
Presumably simple: monitoring crowds using WiFi

Cristian Chilipirea, Andreea-Cristina Petre, Ciprian Dobre
Faculty of Automatic Control and Computers

University Politehnica of Bucharest

Bucharest, Romania

Email: {cristian.chilipirea, ciprian.dobre}@cs.pub.ro, andreea.petre@cti.pub.ro

Maarten van Steen
CTIT

University of Twente

Enschede, The Netherlands

Email: m.r.vansteen@utwente.nl

Abstract—Crowd Monitoring is receiving much attention. An
increasingly popular technique is to scan for mobile devices,
notably smartphones. We take a look at scanning for such devices
by recording WiFi packets. Although research on capturing
crowd patterns using WiFi detections has been done, there are
not many published results when it comes to tracking movements.
This is not surprising when realizing that the data provided by
WiFi scanners is susceptible to many seemingly erroneous and
missed detections, caused by the use of randomized network
addresses, overlap between scanners, high variance in WiFi
detection ranges, among other sources.

In this paper, we investigate various techniques for cleaning up
sets of raw detections to sets that can subsequently be used for
crowd analytics. To this end, we introduce two different quality
metrics to measure the effects of applying the various techniques.
We test our approach using a data set collected from 27 WiFi
scanners spread across the downtown area of a Dutch city where
at that time a 3-day multi-stage festival took place attended by
some 130,000 people.

Keywords: crowd detection, WiFi scanning, crowd analyt-

ics, smoothing paths, data cleaning

I. INTRODUCTION

Being more an art than a science, managing crowds has

proven to be important, yet difficult. Difficulties are partly

caused by the lack of sufficient, properly validated models of

pedestrian movements. This leaves the experts to rely mostly

only on their experience when it comes to preparing for an

event. Relatively few data sets are (publicly) available on

pedestrian movements in crowds. Although telecom providers

do have access to movements at the level of cells, such data is

not made generally available for various reasons, but one may

also question whether the granularity is sufficient for validating

models of pedestrian movements. Likewise, using data sets

from video observations imposes serious privacy concerns, but

also deriving data on crowd behavior from video sources that

can be used for model validation is difficult, if not oftentimes

virtually impossible.

In this paper we discuss a different approach, namely

deriving data from detecting WiFi-enabled mobile devices,

such as smartphones. The idea is extremely simple: one places

WiFi scanners akin to normal access points, capable of sniffing

network addresses. A level of privacy is added by hashing

these addresses. The result is a data set consisting, conceptu-

ally, of timestamped (scanner, device) pairs. This should allow

us to discover movements as they take place in a crowd.

We recently conducted an experiment with such a setup

(Section II). Although we aimed to obtain information on

crowd movements, we actually anticipated that even this

seemingly simple approach would lead to a highly noisy data

set. We were not disappointed. Difficulties were caused by

multiple and various noise sources (Section IV).

We focus entirely on systematically cleaning the data set,

making the statement that this is by far an easy exercise

and essential before any analytics can take place. The main

problem is to extract data in such a way that seemingly erratic

and senseless detections are transformed or eliminated. To

the best of our knowledge, we are one of the first to report

on extracting crowd movements from actual real-world WiFi

detections at this scale.

Our main contribution is the proposal of three distinct rules

that improve the data set looking at: low-quality detections,

averaging detections over a time period and, eliminating

repetitive behavior in the form of unlikely cycles in movement

(Section V). We also define two metrics aimed at determining

the effect of our methods: (1) entropy, which measures how

much noise there is, and (2) dissimilarity with respect to the

original data set, which measures how much we modified the

data set. Finally we present the results (Section VI).

II. RAW DATA SET AND CONTEXT

Trying to understand crowd dynamics requires timestamped

localization data of the crowd. Out of the multiple ways to

gather crowd localization data, in recent literature detecting

WiFi-enabled devices (which are already ubiquitous given

the rise in smartphone usage) using scanners is the method

that stands out. This method is relatively cheap to deploy,

nonintrusive, and requires little to no cooperation from the

crowd that is being monitored. Details on the technology are

available in the literature [1].

The data set used in this paper was gathered in Assen, The

Netherlands, during the TT festival 1 and in the few days after

the festival (24-June-2015 to 30-June-2015). The festival lasted

three days and consisted of 54 music events at eight different

stages located in the city center. The festival was attended by

an estimated 130,000 people. The placement of the scanners

can be observed in Figure 1. Eight out of 27 are placed near

the music stages, marked with a darker color on the map.

