving synchronization in multi-hop 802.11 networks.

In [Liu et al. 2005], the authors describe amethod formerging clusters inmulti-hop 802.11

ad hoc networks, in contrast to the more common solution of bridging the clusters. Their

method is based exclusively on the passive listening method (extensively described in Sec-

tion 4.1). There are no details on themerge process itself, presumably nodes simply “jump”

to their new schedule during the merge (i.e., without notifying their neighbors). As seen

in Section 6.2, our experiments indicate that active detection (used by GMAC) consistently

outperforms passive detection, assuming equal amounts of energy are spent in both cases.

8.6. Clock synchronization in the face of clock drifts
The focus on these protocols is on maintaining clock synchronization in the face of drifting

clocks.

The issue of clock synchronization in the face of clock drifts is addressed in SMART [Tjoa

et al. 2004]. Although this paper is an inspiration for the synchronization algorithmadopted

in GMAC, it does not deal with the orthogonal problem of merging clusters with non-

overlapping schedules, neither does it consider duty cycling.

In [Mirollo and Strogatz 1990], the authors present a method of establishing and main-

taining internode synchronization inspired by pulse-coupled biological oscillators. This pa-

per is an inspiration for our ownwork, and experimenting with such techniques is planned

as part of our future work. Biologically-inspired algorithms, such as this one, �t well into

the theme of our research because it utilizes localdecisionmaking,maintains very little local

state, is not dependent on speci�c anchor or head nodes, and is extremely scalable. Because

the GMACwas built to have a modular synchronization component, we aim to experiment

with replacing the current median algorithmwith something similar to this pulse-coupled

oscillator technique. In our investigations thus far, the maintenance of synchronization has

been less problematic than the merging of synchronized clusters, and thus has not yet re-

ceived as much attention.

The authors of [Li and Rus 2006] present three di�erent methods for global clock syn-

chronization. The �rst, or “all-node-based synchronization” requires the nodes to establish

a cycle (path) through the network that passes through each node at least once, which is

obviously impractical (if not impossible) for large-scale mobile networks. Their second ver-

sion, known as the “cluster synchronization algorithm” operates like the �rst, but requires

that the nodes in the network �rst elect cluster-headswhich are then synchronized amongst

each other, before the cluster-heads are �nally used to synchronize the individual nodes

within each cluster. Once again, node mobility renders this method di�cult to use as we

can no longer assume that a node is still within range of its cluster head by the time synchro-

nization messages are exchanged. Their third algorithm is called “synchronous di�usion”

and maintains synchronization in a manner similar to the GMAC median algorithm, but

nodes synchronize to the mean value of their neighbors rather than the median value. Their

simulated results are also similar to ours, showing 1000 nodes synchronizing within a few

hundred rounds. An important distinction with our own work is that this paper does not

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:36 S. Voulgaris et al.

focus on dynamic network topologies, though they state that their algorithm can adapt to

node mobility.

8.7. Application-level synchronization
Protocols in this group address clock synchronization on sensor networks at the application

layer, that is, the capability of nodes to communicate is orthogonal to their synchronization

state. Consequently, duty cycling as well as detection and merging of di�erent clusters are

not applicable them.

Timing-sync Protocol for Sensor Networks (TPSN [Ganeriwal et al. 2003]) and Flooding

Time Synchronization Protocol (FTSP [Maróti et al. 2004]) rely on creating a spanning tree

over the whole network, stemming from a globally elected root node. The cost of leader

election and tree buildingmake such solutions unsuitable for high diameter and/ormobile

networks.

The cost of synchronization is con�ned in [Pussente and Barbosa 2009] by piggybacking

synchronization information on existing application tra�c and by proposing a completely

distributed solution, free from the expenses of centralized coordination. Nevertheless, this

solution assumes a reliable communication channel, which is unrealistic in general and

particularly when duty cycling is in place.

