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Abstract—Understanding the social dynamics of a group of
people can give new insights into social behavior. Physical prox-
imity between individuals results from the interactions between
them. Hence, measuring physical proximity is an important step
towards a better understanding of social behavior. We discuss
a novel approach to sense proximity from within the social
dynamics. Our primary objective is to construct a spatio-temporal
social graph from noisy proximity data. We address the technical
and algorithmic challenges of measuring proximity reliably and
accurately. Simulations and real world experiments demonstrate
the feasibility and scalability of our approach. Our algorithms
doubles the sensitivity of proximity detections at the cost of a
slight reduction in specificity.

I. INTRODUCTION

Widespread availability of digital traces from e-mail ex-
change, online social network activity, or photo sharing web-
sites attract a growing number of scientists to the field of
Computational Social Science [1]. However, these digital
traces often provide a partial view of the social behavior of
people in the real world. Wearable sensors further enable the
emerging fields of Computational Social Science and BigData.
Whether they are installed on an ad-hoc miniaturized device,
or integrated into a smartphone or a smart watch, we already
wear a number of sensors on a daily basis. These sensors allow
scientists and practitioners to collect data about social behavior
directly from the perspective of the individual, and they are
capable of measuring different social signals through a variety
of technologies [2], [3]. Physical proximity is one of these
signals and it is the focus of this paper.

In the real world, we often get physically close to the peo-
ple we interact with, for example to have a quick conversation
at the bus stop, for a business meeting, or due to a queue in
front of a counter. Proximity has been used as a proxy to study
different types of social interactions, from the relationships in
the work place [4], [5], [6] to the dynamics in a crowd [7], [8].
Depending on the specific application and goal, various aspects
of physical proximity can be of interest. For instance, we can
measure the frequency of interactions between members of two
departments in a company or measure the precise amount of
time two persons spend facing each other. Physical proximity
data provides valuable insights into social behavior.

Current approaches are either based on self-reports and
video cameras, or on on-body sensors. While the former
present limitations of data sparsity and scalability, the latter
tend to be specific to certain applications. For example, the
approaches [9], [7] used to sense face-to-face interactions
measure proximity only within a short distance and cover
uniquely the angle of gaze. The techniques that sense colo-
cation [10], [11] do focus on a wider area of detection, but

perform the measurements with a coarse granularity over the
time dimension. These approaches are suitable to study higher
level social relationships, such as co-workers, friends, etc.
Unfortunately, these techniques rarely deal with the specific
characteristics of the device, the medium, and the environment,
which cause noisy and lossy measurements. They are designed
to be deployed to more controlled environments (e.g. an office,
a lab, a conference hall) than those where usually crowded
events take place. In this work we describe and evaluate a
method that provides a reliable, fine-grained, and generally
applicable proximity measurement.

A. Challenges

Designing a method to sense proximity poses a variety of
challenges at different levels. At the technological level, the
sensor must detect, in absence of physical contact, physical
proximity between individuals within a specific range. Typical
examples are infrared, ultrasonic, and radio-frequency sensors.
This measurement should be performed consistently within
a well-defined range, and as uniformly as possible over this
delineated area. As the device might be worn for an extensive
amount of time, it should be unobtrusive, ergonomic, and
energy-efficient.

At the processing level, the collected detections must be
filtered to overcome the inherent limitations of the technology,
the medium, and the environment. These limitations provoke
lossy and noisy measurements, meaning that detections might
be missed or erroneously added, for example due to corruption
or interference to the signal. The ability of the method to cope
with these disturbances is a strong requirement. In fact, the
quality of the measurement will be defined by the extent to
which the method will be able to deal with these limitations.

In this paper, we propose a method to reliably measure
physical proximity based on a device composed of a sensor
that can detect other sensors nearby and a processing unit that
can filter these detections, and a filtering algorithm. In our
experiments, we used an ad-hoc device which allowed us to
deal with the challenges at both levels. However, our approach
is applicable to other devices as well, such as mobile phones.
We dealt with the challenges that belong to the technological
level in [12], [13]. In this paper we focus mostly on those that
belong to the processing level.

