
Towards Decisive Garments for Heat 
Stress Risk Detection

Abstract 
One of the numerous applications of wearable 
computers is providing safety in occupations where 
heat-related injuries are prevalent. Core temperature, 
as a parameter that cannot be measured by on-body 

sensors is a variable that is specifically interesting for 
realizing such applications. In the context of the design 
of a sensor-shirt that can be used by firefighters, in this 
paper we study the importance of different types of 
sensor measurements and their placement for 
estimating core temperature. We propose a model for 
inferring the dangerous states of core temperature. Our 
evaluation results show that our model can to a great 
extent estimate hazardous situations caused by heat 
accumulation. 
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INTRODUCTION 
Heat stress may cause a person’s body temperature to 
rise above the hyperthermic threshold of ����-�����C. 
Prolonged and/or severe hyperthermia may result in 
disability or even mortality. This situation is a common 
casualty among people with occupational heat exposure 
such as firefighters, mineworkers, and any other type 
of profession which involves operations in high 
temperatures, radiant heat sources, high humidity, 
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direct physical contact with hot objects, protective 
clothing, or strenuous physical activities.  

Heat stress is directly detectable by measuring a 
person’s core body temperature.  Common ways of 
measuring core temperature are, however, oftentimes 
invasive as in swallowing core temperature pills 
(intestinal), or using rectal probes. Such measurement 
methods are not practical for use on an occupational 
basis. Having the possibility of measuring many types 
of physiological parameters, wearable sensors may 
provide the potential of estimating core temperature 
from other measurements. However, it remains an 
open question which sensors can or should be used for 
such measurements, and how measurements are to be 
combined. Difficulties are aggravated when the sensing 
should take place in an unintrusive fashion.  

In the context of design of a sensor-shirt (Figure 1), in 
this paper, we explore accurate estimation of core body 
temperature through highly unintrusive wearable 
sensors. In particular, we concentrate on developing a 
model that takes an existing dataset containing input 
from multiple on-body and environmental sensors and 
ask ourselves: (1) which sensor measurements are 
important for accurate temperature estimations, and 
(2) how machine learning techniques can be used to 
create a model which can capture the hazards of heat 
exposure. While previous research has focused on 
accurate estimation of core temperature, our main 
contribution is showing that although accurate 
estimation of core temperature may not be easily 
feasible, a limited number of well-placed on-body 
sensors can be effectively used to obtain an accurate 
classification of hazardous and non-hazardous core 
temperatures. 

We organize the rest of this paper as follows. In the 
following section we will first introduce the related 
work. In the third section we discuss our research 
methodology in developing a model. In the fourth 
section, we subsequently evaluate our proposed 
solution. We come to conclusions in the fifth section. 

RELATED WORK 
The application of wearable technologies targeting the 
risks of occupational heat exposure has recently gained 
attention. There are in general two groups of 
researchers who have focused on dealing with such 
risks. The first group has focused on designing 
wearables that can measure physiological parameters 
that are relevant for heat-related injuries. The focus of 
such research is in providing a wearable infrastructure 
that can measure and transmit certain biometrics 
without further analysis of the data [5,8,9]. 

The other group of researchers have focused on the 
important problem of estimating core temperature and 
physiological strain. For instance, derivative body 
temperatures have been studied as an estimate for 
core temperature [10]. In addition, indicators based on 
internal and external factors (physiological strain and 
heat stress indices) have been proposed to estimate 
the thermal load on the body [3,7]. All in all, the 
results of this research suggests that correct estimation 
of core temperature (especially, in a non-controlled 
setting) is a challenging problem [11]. When such 
estimation is needed to be done from wearables, the 
challenge becomes even bigger. To the best of our 
knowledge, there is little research proposing solutions 
for estimating core temperature from non-invasive 
physiological parameters provided by wearable 
computers [2,4]. The work most in-line with ours is the 

Figure 1: A sensor-shirt for 
estimating fire-fighters health 
risks. 
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one proposed in [4]. However, the authors have 
proposed a model for estimating heat-stress risk 
without considering the importance of each of these 
sensor measurements. They use the mean skin 
temperature on various spots as a proxy for core 
temperature. Nevertheless, none of the previous 
studies have considered the use of different non-
invasive sensors, considering both the operational 
restrictions, and their placement, as well as, an 
accurate inference model. These are all essential 
requirements for designing a sensor-shirt to be used in 
critical situations. 