Reference Broadcast Synchronization (RBS [Elson andEstrin 2001]) o�ers single-hop syn-

chronization to within a few microseconds (tighter bounds than we achieve here) in ad-

dition to multi-hop synchronization with degraded accuracy. Furthermore, RBS has been

implemented on a number of di�erent hardware and radio platforms. An interesting ques-

tion is how RBS would perform in the large-scale mobile networks we target. Participating

nodes must maintain state (timing data) on broadcasting nodes, which is later exchanged

with other nodes in the network.

8.8. Miscellaneous
The authors of [Schmid et al. 2010] take duty cycling a step further. In addition to duty cy-

cling the radio chip, they also duty cycle the high-frequency (and therefore, power hungry)

clock itself, using a second clock of much lower frequency. However, their protocol dictates

that one node be a “reference” node, which has access to a high precision time source (e.g.,

GPS). Our protocol assumes no such reference node, and operates in a completely decen-

tralized manner.

Quorum, described in [Tseng et al. 2002], does not use a synchronized sleep schedule

like GMAC, and nodes view time as a series of n2
beacon windows. Using a matrix nodes

select a set of O(1/n) beacon windows in which to transmit, and their protocol guarantees

that another node will be awake and listening during at least one of those intervals.

9. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper is a thorough examination of MAC-layer synchroniza-

tion in ultra-low duty cycle, large-scale, mobile (and static) networks. In order to fully eval-

uate the problem, we examined the two distinct subproblems of network-level synchro-

nization through numerous simulations and a large-scale mobile deployment. The results

of these various experiments show that both problems are solvable, and our methods can

be used to achieve remarkably low duty cycles, even with relatively inaccurate clocks. In

addition, GMAC’s design ensures energy is used at a �xed rate, which allows for very accu-

rate predictions of network lifetime. And, perhapsmost importantly, we have demonstrated

that GMAC is not only capable of synchronizing all nodes in a network so that they share

a common active period, but also of doing so in a completely decentralized manner. Re-

moving the need for special “cluster-head” nodes makes planning and deploying a sensor

network simpler and less costly.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:37

We investigated the �rst aspect of MAC-layer synchronization, maintenance of ex-

isting synchronization between groups of nodes, by simulating networks of initially-

synchronized nodes. We varied the simulated transmission range in order to see the e�ects

of neighbor density on synchronization maintenance. We found that the simple median al-

gorithmwas able to maintain synchronization in amobile 1000-node network with average

densities as low as one node per transmission area. Static networks require a much higher

transmission area (about 16 nodes per transmission area) in order tomaintain synchroniza-

tion, due to the network being partitioned into multiple subnets at lower levels. The results

show that mobility can be helpful in sparse networks by routinely introducing new neigh-

bors, whichmatches well with GMAC’s decentralized, gossip-based nature. With regard to

synchronization maintenance, we can conclude that the median algorithm is both simple

and functional, but still has room for improvement. The idea of making timing adjustments

during periods of isolation based on an approximation of a node’s clock frequency o�set

could be a strong addition to the protocol, but an inaccurate method of approximation is

likely to be worse than doing nothing at all.

The second aspect of network synchronization, merging separately synchronized groups

of nodes, has been split into three orthogonal subproblems.We investigate each of the three

subproblems (detection, decision, and noti�cation) using di�erent mobility patterns and

starting conditions. We looked at two methods of detection, active and passive, and active

detection outperformed passive detection by a signi�cant margin in all scenarios. We at-

tribute this to active detection’s ability to detect multiple neighbors with a single broadcast,

as described in 4.1. Additionally, we demonstrated that the combination of active and pas-

sive detection can o�er small performance bene�t, but will generally not outweigh the ad-

ditional energy cost and jeopardizes our goal of lifetime predictability. Performance is even

further increasedwith the technique of targeted join messages, e�ectively doubling the detec-

tion rate. Regardingmerge decisions, the use of cluster tags strongly improves the chances of