B. Our approach

We assume that each individual wears a device with an
associated unique identifier. Periodically, each sensor broad-
casts its identifier, and this transmission is received by the
sensors within a range d. We say that sensor u detects sensor



Fig. 1. A proximity graph representing a group of individuals. The blue disc
represents the detection range.

v at time t if it receives that particular transmission containing
the identifier of v. Conceptually, each sensor collects these
detections along with the time of reception t. If we model every
device as a vertex, we obtain a series of what we call proximity
graphs. Each proximity graph in this series represents a unit
of time, and it contains an edge from vertex u to vertex v if
sensor u detected sensor v at that specific time. In principle,
the proximity graph is a directed graph, but we can drop the
edge direction and consider the detection as symmetric. Figure
1 pictures an example of a proximity graph.

The proximity graph is a representation of proximity be-
tween individuals, and as such it can represent the texture
of a crowd [14]. It can be used to study the underlying
social behavior. Note that the proximity graph is a type of
spatio-temporal graph, but it does not contain any location
information, such as the absolute position of the individuals,
or information about distance or angle of detection. An edge
is “only” a boolean relationship, as it connects two individuals
and it represents whether or not they were close enough to each
other at a specific time. Although minimal, the evolving series
of proximity graphs contains information that can be used
to study systems such as epidemic models, crowd dynamics
as queues and pedestrian lanes, social ties, etc. Moreover, it
can be augmented with other sources of information, such
as profiles or different sensor data, to correlate patterns of
proximity with various aspects of social behavior.

We want to construct the series of proximity graphs over
time through a number of devices. In particular, we want
to perform the measurement reliably, filtering out the noisy
detections and reconstructing the missing ones. To this end,
we follow a data mining approach where we focus on higher-
level analyses of the collected data instead of trying to solve
the problem at a lower layer, such as by improving the sensor
or the MAC protocol. This work makes the following primary
research contributions. We present the design of a method
based on a radio, a protocol used to create a social ad-
hoc wireless network, and a processing pipeline to improve
the quality of the proximity graph by reconstructing missed
detections and eliminating false detections. We evaluate the
reliability of the approach both in simulation and with real-
world experiments.

II. MODEL

In this section we present the problem definition and the
proposed solution, but first we proceed by introducing our
model. We consider a time interval which we divide into T
frames, each having a duration of γ time units. In this paper,

Fig. 2. A series of detections between two sensors represented through a bit
string.

γ is taken to be 250, 500, 750, or 1000 ms. Consider a series
of detections S(u,v) = 〈b1, . . . ,bT 〉 between two sensors u and
v. In this case, bi = 1 if and only if a detection message sent
by v was successfully received by u in frame i. Hence, S can
be practically represented through a bit string. Theoretically,
more than one transmission can take place, but we assume
that detection messages are sent regularly with a frequency
of 1

T . We will informally speak about a detection at time
i, to mean a detection during frame bi, and indicate frame
i with bit bi. We aggregate the detections of u about v and
vice versa together in a single string, by performing a logical
OR between the respective bit strings. This design decision
was taken to overcome missing data, but a logical AND could
also be possible, for example in case a stronger requirement
of symmetry is necessary. Figure 2 shows an example of a
bit string representing the proximity detections between two
sensors.

A. Problem definition

Ideally, if two sensors are within a given threshold d of
physical distance for an interval of time, they should be able
to detect each other at every time. This would produce an
ideal series S where subsequences of set bits are contiguous
for the whole duration of the proximity. Extracting the edges
of the proximity graphs from such a string would have a trivial
solution. However, the incomplete and noisy measurement pro-
duces misdetections that cause incorrect values to be assigned
to some frames. The consequence of these incorrect bit values
is a number of excessive or missing edges in the proximity
graphs. To overcome this, a more sophisticated solution is
required. Fortunately, the nature of the measurement is bursty.
This means that correct detections tend to appear together, and
false detections tend to be isolated. This nature is inherent due
to the social behavior being measured, as individuals tend to
stay close for a certain interval of time, and then separate [15].
We want to identify these bursts in S. Once the bursts have
been identified, we can can set the unset bits within the bursts,
hence correcting the missed detections. Also, we can unset the
isolated bits that are not part of any burst, hence eliminating
false detections. Moreover, while minimizing the number of
missed detections, we also want to minimize the number of
false detections introduced by the method.