RESEARCH  METHOD 
Our main goal is to predict the occurrence of health 
risks due to heat stress. As core temperature is not 
easy to measure directly with sensors, we study the 
possibility of estimating it through sensors embedded in 
a shirt. A standard approach for doing so consists of 
two steps. 1) Feature selection: to study the 
importance of a set of sensor measurements and their 
placement in correct estimation of the core 
temperature. 2) Model development based on the 
selected measurements: to correctly estimate core 
temperature. In order to perform the above-mentioned, 
we use an available multi-parameter dataset provided 
by [1] which is collected during a fire-fighting training 
session of 12 male subjects who have performed 
different activities both in normal (���C) and extreme 
thermal conditions (���C). Several parameters are 
present in the dataset such as heart rate (HR), 
temperature in different body parts, rectal core 
temperature, phase change material (PCmaterial), 
activity type, and the cooling type. 

 

Feature selection: What sensors to choose 
from? 
By performing feature selection on the dataset, we will 
decide on the placement of sensors on the shirt such 
that we have a better estimate of core temperature but 
also such that the choice of features (which leads to the 
choice of sensors) is practical with respect to the design 
of a sensor-shirt. We rank features using a recursive 
feature selection algorithm in terms of their importance 
in the estimation of core temperature. Using a feature 
selection algorithm, many models are trained with 
different subsets of the features and the best set of 
features is chosen. For this purpose, we have used an 
implementation based on Random Forest Algorithm, 
which adds random features and remodels [6]. The 
overall ranking of features is presented in Figure 2.  As 
seen in Figure 2, none of the features have been found 
as unimportant as the importance of all these features 
is confirmed. Within these features, the most important 
one in prediction of core temperature are the 
candidate’s identity (Name), and aural temperature. 
The duration of activity (Deltat) appears to be the least 
important. Studying these results, and considering the 
practical consideration of designing a sensor shirt, we 
choose the selected set of features composed of; trial 
type, PCmaterial temperature, activity, chest 
temperature, and HR. The most important features in 
the estimation of core temperature, which are aural 
temperature and the candidate’s identity, are not 
considered. The aural temperature cannot be practically 
measured using a shirt. Considering the candidate’s 
identity implies training the model for every individual 
who is going to use a sensor shirt. 

 

Figure 2: Ranking of different 
features in prediction of core 
temperature. (The importance 
of all features is confirmed and 
none of them is rejected or 
considered as tentative) 
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Figure 3: Estimation of core temperature from complete 
and selected set of features.  (TotalPredicted and 
SelectedPredicted represent prediction from the 
complete and selected set of features.) 

The result of the estimation with a complete and 
selected set of features using a random forest 
algorithm is presented in Figure 3. We see that there is 
a considerable difference between estimations with the 
complete set of features and the selected set. 
Nevertheless, in the following section we show how this 
selected set can also be used in creating a model for 
avoiding heat stress. 

Model development: Why estimating core-
temperature is not an option 
Having knowledge about core temperature, the heat-
stress risk can be estimated. Therefore, the most 
obvious solution in estimating heat stress risk is the 
correct estimation of core temperature. In this section, 
we show why such an approach does not work. We 
formulate a problem to estimate core temperature from 
a set of other measurable features and we compare 
different algorithms in solving this problem. The 
requirement that these algorithms need to satisfy is 

having the possibility of estimating a numeric output 
(rather than a categorical one). In other words, they 
should be regression-based rather than classification-
based. Among many different possible algorithms, we 
have chosen the following:  

Bayesian networks (BNET), which are well-known 
models for allowing domain expert knowledge as input. 
To use such input as well, we chose this algorithm. We 
used the hill-climbing algorithm to learn the model 
structure and the parameters of the continuous 
variables are learnt by Gaussian distribution on the 
discovered model structure. Domain knowledge was 
further used to refine the model. 

Neural networks (NNET), which are less intuitive for 
domain experts to understand but sometimes lead to 
better models than Bayesian networks. 

Multi-linear regression (REG), which is strong in 
capturing linear relationships. Pre-analysis of the 
features showed a considerable linear relationship 
between variables. Therefore, we also use linear 
regression to predict the core temperature from the 
partial set of variables. 

We compare the performance of these algorithms in 
terms of the error metrics mentioned below. In what 
follows, �� represents the actual value and��

�
 the 

forecasted value, respectively: 

• Root Mean Squared Error (RMSE), provides the 
sample standard deviation of the difference 
between the estimated and observed values.  