eventual synchronization.We have demonstrated their e�cacy inmobile networks ranging

from100 to 4000 nodes, showing the importance of deterministicmergingdecisions. Finally,

our proposal of using a header �eld for notifying neighbors of local merge decisions can

drastically reduce the time for a network to reach a synchronized state, by as much as a

factor of eight on our 4000-node topology. These small modi�cations to GMAC’s current

behavior radically increase its suitability for large-scale mobile networks. The key insight is

that as synchronized groups build up, themergemessages allowGMAC to leverage an infe-

rior group’s existing synchronization to rapidly mergewhole syncgroups, not just individual
nodes. Combined with the total ordering provided by cluster tags to solve the problem of

which group to merge with, large and complicated networks can be synchronized in just a

few minutes.

In the end, the most clear conclusions of our simulations is that the achievable level of

synchronization is dictated by two things: density and mobility. The underlying issue is

propagating synchronization information throughout the entire network. With very low

transmission densities, a nodewill have infrequent communicationwith other nodeswhich

will greatly limit the opportunities for disseminating synchronization data. Conversely,

high transmission density means that this data can move a great distance during each

round. Similarly, mobile scenarios generally facilitate network synchronization because the

required information can be propagated faster. This occurs because nodes physically move

around, carrying their data with them. Both of these factors, density and mobility, are as-

pects of the overall network topology. It is the topology that will determine whether full

network synchronization will succeed, our goal is to ensure that individual network sub-

nets remain synchronized and discover each other as rapidly as possible when they phys-

ically connect. To that end, active detection with targeted join messages, cluster tag-based

decision and noti�cation via merge messages results in signi�cantly faster synchronization

convergence.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:38 S. Voulgaris et al.

The direction of this research was inspired by the failure of network synchronization

during our earliest real-world deployments. However, our most recent deployments (e.g.,

the ICT Open experiment presented in Section 7) indicate that the conclusions of our in-

vestigations using simulation are applicable to the physical nodes and do indeed have the

potential to work in large-scale wearable sensor networks.

There remainmany interesting avenues to pursue. An investigation of signi�cantly lower

duty cycles is possible. For example, in applications that are not latency-sensitive we could

increase the duration of a round. Simulationswe have run show that Tround ≥ 5s are achiev-
able, reducing the duty cycle to τ ≤ 0.15%. By reducing transmission guard times, im-

proving synchronization maintenance and using more accurate clocks, we could possibly

achieve duty cycles less than 0.01%. Finally, creating a hybrid protocol using GMAC’s ac-

tive period as a mechanism to schedule application-speci�c active periods during GMAC’s

inactive period would allow for execution of a wider range of applications which require

lower latency, higher bandwidth, or both.

Acknowledgment
The authors would like to thank Konrad Iwanicki (University of Warsaw) and Frits van der

Wateren (Chess) for their invaluable input and assistance in the creation of this paper. The

work has been partly carried out as part of the Dutch national COMMIT/ programme.

REFERENCES
Abramson, N. 1977. The throughput of packet broadcasting channels. IEEE Transactions on Communications 25, 1,

117–128.

Anemaet, P. 2008. Distributed G-MAC: A Flexible MAC Protocol for Servicing Gossip Algorithms. M.S. thesis, TU

Delft.

Arumugam, M. and Kulkarni, S. 2005. Self-stabilizing deterministic TDMA for sensor networks. In Proceedings of
the 2nd International Conference on Distributed Computing and Internet Technology (ICDCIT). Springer, 69–81.

Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., and Schwamborn, M. 2010. Bonnmotion: a mobility scenario

generation and analysis tool. In Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),

51.

Cattani, M.,Zuniga, M.,Woehrle, M., and Langendoen, K. 2014. Sofa: Communication in extremewireless sensor

networks. In Wireless Sensor Networks, B. Krishnamachari, A. Murphy, and N. Trigoni, Eds. Lecture Notes in

Computer Science Series, vol. 8354. Springer International Publishing, 100–115.