The bursty nature of the measurement implies that a
detection is often surrounded by other detections within a
certain window of time. This means that S is characterized by
set bits surrounded by other set bits nearby. We can obtain
a smoothed version S′ of S by applying a window-based
smoothing technique to S as follows. A window is defined as
window(S, i,n)= {b j ∈ S | j≥ i−b n

2c∧ j≤ i+b n
2c}, with n> 1



Fig. 3. A series of detections after applying density-based clustering. Blue
frames are part of the core of the cluster, while green frames are density-
reachable from them. The red frame represents noise and the bit in it will be
unset, while the bits in the yellow frames will be set. (minPts=3, epsilon = 2)

and odd (we ignore the case where n = 1 as the technique has
no effect). Parameter n defines the size of the window. Given
a bit string S = 〈b1, . . . ,bT 〉, we define S′ as S′ = 〈b′1, . . . ,b′T 〉
where b′i = 1 iif ‖{b j ∈ window(S, i,n) | b j = 1}‖ > ρ , with
b n

2c< i≤ T−b n
2c. We define b′i = 0, with i≤b n

2c∨ i> T−b n
2c.

Informally, we let the window slide over S to produce a
new bit string where at each slot a bit is set if and only
if there are enough set bits around the corresponding bit
in the original string (including that bit). This effectively
sets the unset bits in a burst and unsets the isolated ones
(when ρ > 1). While simple and effective, the behavior of the
technique depends on the choice of the two parameters n,ρ ,
for which no well-informed heuristics exists, hence limiting the
applicability of the technique. In the next section, we propose
an alternative technique that behaves similarly, but permits an
estimation of its parameters. The strength of this approach lies
in the consistency between the estimation technique and the
semantics of the estimated parameters.

B. Density-based clustering

Given the bursty nature of S, we can use a density-
based clustering algorithm and cluster dense subsequences of
bits together. These clusters would correspond to the bursts
of detections we are looking for, while the outliers would
correspond to the noisy detections to be ignored. In particular,
we propose to use DBSCAN [16]. In S, the distance between
two bits bi and b j is defined as dist(bi,b j) = |i− j|. A bit bi is
directly density-reachable from another bit b j if their distance
is not more than ε (in that case it is said to be part of its ε-
neighborhood) and if b j is surrounded by a sufficient number
of bits to consider them a cluster, denoted as minPT S. A bit
bi is called density-reachable from b j if there is a sequence
of bits b1, . . . ,bk, . . . ,bn with b1 = b j and bn = bi where each
bk+1 is directly density-reachable from bk. Two bits bi and b j
are density-connected if there is a third bit bk that is density-
reachable from both. A cluster is a subset of S composed of
mutually density-connected bits, plus any bit that is density-
connected to them. A point that is not part of a cluster is
considered noise. Figure 3 shows the result of the clustering
algorithm on a series of detections between two sensors.

Analysis. One can see a correspondence between the
window-based smoothing technique and the density-based
clustering technique. In both cases, we identify bursts by
thresholding the number of set bits within a certain “radius”,
and we set the unset bits in the burst. In the former, we set a bit
in S′ if there are at least ρ set bits within a certain distance, de-
fined by the window size n, in the original string. In the latter,
we set the unset bits between density-reachable bits, which are
similarly identified based on the minimum number of set bits
minPTS within an ε-neighborhood. For this reason, one would

Fig. 4. The k-distance of bi for different values of k. The black frame
indicates detection bi.

expect to obtain similar results through the two techniques.
Note that the application of DBSCAN to our model affords
a more efficient implementation than general DBSCAN. The
runtime complexity of general DBSCAN is O(N2), as each
data point needs to be evaluated against all other data points to
find its ε-neighbours. This runtime complexity can be reduced
to O(NlogN) by means of an accelerated indexing structure
such as a spatial index. In our model based on bit strings,
collecting the ε-neighborhood of a bit has a constant cost as it
requires to evaluate the bits within the ε-distance. As ε is fixed
and evaluating a bit in a string has a constant cost, the cost of
DBSCAN applied to our model is linear to the number of bits
in the string. This makes the runtime cost of the density-based
clustering technique comparable to the cost of the window-
based smoothing technique.