1http://www.ttfestival.nl/ (Accessed: 2015-09-14)

2016 17th IEEE International Conference on Mobile Data Management

2375-0324/16 $31.00 © 2016 IEEE

DOI 10.1109/MDM.2016.42

217

2016 17th IEEE International Conference on Mobile Data Management

2375-0324/16 $31.00 © 2016 IEEE

DOI 10.1109/MDM.2016.42

220



Fig. 1: Placement of scanners in the city center of Assen (left)

and at the campsite near the city (right).

The WiFi scanners are from BlueMark 1000 series. They

have 32 MB RAM, 8 MB flash, a CPU speed of 384 MHz,

run openWRT and use 4G for communication. They use a

directional antenna with a gain of around 12 dBi. The scanners

connect to a central server that gathers and stores the data.

They are configured to detect only Probe Request messages.

Probe Requests are sent by most WiFi devices in order to

search for available WiFi networks. These packets are sent

more or less periodically, even when a device is already con-

nected to a network, in order to provide roaming functionality.

They contain the MAC address of the device. For privacy, the

system stores only hashed values of the address along with

the first 24 bits, representing the ”Organizationally unique

identifier” (OUI), which is used to identify the manufacturer

of a device.

The original data set contains 15,135,611 detections of

248,192 devices and spans over a 13-day period. We filter

the data using simple filtering and cleaning techniques, as

described in our previous work [2]. A few examples of these

filters are the removal of unknown manufacturers, based on

OUI, the removal of time periods when the scanners were mis-

configured (such as the testing phase) and removing multiple

copies of the same detection. After the data cleanup we have

10,673,498 detections of 127,959 unique devices spanning

over six days. We consider this to be the base data set, which

we use in all our experiments. These filtering techniques are

necessary but not sufficient.

III. RELATED WORK

Considering the importance of crowd mobility and its many

applications there are few works that deal with cleaning this

type of data. In [3] the authors present a way of smoothing

the path taken by an individual, as given by raw GPS data.

The examples they show present a data set where multiple

consecutive detections move back and forth, circling the street

the individual is on. This behavior is similar to the behavior we

present in this article. Yet the technologies and methods used

are different. To extract a clear path, the authors use outlier

removal with interpolation followed by Viterbi matching. Sim-

ilarly [4] use outlier removal and Gaussian kernel regression

to smooth the paths shown by GPS data. Their methods are

not directly applicable to our scenario. When using GPS, the

data set consists of a high number of positions (equivalent

to our detections), with error margins of just a few meters.

In contrast, we have low number of detections and a rough

approximation (in the order of hundreds of meters) of the

actual position.

Looking specifically for applications using WiFi scanners,

such as [5], where the scanners are used to track visitors

at mass events or [6], where a large-scale WiFi monitoring

system is used to gather information on facility planning, in

their case a large hospital, we noticed that other researchers

encountered problems with noise. For instance [6] shows a

comparison between the real path taken by a device and the

path that is extracted from the data, exhibiting large deviations.

Their method for cleaning the data is to just ignore most

detections and keep the ones that have a large enough time

difference between them. This method is a simplification of

the time compression method we present in section V. We

go much further in cleaning up and improving the data set.

Similarly in [7] a time-based approach is taken in order to

filter out devices that are static, seen by one scanner for a

long time period.

We found multiple mentions of noise or cleaning data, but,

as to our knowledge there is no previous work that directly

addresses the problem. In most cases it takes the form of a

side note.

IV. DIFFICULTIES IN DATA PROCESSING (NOISE)

A perfect data set would be one in which the location of

a device is accurately known at all times. When trying to

track crowds using WiFi, the data that needs to be analyzed

is affected by errors from multiple sources. We identified the

following ones:

a) Faulty scanner: For instance, any interval in which a

scanner is shut down or cannot receive packets will generate

an irregularity in the density of detections over time. In our

example data set, scanners did an automatic reboot once every

24 hours.

b) Limitations of radio-based detections: WiFi uses a

data transmission medium which is inherently unreliable [8].

For example, most WiFi devices claim a 100m transmission

range in ideal conditions. In reality, such specifications cannot

be relied on: while tunnels are generally known to extend the

range, buildings and people are known to hinder transmissions.