RMSE = �����
��

���

�
 

 REG BNET NNET 
ME 0.003 0.0007 0.0067 

RMSE 0.4250 0.5336 0.4101 
MAE 0.2858 0.3695 0.2757 

MPE 0.0049 0.0152 0.0177 

MAPE 0.775 0.999 0.744 
 
Table 1: Comparison of 
accuracy in terms of different 
error metrics in forecasting 
core temperature from selected 
set of features. 
 

 

Class 
Selected 
Features 

Complete  
Features 

35vs.36 0.52 0.65 
35vs.37 0.73 0.75 

35vs.38 0.98 0.99

36vs.37 0.73 0.84 

36vs.38 0.97 0.98 
37vs.38 0.93 0.92 

 
Table 2: Classification accuracy 
of different core-temperature 
classes using complete and 
selected set of features. 
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• Mean Error (ME), also measures the difference 
between the estimated and actual value in the 
same unit as the original data. This way models 
that do consistently under/over estimate are found. 
ME = �

�
� ��� � ���

�

���  

• Mean Absolute Error (MAE), shows how close 
forecasts are to the eventual outcome. As this 
metric is measured in the same unit as the data, it 
is more understandable than the rest of the 
metrics. 
MAE = �

�
� ��� � ���

�

���  

• Mean Absolute Percentage Error (MAPE), is the 
average of the magnitude of error with respect to 
the magnitude of the actual value.  
MAPE = �

�
� �

�����

��

��

���  

• Mean Percentage Error (MPE), is an average of 
the percentage errors with respect to the 
magnitude of the actual value.  
MPE � ����

�
�

�����

��

�
���  

Table 1 compares the accuracy of the previously 
mentioned algorithms in terms of these error metrics. 
None of the algorithms is consistently better than the 
rest. As seen, the RMSE of these algorithms which 
shows the average temperature error, is in range of ���� 
� ����C. From the medical point of view, this is a rather 
large error value and mostly unacceptable for critical 
medical applications. That is why building a model for 
accurately estimating the core temperature is not a 
useful option. The ultimate goal for estimating core 
temperature is to infer only the hazardous events that 
will lead to heat stress. Therefore, it is important to 
only correctly capture the non-hazardous core 
temperatures from the hazardous ones. Estimation 
accuracy of lower temperatures does not provide any 

advantage in an application such as firefighting. A 
model that can only estimate the temperatures passing 
the danger threshold and distinguish it from the 
temperatures below the danger threshold will meet 
these requirements. 

Model development: Heat stress hazard 
model as an alternative to core temperature 
estimation  
Our important requirement is that temperatures in the 
heat stress zone are correctly distinguished from those 
that are not. Therefore, apart from the previous models 
that treat core temperature as a numerical variable we 
perform analysis on core temperature by treating it as 
a two-class categorical variable; dangerous (above 
��

�C)/safe (below ���C). In other words, we turn the 
previous regression problem into a classification 
problem. To build the new model, we discretized the 
core temperature to its integer unit range. Next, we 
built and learnt a Bayesian network on the discretized 
data. 

EVALUATION 
As this is a classification problem, we cannot use the 
previously mentioned error metrics for evaluation. ROC 
curves can better be used for evaluation of a 
classification model through cross-validation. In such 
curves, a bigger area under the curve would suggest 
better classification. We have trained the Bayesian 
network both from the complete and selected set of 
features resulted from the feature selection phase. ROC 
curves and the estimation accuracies are presented in 
Figure 4 and Table 2, respectively. Although using the 
complete set of features in general might result in a 
higher area under the curve, the selected set of 
features can also perform well, especially in 

(a) 

 

(b) 

Figure 4 ROC curves for 
comparing the classification 
accuracy of hazardous/safe 
classes from (a) complete (b) 
selected set of features. (In the 
figure “Temp1vsTemp2” refers to 
classification of temp1 and temp2 
from each other) 
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distinguishing dangerous temperatures from non-
dangerous ones. In other words, in distinguishing the 
ones above ���C (35 vs 38, 36 vs 38, 37 vs 38). 

CONCLUSION 
In this paper, we proposed a model for real-time 
analysis of physiological parameters for estimation of 
heat stress risk. Using a dataset collected during a fire-
fighting training session, we studied the importance of 
different types of sensors, their placement and 
effectiveness in estimation of core temperature. Our 
results show that although precise estimation of core 
temperature with high accuracy is a challenge, it is still 
possible to classify core temperature in hazardous and 
safe zones with high accuracy. 
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