Cidon, I. and Sidi, M. 1988. Distributed assignment algorithms formulti-hop packet-radio networks. In Proceedings
of the 7th Annual Joint Conference of the IEEE Computer and Communcations Societies (INFOCOM) - Networks:
Evolution or Revolution? 1110–1118.

Degesys, J., Rose, I., Patel, A., and Nagpal, R. 2007. Desync: self-organizing desynchronization and tdma on wire-

less sensor networks. In Proceedings of the 6th international conference on Information processing in sensor networks.
ACM, 11–20.

Dobson, M., Voulgaris, S., and van Steen, M. 2010. Network-level synchronization in decentralized social ad-hoc

networks. In 5th International Conference on Pervasive Computing and Applications (ICPCA). IEEE, 206–212.
Dobson, M., Voulgaris, S., and van Steen, M. 2011. Merging ultra-low duty cycle networks. 41st International

Conference on Dependable Systems and Networks (DSN), 538–549.
Dutta, P. and Culler, D. 2008. Practical asynchronous neighbor discovery and rendezvous for mobile sensing

applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems. SenSys ’08. ACM,

New York, NY, USA, 71–84.

Elson, J. and Estrin, D. 2001. Time synchronization for wireless sensor networks. In Proceedings of the 15th Inter-
national Parallel and Distributed Processing Symposium. 1965–1970.

Ganeriwal, S., Kumar, R., and Srivastava, M. 2003. Timing-sync protocol for sensor networks. In Proceedings of the
1st International Conference on Embedded Networked Sensor Systems. ACM New York, NY, USA, 138–149.

Kahn, J. M., Katz, R. H., and Pister, K. S. J. 1999. Next century challenges: Mobile networking for “smart

dust”. In Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Net-
working. MobiCom ’99. ACM, New York, NY, USA, 271–278.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:39

Köpke, A., Swigulski, M., Wessel, K., Willkomm, D., Haneveld, P., Parker, T., Visser, O., Lichte, H., and Valentin,

S. 2008. Simulating wireless and mobile networks in omnet++ the mixim vision. In Proceedings of the 1st inter-
national conference on Simulation tools and techniques for communications, networks and systems & workshops. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 71.

Kulkarni, S. and Arumugam, M. 2006. SS-TDMA: A self-stabilizing MAC for sensor networks. In Sensor Network
Operations. IEEE Press, Chapter 4, 186–218.

Langendoen, K., Baggio, A., and Visser, O. 2006. Murphy Loves Potatoes: Experiences from a Pilot Sensor Net-

work Deployment in Precision Agriculture. In 14th Int. Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS).

Li, Q. and Rus, D. 2006. Global clock synchronization in sensor networks. Computers, IEEE Transactions on 55, 2,
214–226.

Liu, M., Lai, T., and Liu, M. 2005. Is clock synchronization essential for power management in IEEE 802.11-based

mobile ad hoc networks? In Proceedings from the Second IEEE International Conference on Mobile Ad Hoc and
Sensor Systems.

Ma, J., Lou, W., Wu, Y., Li, X.-Y., and Chen, G. 2009. Energy e�cient TDMA sleep scheduling in wireless sensor

networks. In IEEE INFOCOM 2009. 630–638.
Mank, S., Karnapke, R., and Nolte, J. 2007. An adaptive TDMA based MAC protocol for mobile wireless sen-

sor networks. In Proceedings of the 2007 International Conference on Sensor Technologies and Applications. IEEE
Computer Society, 62–69.

Mank, S., Karnapke, R., and Nolte, J. 2008. MLMAC - An adaptive TDMA MAC protocol for mobile wireless

sensor networks. InAd-Hoc & SensorWireless Networks: An International Journal, Special Issue on 1st International
Conference on Sensor Technologies and Applications.

Maróti, M., Kusy, B., Simon, G., and Lédeczi, Á. 2004. The �ooding time synchronization protocol. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems. ACM, 39–49.