This also means that the shape or size of the area where WiFi

packets can be correctly received can be very irregular. To

illustrate, in our data set we have identified 1,491 occurrences

when a device is detected by five or more scanners in the same

second, yet the placement of the scanners was such that these

simultaneous detections should not occur.

c) Limitations of RSSI: The RSSI measurements are not

standardized and can differ in value or strength across different

types of scanners or devices. Second, the signal strength itself

can dramatically differ across multiple device manufacturers

and even different devices of the same model. Solutions for

the RSSI problems are proposed [9] but only for when the

218221



mobile device is the one taking the measurements, and they

do not directly apply to the reverse scenario.

d) Timing errors: Scanners timestamp detections. Conse-

quently, their clocks may introduce many inaccurate detections

if not properly synchronized between different scanners. Even

when the scanners are completely synchronized it may be

difficult to determine the exact time a detection has. There is

no way to determine if two packets received at two different

scanners are actually the same. A Probe Request does not

include a sequence number.

e) MAC address issues: Some devices change their MAC

address seemingly at random, as also reported by [7]. This

is known in particular in the case of some Apple devices 2.

Perhaps even worse when using a MAC address for device

identification, is that we have noticed cases where different

devices use the same MAC address.

Fig. 2: Movement path of

static device (the circles are

100m visual guides, they do
not represent the cover ra-

dius)

f) Lack of coordination:
Because there is no coordi-

nation between devices and

scanners, no ideal probe trans-

mission rate can be deter-

mined or let alone set. We

have witnessed a huge variation

in transmission rates, caused

by seemingly random behav-

ior concerning when a device

switches its WiFi module on

or off. This behavior is also

dependent on the device, as

reported in [1]. As a result,

the effect, in combination with

the unreliability of the wireless

medium [8] is a data set with

detections that can make the

movement of a device seem mostly erratic.

By-and-large, there are many sources that introduce noise.

Consider Figure 2. It was obtained by tracing the path a device

took in a 10-minute interval. Green represents detections with

low RSSI and red represents strong detections, while the

arrows show the order in which the device was detected at

different scanners. In this instance there are no simultaneous

detections. This result is especially surprising considering the

device is actually a WiFi Router (based on the OUI) and

is most likely static. It is a non-mobile device appearing as

a device that moves in circles, with random frequency and

random speed. We found this type of erratic behavior to

be the norm, rather than the exception. The behavior is not

particular to our data set, as we encountered it in other works,

like the visualizations in [6]. It is also present in the case

of GPS localization, as described in [10]. Things are worse

for mobile devices which could exhibit an even more chaotic

behavior. Instead of moving in what would be a straight line,

the detections would show it moving in small irregular circles

while eventually getting closer to its destination.

2User Privacy on iOS and OS X - in Session 715 of Core OS WWDC14

V. METHODS OF IMPROVING THE DATA SET

We showed in Section II that even after applying basic

filtering techniques information retrieval from a mobility data

set is not trivial. Even simple tasks such as differentiating

between mobile and static devices requires expert intervention.

This is caused by the high variety and intensity in the noise

sources, as presented in Section IV. We define three rules,

which when applied, aim to improve the data set.

The three rules represent ways of modifying the data set,

in which we smoothen the path each device takes through the

city. This means obtaining a data set in which we minimize

the device’s behavior of moving in circles or constantly going

back and forth between a set of scanners. To be able to measure

the success of applying these rules we define two metrics.

The first metric is entropy. Taking two consecutive detec-

tions of one device, we calculate the probability of the second

detection being at a specific scanner, given the first detection.

The entropy is modeled as the Shannon entropy [11] as defined

in equation 1.

H(S) =−∑
S∗

p(S∗|S) log p(S∗|S) (1)

Here, p represents the probability that a device triggers a

detection at scanner S∗ right after a detection at scanner S.

With 27 scanners, the entropy is calculated for each scanner

and each entropy is calculated using 27 probability values. The

average value of these entropies is used.

The second metric represents the dissimilarity between

the new, computed data set, and the base data set. Given

two data sets, with the same number of entries, and with

matching values for device and time across them, we define

the dissimilarity between the two data sets as the average

Euclidean distance between the physical locations of the

scanners of matching pairs of entries from the two data sets.