DBSCAN does not need any training phase and it does not
require to define a number of clusters in advance. However,
it does require that the data corresponds to a single density
distribution function. In DBSCAN, the expected density dis-
tribution is defined through the parameters ε and minPT S, and
the algorithm is very sensitive to them. As we do not know
the density distribution in advance, we need to estimate these
parameters. We propose such a technique in the next section.

C. K-nearest neighbors analysis

To study the density distribution of S we propose to
compute the distance within which a bit will find at least k
bits, by also taking into account that more bits can be at the
same distance. By combining this notion of distance with the
number of bits within that distance, we can estimate density.
In particular, we propose to compute the distance of the k-
Nearest Neighbors (k-NN), denoted as k-distance(bi). Given
the definition of dist(bi,b j), the k-distance of detection bi is
the δ such that:

(i) ‖{b∗ | b∗ = 1∧dist(bi,b∗)≤ δ}‖ ≥ k.
(ii) ‖{b∗ | b∗ = 1∧dist(bi,b∗)< δ}‖< k.
‖{b j, . . . ,bk}‖ denotes the cardinality of the set and hence the
number of detections. Figure 4 shows the result of the k-NN
analysis run on the series used in Figure 3.

Computing the k-distance of each detection in the string
permits an overview over the relationship between distance and
neighborhood size. These in turn relate to the two parameters
of DBSCAN ε and minPT S. In fact, the k-distance of bi is the
ε necessary to collect at least k other detections around it. As
such, it can be used to select the correct ε that satisfies minPT S
for the detections in the bursts. Usually, minPT S is known in
advance and is bounded to the definition of a cluster and the



noise in the data, and it can be used as a basis for the value of
k. With large enough clusters, the detections should present a
common k-distance that corresponds to a representative density
of the clusters, except for the noise or the members of clusters
smaller than k. Selecting an ε that is close to this common k-
distance guarantees that DBSCAN will cluster the detections
together with the others within the k-distance.

The k-distance plot1 is a means to study a k-distance
distribution. This plot is constructed as follows. For a particular
value of k, the k-distance for each point is computed. These
values are sorted in ascending order. The sorted list of points
is plotted on a Cartesian plane, by using the k-distance value
as the y coordinate and the position in the sorted list as
the x coordinate. We will use and show k-distance plots in
the evaluation sections, to select the DBSCAN parameters.
Note that in this work we selected ε manually to show
the impact of the different choices on the behavior of the
method. However, approaches have been proposed to select
ε automatically through a numerical analysis of the k-distance
plot[17].

D. Proposed solution

Our proposed solution to extract a series of proximity
graphs from a series of detections consists of the following
steps. The detections are collected with their timestamps from
each sensor, and they are aggregated and converted to a bit
string representation. The k-NN analysis is performed on all
the bit strings together, by computing the k-distance of each
detection in each string, and sorting all these values together
into a single list. At this point, depending on the technology
being used to perform the measurement, usually a range of
valid values of minPT S is known in advance and it is used
as k to compute the k-distances. Finally, each bit string is
clustered with the representative k-distance as ε and k as
minPT S. The extracted clusters and noise are used to correct
the misdetections, and finally the series of proximity graphs
can be generated.

III. EVALUATION IN SIMULATION

In this section we present the evaluation in simulation
of our proposed solution. The objective of this evaluation
is to validate whether the method can construct correctly a
proximity graph in a controlled environment, in the face of
both data loss and noise.

A. Methodology

For a scenario, we selected a social environment where
individuals walk around and form groups dynamically, to sim-
ulate a social location such as a museum or a conference. Here
we describe the different components we used to simulate our
scenario and the metrics we used to evaluate the performance
of our solution.

Mobility patterns. We generated 10 mobility patterns with
BonnMotion [18] using the Reference Point Group Mobility
(RPGM) model [19] for a simulated crowd of 100 individuals
moving for 60 minutes inside of a square arena of 25x25m.
Each pattern was generated through a different random seed,

1In the literature this is usually called k-distance graph, but we use the term
plot to avoid confusion.

but with the same set of parameters. The generated patterns
lead to a list of (x,y) coordinates describing where each
individual will be at any given time. The individuals move
with a speed of between 0.3 and 1.2 meters per second, but
they can pause for up to 60 seconds. They form groups of
a minimum size of 2 individuals and a maximum of 4, and
when an individual comes in proximity of a different group
it will join the new group with a probability of 0.9. Each
group has a semi-circular shape with an average diameter of 2
meters. These parameters were chosen to simulate realistically
the size, the inter-distance and the speed of movement of
groups of individuals in the desired scenario, while maximizing
dynamicity.