Mirollo, R. and Strogatz, S. 1990. Synchronization of pulse-coupled biological oscillators. SIAM Journal onApplied
Mathematics 50, 6, 1645–1662.

PixMob. http://www.pixmob.com.

Pussente, R. and Barbosa, V. 2009. An algorithm for clock synchronization with the gradient property in sensor

networks. Journal of Parallel and Distributed Computing 69, 3, 261–265.
Roberts, L. G. 1975. Aloha packet system with and without slots and capture. ACM SIGCOMMComputer Commu-

nication Review 5, 2, 28–42.
Schmid, T., Dutta, P., and Srivastava, M. B. 2010. High-resolution, low-power time synchronization an oxymoron

nomore. InProceedings of the 9thACM/IEEE International Conference on Information Processing in SensorNetworks.
IPSN ’10. ACM, New York, NY, USA, 151–161.

Song, J., Han, S., Mok, A., Chen, D., Lucas, M., and Nixon, M. 2008.WirelessHART: Applyingwireless technology

in real-time industrial process control. In IEEE Real-Time and Embedded Technology and Applications Symposium,
2008. RTAS ’08. 377–386.

Tjoa, R., Chee, K., Sivaprasad, P., Rao, S., and Lim, J. 2004. Clock drift reduction for relative time slot TDMA-based

sensor networks. In 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC). Vol. 2.

Tseng, Y.-C., Hsu, C.-S., and Hsieh, T.-Y. 2002. Power-saving protocols for IEEE 802.11-basedmulti-hop ad hoc net-

works. In IEEE INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. Vol. 1. 200–209 vol.1.

Van Dam, T. and Langendoen, K. 2003. An adaptive energy-e�cient MAC protocol for wireless sensor networks.

In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems. ACM, 171–180.

Varga, A. and Hornig, R. 2008. An overview of the omnet++ simulation environment. In Proceedings of the 1st
international conference on Simulation tools and techniques for communications, networks and systems & workshops.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 60.

Weingartner, E., vom Lehn, H., and Wehrle, K. 2009. A performance comparison of recent network simulators.

In IEEE International Conference on Communications (ICC). 1–5.
Ye, W., Heidemann, J., and Estrin, D. 2002. An energy-e�cient MAC protocol for wireless sensor networks. In 21st

Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM). IEEE, 1567–1576.
Ye, W., Silva, F., and Heidemann, J. 2006. Ultra-low duty cycleMACwith scheduled channel polling. In Proceedings

of the 4th International Conference on Embedded Networked Sensor Systems. ACM, 321–334.

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

39:40 S. Voulgaris et al.

APPENDIX
A. MYRIANED HARDWARE
The MyriaNed V3 nodes we use were designed to be small, lightweight and reliable. They

feature a Nordic nRF24L01+ radio chipset and an Atmel ATMega128 processor. The V3

nodes are also intended to be �exible, with optional sensors and even the possibility of

augmenting their functionality using daughter boards via an edge-connector.

The nRF24L01+ radio communicates at either 1 or 2 megabit per second (Mbps) in the

unregulated 2.4GHz spectrum, sharing the same frequencies used by WiFi and Bluetooth

devices. The Nordic chipset provides for a �xed-size 32-byte MAC packet, with additional

physical-layer headers (including a 16-bit CRC) being added automatically by the radio it-

self. At the 2 megabit setting, a physical packet broadcast takes approximately 300µs. The
nRF24L01+ does not have the ability to perform channel sensing or collision detection, nor

does it provide any received signal-strength indicator (RSSI). This chip was chosen in spite

of these limitations because it has extremely low power usage while powered o�. Nodes

running GMAC generally operate with the radio disabled for more than 95% of the time,

so a high leakage current (the power used by the chip even when it is disabled) can signi�-

cantly increase the overall power consumption of the device. The nRF24L01+ provides four

operational modes: power-down, standby, receive and transmit. As mentioned, the power

usage in the power-down state is extremely low at 900nA, while in standbymode the radio

consumes 26µA. In receive mode at 2 Mbps it uses 13.5mA, and it consumes 11.3mA in

transmit mode.