For instance, if we only had one detection and we changed it

from scanner A to scanner B the dissimilarity value would be

the distance between scanners A and B. The more this value

grows, the more information about paths taken is lost. Thus,

if any smoothing of successive detections would eliminate

paths taken by devices, this would result in a relatively high

dissimilarity value. With our definition of dissimilarity, small

values mean a high correlation between the two data sets and

large values mean a low correlation. Note that the goal is not

necessarily to reach a minimal dissimilarity value, this would

mean little or no anomalies and no noise is removed from the

paths.

a) Weak detection removal: One of the most obvious

solutions for smoothing paths taken by devices represents

the marking (for removal or update) of detections that have

low RSSI values. We call this the RSSI rule. The intuition is

that such detections are of low quality, generated by scanners

that are far away from the device. This rule is dependent on

what we refer to as the R threshold, where any detections

with RSSI smaller than R are marked as low quality. This is

similar to the RSSI cleanup done in [12]. The authors mention

219222



that they have an RSSI threshold, similar to ours, but they

do not discuss on how the threshold is chosen. Choosing the

threshold is vital because there is no one-size-fits-all solution:

bad weather conditions and placement of the scanners might

require a lower-than-usual threshold.

b) Time compression: The next rule consists in splitting

the time in non-overlapping intervals of ΔT seconds and

choosing only one scanner per device for each interval. The

scanner is chosen as the one with the highest strength score

based on equation 2. All detections not belonging to the

chosen scanner are marked for removal or update. We call

this the Time Compression rule because it lowers the temporal

resolution of the data set. This rule is similar to the one used

to clean up data in [6]. The authors of [6] select detections

that have a time interval ΔT between them. Without the

selection of a dominant scanner, their method is biased to

choose detections that preserve abnormal behaviors. As to our

knowledge we are the first to present a comparison between

the usage of multiple values for ΔT or R.

Score(S,d,ΔT ) = ∑
〈S,d,t〉,t∈ΔT

RSSI ∗no packets (2)

S represents a scanner, d a device, ΔT a time interval, t a

time value, RSSI represents the signal strength of detection

〈S,d, t〉, finally no packets represents the number of packets

that were received at detection 〈S,d, t〉 (in order to preserve

bandwidth multiple packets can be merged into one detection).

c) Cycle removal: Our last rule is called Cycle Removal
and it is specifically designed to remove the moving in circles,

or going back and forth, phenomenon that we observed in the

data set. To be able to remove this type of behavior from the

data set we have to identify the intervals that display it. An

interval with anomalous behavior has:

• consecutive detections of the same device

• the first and last detection at the same scanner

• repetitive detections at this scanner, with no more than X
detections at other scanners between them.

These detections are therefore marked as unacceptable. Any

cycle that consists of more than X detections is considered a

normal movement, a person literally moving in a circle. We

use X as our parameter for tuning the Cycle Removal rule.

Given the intervals we mark (for removal or update) all

the detections that do not belong to the dominant scanner of

the interval, the one with the highest strength score, given by

equation 2. Each detection can belong to multiple intervals.

When faced with this we choose the interval with the earliest

start time. This is done because we want to benefit the interval,

and with it the cycle, that has the longest history. Algorithm 1

shows the steps that need to be taken to identify and remove

the cyclic movements using this method.

d) Applying modifications to the base data set: Our rules

for smoothing the paths can be applied in two different ways.

One way is to simply remove all marked detections, basically

a filter. The other way is to change the scanner of these

detections to one, according to the specific rule being used. We

for each device do
construct intervals

for each interval do
find scanner with highest score value (St)

end
for each detection do

get first interval containing detection

if scanner != interval dominant scanner then
mark detection

end
end

end
Algorithm 1: Cycle removal

use both because even though the entropy can be calculated

regardless if we remove or update detections, the dissimilarity

measure can be calculated only if we update them.

For the RSSI rule this means changing it to the scanner

of a detection of the same device, close in time to the

marked one, that has an RSSI value above the threshold.

For time-compression, this means changing the scanner value

of all detections in the same time interval to that of the

dominant one, according to Score from equation 2. Finally,

for cycle-removal this means changing the marked detections

to the scanner that is the dominant, according to Score from

equation 2, in the interval the detection belongs to.

VI. EXPERIMENTAL RESULTS

In order to properly understand the benefits and fall-offs

of each of the rules we compare them using the data set

presented in Section II. Each rule has a variable that affects

the aggressiveness of the data-cleanup process. We compare

the effectiveness of each method using different values for R,

ΔT and X respectively.

We remind the reader that we apply all three of our methods

in two ways, by either updating or removing detections. When

we update detections we always get smaller values for entropy

than when we remove detections. This is because by updating,

we create many consecutive detections with the same scanner.

We create two new data sets (one by removing detections and

one by updating them) for each of the rules and each of the

values for their control variables. Then we measure the entropy

and dissimilarity of the new data sets. Like we mentioned in

the previous section the smaller the values for both entropy

and dissimilarity, the better.