Simulator. Each individual wears a simulated device. We
simulated the devices in accordance with the devices we used
for our real world evaluation [12]. These nodes have an Atmel
ATXMega128 CPU with 8k of RAM, 128k of Flash memory,
and a Nordic nRF24L01+ wireless radio. To simulate the
wireless network we used the OMNeT++2 simulation engine
with the MiXiM3 framework for wireless and mobile network,
the de-facto simulation environment for mobile ad-hoc and
sensor networks [20]. The devices form an ad-hoc wireless
network through an extension to the GMAC protocol [13]. In
perfect conditions, the simulated transmission range is some
3.5 meters. For our purposes, we influenced these conditions in
multiple ways through the simulator and protocol parameters.

Metrics. We extracted a series of proximity graphs directly
from the coordinates of each mobility pattern and we consider
these as our ground truth. We used a distance range of 3.5
meters to construct the proximity graph, as this is the ideal
transmission range of our simulated devices. To measure the
performance of our proposed solution we compute the number
of:
• false positives (FP): detections that are present in the

measured proximity graph but not in the ground truth.
• false negatives (FN): detections that are present in the

ground truth but not in the measured proximity graph.
• true positives (TP): detections that are present in the

measured proximity graph and in the ground truth.
• true negatives (TN): detections that are missing in the

measured proximity graph and in the ground truth.
We use these tests to compute two statistical measures of

performance for binary classification tests. Sensitivity can be
used to measure the ability of the test to identify positive
results and is defined as sensitivity = T P

T P+FN . Specificity can
be used to measure the ability of the test to identify negative
results and is defined as speci f icity = T N

T N+FP . Intuitively, they
measure the ability of the sensor to detect correctly proximity
and the absence of it, respectively.

B. Setups

According to our approach, each sensor periodically broad-
casts its ID through the radio, and a reception of such a
transmission is considered as a detection. There are three main
parameters we used to influence the behavior of the wireless
network, and as such of the detections. We evaluated each of
the 16 combinations of the three parameters over all the 10

2http://www.omnetpp.org
3http://mixim.sourceforge.net



Raw measurement Density-based Window-based

Setup Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

100slots0SNR1000ms 0.972±0.002 0.999838±0.000008 0.973±0.002 0.99970±0.00003 0.982±0.001 0.99874±0.00004
100slots0SNR750ms 0.972±0.002 0.999876±0.000008 0.972±0.002 0.99983±0.00001 0.982±0.001 0.99894±0.00004
100slots0SNR500ms 0.972±0.002 0.999926±0.000003 0.973±0.002 0.999915±0.000003 0.982±0.001 0.99926±0.00003
100slots0SNR250ms 0.973±0.002 0.999986±0.000001 0.973±0.002 0.999986±0.000000 0.978±0.001 0.99979±0.00001
100slots10SNR1000ms 0.856±0.008 0.999997±0.000001 0.857±0.008 0.999989±0.000001 0.876±0.007 0.999949±0.000004
100slots10SNR750ms 0.856±0.008 0.999998±0.000001 0.857±0.008 0.999997±0.000001 0.872±0.007 0.999985±0.000002
100slots10SNR500ms 0.857±0.008 0.999999±0.000001 0.857±0.008 0.999999±0.000001 0.867±0.008 0.999995±0.000001
100slots10SNR250ms 0.857±0.008 0.999999±0.000000 0.857±0.008 0.999999±0.000000 0.862±0.008 0.999999±0.000000
4slots0SNR1000ms 0.54±0.01 0.996899±0.000001 0.938±0.006 0.99746±0.00007 0.932±0.006 0.9971±0.0001
4slots0SNR750ms 0.53±0.01 0.999997±0.000000 0.946±0.003 0.99941±0.00006 0.927±0.006 0.9974±0.0001
4slots0SNR500ms 0.53±0.01 0.999998±0.000000 0.95±0.01 0.99975±0.00003 0.921±0.008 0.9979±0.0001
4slots0SNR250ms 0.51±0.02 0.999999±0.000001 0.93±0.01 0.99995±0.00001 0.892±0.016 0.9988±0.0001
4slots10SNR1000ms 0.33±0.01 0.999999±0.000000 0.79±0.02 0.99961±0.00008 0.799±0.009 0.9987±0.0001
4slots10SNR750ms 0.33±0.01 0.999999±0.000000 0.797±0.008 0.99961±0.00007 0.79±0.01 0.99923±0.00005
4slots10SNR500ms 0.32±0.01 0.999999±0.000000 0.809±0.008 0.99988±0.00003 0.778±0.009 0.99971±0.00002
4slots10SNR250ms 0.31±0.01 0.999999±0.000001 0.79±0.01 0.999987±0.000009 0.74±0.01 0.99997±0.00001