For time keeping, the V3 nodes use a 32kHz real-time clock, or RTC. A single clock tick
of this clock represents the smallest synchronization adjustment these nodes can make,

and has a duration of
1s

32768 ≈ 30µs. An external clock is required to wake the CPU up

from deep sleep states, as its own internal clock is disabled while it is asleep. The ability to

completely shut down the CPU during long idle periods is also essential to the low-power

operation of the MyriaNed nodes. These clocks (actually, oscillators), like any clocks, have

limited precision and will tend to drift in relation to another such clock over time. These

devices carry a speci�cation of±20ppm (parts permillion) from the factory. This variability

in individual clocks is exactly what GMAC tries to compensate for with its synchronization

mechanisms, described in Sections 3 and 4.

In our experiments, these V3 nodes are almost always used in conjunction with SED
(Storage of Energy and Data) modules. The SED module can operate only when attached

to a host V3 node via its edge connector, since the module has no micro-controller of its

own. A SED module is composed of a
1
2 AA battery, two 2MB �ash memory chips, and an

on-o� switch. The addition of the SED module makes the V3 node fully functional as an

experimental node, giving it self-contained power and stable storage for logging.

B. BONNMOTION MOBILITY TRACE PARAMETERS
For the sake of experiment reproducibility, we provide the following two tables listing the

BonnMotion [Aschenbruck et al. 2010] parameters we used. For the exact meaning and use

of these parameters, please refer to the BonnMotion documentation3.

Table V lists the complete suite of parameters used in generating the mobility traces for

the simulations presented in this paper. All traces were generated using the BonnMotion

suite, discussed in Section 5.2.

TableVI lists the transmissionpowers used in our simulations, alongwith their respective

transmission range, transmission area, and transmission density (i.e., average number of

neighbors per node).

3
http://bonnmotion.net/

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Decentralized Network-level Synchronization in Mobile Ad Hoc Networks 39:41

Table V: BonnMotion Parameters

model GaussMarkov RandomWalk RPGM

randomSeed 1299022770517 1299023102669 1299023208481

x (m) 1000.0 1000.0 1000.0

y (m) 1000.0 1000.0 1000.0

duration (s) 10800.0 10800.0 10800.0

nn (nodes) 1000 1000 1000

circular false false false

maxspeed (m/s) 5.0 5.0 5.0

minspeed (m/s) N/A 0.1 0.1

maxpause (s) N/A 60.0 60.0

updateFrequency (s) 2.5 N/A N/A

angleStdDev (rad) 0.39269908169 N/A N/A

speedStdDev (m/s) 0.5 N/A N/A

bounce true N/A N/A

initGauss false N/A N/A

uniformSpeed true N/A N/A

mode N/A t N/A

modeDelta N/A 60.0 N/A

groupsize_E N/A N/A 12.0

groupsize_S N/A N/A 2.0

pGroupChange N/A N/A 0.1

maxdist N/A N/A 25.0

Table VI: Transmission Power settings

TX Power (mW) TX Range (m) TX Area (m2
) TX Density (nodes)

0.005764 8.92 250.0 0.25

0.016303 12.62 500.0 0.5

0.046111 17.84 1000.0 1

0.084712 21.85 1499.9 1.5

0.130423 25.23 1999.9 2

0.182271 28.21 2499.9 2.5

0.239602 30.90 2999.8 3

0.368891 35.68 3999.9 4

1.043381 50.46 7999.8 8

1.916814 61.80 11999.7 12

5.421568 87.40 23999.5 24

15.334513 123.61 47999.4 48

ACM Transactions on Sensor Networks, Vol. 9, No. 4, Article 39, Publication date: March 2015.