The data set contains detections with RSSI values between

-21 (strong) and -89 (weak). More than 95% detections have

an RSSI value between -57 and -89. These are the values for

which we set R. ΔT is measured in seconds and takes values

from 1 to infinity. Finally, X can take any unsigned integer as

a value (usually works best with small values 2-10).

a) Entropy: Figures 3(a), 3(b) and 3(c) show the result-

ing entropy for each of the three rules. The entropy starts

going down when we increase the values of R, ΔT and X .

In the case of RSSI it goes naturally that when we remove a

small number of low quality detections, we remove noise and

220223



��

����

��

����

��	 ��� ��� �

 �
� ��	 ��� ��� ��



�
��
�
�
�

�����������

�������

������

����

��

����

����

����

����

��

����

����

�� ��� ��� ����

	


��

�
�

���������������������

������

 �!���

��

����

��

����

��

�� �� ��� ��� ��� ��� ����

�
�
�	


�
�

����������

���
���

������

(a) Entropy – RSSI (b) Entropy – Time Compression (c) Entropy – Cycle Removal

��

���

���

���

���

����

��� ��� ��� �		 �	
 ��� ��� ��� ��	

�
�
�
�
��
��
��
�
��
�
��
�
��
�
��
�
��

����������

���

����

����

����

����

����

����

��
�

� �� �� ���

	

�
�

�


��

�
�
��
�
��
��
��
	
��
��
��

�
����������
��������

��
��
���
���
���
���

�� ��� ����
��

���

���

���

���

����

�� �� ��� ��� ��� ��� ����

�
��
��
�
��
��
�	
�
�	


��
��
��
�
�	
��
�	

	���������

(d) Dissimilarity – RSSI (e) Dissimilarity – Time Compression (f) Dissimilarity – Cycle Removal

Fig. 3: Entropy and dissimilarity values after using the RSSI, time-compression, and cycle-removal.

the entropy decreases, when we increase the threshold, we

remove more noise. Similarly, for Time Compression when

we consider small intervals noise is removed. Finally, in the

case of Cycle Removal when we increase X we remove larger

cycles, larger noise parts of our data set. For Cycle Removal

the entropy keeps going down because with large enough X
we remove all cyclic behavior from our data set and leave

only data for devices that never have a cycle, such as people

passing through the city, and only few scanners for the ones

that contain cycles.

However, in the case of RSSI and Time compression the

entropy starts increasing after a point. High values for R means

we are accepting only strong detections, and the more we raise

the threshold, increasingly fewer detections are available. This

means that we are starting to have more consecutive detections

that are at scanners which are no longer close to each other.

A similar thing happens with Time Compression. When we

increase the interval too much, the entropy increases because

consecutive detections are frequently at scanners which are

too far. The same thing does happen when we update the

detections instead of removing them but the entropy continues

to go down because we create more and more consecutive

detections at the same scanner. The effect is not as apparent

for RSSI because for a large enough R we encountered

scenarios where no detections of a given device have a high

enough RSSI value to pass the threshold and we leave those

unchanged.

b) Dissimilarity measures: A drop in entropy by itself

is not necessarily good. The lower the entropy the more

information is lost. To understand how much data is lost

when applying our rules, we compared the resulted data

sets, obtained by updating, with the basic data set. Having a

dissimilarity value that is very large could mean we modified

the data set too much and we lost a lot of information.

As we can see in Figures 3(d), 3(e) and 3(f), respectively,

the more aggressive we are about changing the data set the

more the dissimilarity value rises, and thus the more the new

data set is different from the original one. This comes naturally

and is true regardless of method.

c) Comparing methods: To compare the results, we

select a data set generated by each algorithm, by choosing

the best values for R, ΔT and X , respectively. To choose these

we take into account both entropy and dissimilarity. For the

RSSI method we chose the data set with an R threshold of

-75. This is the point corresponding to the lowest point of

entropy in Figure 3(a), on the removal set. Applying the same

method for Time Compression we chose the time interval, ΔT ,

of 11 seconds. In the Cycle Removal data sets the point with

the lowest entropy also has the worst dissimilarity value, so

instead we chose the point from Figure 3(c) where the rate

of drop becomes almost constant, that is where X is 4. We

also compare to a randomly generated data set. The results

can be observed in Figure 5. We note that the entropy can be

0 if there is no movement data and the dissimilarity is 0 when

comparing a data set with itself.

d) Mapping the path took by a device: Figure 4 shows

the path a device has taken and how the path looks before and

after applying the rules. We use the values of R, ΔT and X
described previously. The path represents the same 10-minute

window. The colors and arrow have the same meaning as the

221224



(a) Basic data set (b) RSSI, R =−75 (c) Time compression, ΔT = 11 (d) Cycle removal, X = 4

Fig. 4: 10-minute path made by a device (the circles are 100m visual guides, they do not represent the coverage radius).

ones in Figure 2. These figures show that all three methods

can improve the data set, but only the Cycle Removal method

offers a clear path that this device took. In Figures 4(b) and

4(c), some noise is removed but there are moments when the

device seems to go against the natural direction.

e) Static versus mobile devices: Using the same four

data sets we compared the number of identified static devices.