TABLE I. COMPARISON OF THE RESULTS OF THE RECONSTRUCTION OF THE PROXIMITY GRAPH FROM RAW DATA AND WITH THE TWO TECHNIQUES.
THE RESULTS PRESENT THE AVERAGE OUTCOME OVER THE 10 MOBILITY PATTERNS FOR EACH COMBINATION. FOR THE DENSITY-BASED CLUSTERING

TECHNIQUE, THE CHOSEN PARAMETERS WERE minPT S = 1, AND ε = 5,8,8,14 FOR EACH GROUP OF SCENARIO RESPECTIVELY. THE VALUES FOR ε WERE
CHOSEN BY STUDYING THE K-DISTANCE PLOT FOR EACH GROUP. FOR THE WINDOW-BASED SMOOTHING TECHNIQUE, THE CHOSEN PARAMETERS WERE
ρ = 1, AND n = 3,5,7,9 FOR EACH GROUP OF SCENARIO RESPECTIVELY. THE VALUES FOR n WERE CHOSEN EXPERIMENTALLY TO OBTAIN COMPARABLE

RESULTS WITH RESPECT TO BOTH SENSITIVITY AND SPECIFICITY.

mobility patterns, for a total of 160 simulation runs.
First, we can choose the number of slots used by the

GMAC layer for the broadcasts. In GMAC, time is divided
into a sequence of frames, and each frame is composed of a
number of slots. The slot allocation algorithms of GMAC are
based on Slotted Aloha [21], and are used to share access to the
wireless medium. At a high level, the main difference between
GMAC and Slotted Aloha is that GMAC exploits duty cycling.
Slotted Aloha is an always-on protocol, whereas GMAC turns
the radio on only for a small percentage of the total slots
in order to save energy. Slots in which the radio is powered
up are known as active slots, in contrast to inactive, or idle
slots, where the radio is powered down. By controlling the
number of active slots and their allocation strategy, we can
control the number of “collisions” when multiple sensors are
within the range d, and hence of loss of detections. In particular
we experimented with the 4slots setup, where four randomly
allocated active slots are used (introducing a large number of
collisions), and the 100slots setup, where each node has a
slot assigned statically according to its ID (ideally avoiding
collisions completely).

Second, radio irregularity can introduce variations in
packet reception and it can be caused by factors related to
the device and to the medium. Examples of the first ones
include the antenna type, the transmission power, antenna
gains, receiver sensitivity, receiver threshold and the Signal-
to-Noise Ratio (SNR). Factors related to the medium are
the medium type, the background noise, and some other
environmental factors, such as the temperature and obstacles
within the propagation media [22], [23]. While simulating
some of the medium factors is more complicated, most of these
factors are considered explicitly by the simulation engine [24],
including those specific to the characteristics of our devices.
Here, we concentrate in particular on the SNR, relaxing the
assumption of a uniform disc of transmission and reception.
We experimented with the 10SNR setup, where a SNR thresh-

old of 10 is used, and the 0SNR setup, where the threshold is
completely ignored.