While in the first two cases there was not much difference in

the percentage of static-to-mobile devices, when we applied

the Cycle Removal rule we had between 3% and 10% more

static devices. Devices such as the one in Figure 2 are now

correctly classified as static.

Considering the low entropy, cleanest path and highest

increase in the number of identified static devices we believe

Cycle Removal to be the most appropriate for general use.

VII. CONCLUSION

WiFi tracking data, taken as it is, shows abnormal behavior

such as devices moving in circles or going back and forth.

There are numerous sources for this type of noise in the

data and each raises different problems. Use of this type of

data directly can introduce a multitude of errors depending

on the application. We showed that even simple tasks such as

visualizing a path or differentiating static and mobile devices

can by difficult without proper data manipulation.

In order to clean the data, we offered three distinct solutions:

One uses RSSI values; another uses time intervals; and finally

��

����

��

����

��

����

��

����

��

����

�
���

�
��
�	���
��

�
�

�
������

��
���	

�
�����

��

����

����

����

����

����

�
�
�	
�
�
�

�

�
�

�

�
�	

�
�

���	���

�
��
�
��	
��

Fig. 5: Comparison between solutions, base and random

the most complex one uses cycles, repetitions in the data set.

To validate these solutions, we defined two metrics: the en-

tropy which measures how predictable consecutive detections

are, and the dissimilarity to the base data set measuring the

average distance between the scanners in the two sets.

Using these metrics, we showed that each solution has its

own advantages, and finding the best method is dependent on

the application. However, cycle removal seems to be the most

promising. It has the lowest entropy, and shows promising

results when visualizing paths.

REFERENCES

[1] M. Cunche, “I know your MAC address: Targeted tracking of individual
using Wi-Fi,” Journal of Computer Virology and Hacking Techniques,
vol. 10, no. 4, pp. 219–227, 2014.

[2] C. Chilipirea, A.-C. Petre, C. Dobre, and M. van Steen, “Filters for Wi-
Fi generated crowd movement data,” 10th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, pp. 285–290, 2015.

[3] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “VTrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems, pp. 85–98,
2009.

[4] Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty, “A hybrid model
and computing platform for spatio-semantic trajectories,” The Semantic
Web: Research and Applications, pp. 60–75, 2010.

[5] B. Bonne, A. Barzan, P. Quax, and W. Lamotte, “WiFiPi: Involuntary
tracking of visitors at mass events,” IEEE 14th International Symposium
and Workshops on World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pp. 1–6, 2013.

[6] T. S. Prentow, A. J. Ruiz-Ruiz, H. Blunck, A. Stisen, and M. B.
Kjærgaard, “Spatio-temporal facility utilization analysis from exhaustive
wifi monitoring,” Pervasive and Mobile Computing, vol. 16, pp. 305–
316, 2015.

[7] A. Musa and J. Eriksson, “Tracking unmodified smartphones using wi-
fi monitors,” Proceedings of the 10th ACM conference on embedded
network sensor systems, pp. 281–294, 2012.

[8] D. C. Salyers, A. D. Striegel, and C. Poellabauer, “Wireless reliability:
Rethinking 802.11 packet loss,” International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–4, 2008.

[9] Y. Kim, H. Shin, and H. Cha, “Smartphone-based wi-fi pedestrian-
tracking system tolerating the rss variance problem,” IEEE International
Conference on Pervasive Computing and Communications (PerCom), pp.
11–19, 2012.

[10] N. J. DeCesare, J. R. Squires, and J. A. Kolbe, “Effect of forest canopy
on gps-based movement data,” Wildlife Society Bulletin, vol. 33, no. 3,
pp. 935–941, 2005.

[11] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 1948.

[12] L. Schauer, M. Werner, and P. Marcus, “Estimating crowd densities
and pedestrian flows using wi-fi and bluetooth,” Proceedings of the
11th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, pp. 171–177, 2014.

222225