Third, the frame length is expressed in time units, and
it defines the periodicity with which nodes broadcast their
ID. It defines the rate at which detections are collected. This
rate acts as a sampling rate for our sensor, and it should
be chosen according to the dynamicity of the behavior to
be measured. For instance, it is desirable to use a frame
length a number of times shorter than the minimum amount
of time two sensors can be in each other’s proximity. This
allows to obtain potentially multiple detections during that
interval and overcome possible loss of detections. We will
show that increasing the sampling rate is very important to
filter out noise. On the other hand, a higher sampling rate
increases energy consumption, as the radio is used more
frequently. There is a trade-off between energy efficiency and
the sensitivity of the instrument. We experimented with the
1000ms, 750ms, 500ms, 250ms setups, which use a frame
length as their name suggests.

C. Results

We ran the 160 runs of simulation and computed the
sensitivity and specificity of the proximity graphs extracted
from the raw measurements, and obtained through window-
based smoothing and density-based clustering. Table I shows
the results. For the raw measurement, the sensitivity simply
measures the number of recorded detections, as it represents
the naive approach that uses only set bits for the construction
of the edges. For the raw measurement, two things should be
noted. First, changing the number of slots and the allocation
algorithm causes nearly 50% of the detections to be missed due
to collisions. Second, the change in SNR causes an additional
miss of detections between 10% and 20%, depending on the
number of slots used.

Looking at the results of our approach, one can notice that
the two techniques do provide very similar results, as expected.



Fig. 5. k-distance plot for scenario 4slots10SNR250ms. For readability, the
plot is limited to points with a k-distance smaller than 120. The k-distance is
expressed in frames, hence each frame here represents 250ms.

They are able to reconstruct the detections missed due to
collisions consistently, i.e. a very low standard deviation across
the different runs for the same setup, and effectively, i.e. more
than doubling the sensitivity in all the 4slots scenarios. On the
other hand, our approach cannot improve the results for the
100slots scenarios. While this is understandable for the almost
perfect conditions of the 100slots0SNR setups, one would
imagine that our approach would reconstruct some of the data
missed due to the SNR threshold. Moreover, the improvement
introduced by our approach to both the 4slots scenarios brings
the sensitivity close to the results for their corresponding
100slots scenarios, suggesting that most of the reconstructed
data comes from the data missed due to collisions only. The
reason is to be found in the very consistent and fast drop of
coverage at the borders of the detection disc due to the SNR
threshold in simulation. In a real deployment, the effect of
the SNR threshold is to increase the probability of a radio
transmission to be missed by another radio, as the sender
reaches the border of the disc of the receiver. This probability
increases quickly as the radio reaches the disc border, but still
some transmissions should be received. What we experienced
in simulation is that the radio passed from receiving everything
to nothing. This basic on/off behavior is to be expected in
absence of interference [25].

In effect, the SNR threshold causes the detection range to
simply shrink. This hypothesis is confirmed by the absence of
improvement when the frame length is decreased in the 10SNR
scenarios. In fact, with a higher detection rate and without
this on/off behavior, one would expect a higher chance that at
least a few detections would make it through the disc border.
Fortunately, this behavior is expected only in simulation, as it
has been shown that the behavior of real links in low-power
wireless networks, such as ours, deviates to a large extent from
the ideal binary model used in several simulation studies. In
particular, there is a large transitional region in wireless link
quality that is characterized by signicant levels of unreliability
and asymmetry [26]. In the remainder of this paper, we stick to
the density-based clustering technique only, as it allows for an
estimation of its parameters through the K-nearest neighbours
analysis.

Choosing epsilon. To obtain the results presented in Table
I, we have carefully chosen the values for ε by using the

Fig. 6. Relationship between ε , sensitivity and specificity for scenario
4slots10SNR250ms and minPTS = 1.

k-distance plot as a reference. Figure 5 shows one of these
plots and in particular the plot for our most realistic scenario
4slots10SNR250ms, for k = 1, . . . ,15. For small values of k,
the plot presents lines with a slope characterized by points
with low k-distance values, and whose gradient changes once
and very quickly towards the end. The points in the part of the
curve with a low slope represent detections inside of clusters,
and their k-distance value is the distance from their k-NNs.
Note that all curves are consistently bimodal, meaning that the
data presents a single density distribution, as expected and as
required by DBSCAN. For readability, the plot presents only
points with k-distance values under 120, but the data presents
points with k-distance up to around 10000. These are the
points that represent the distance between two detections that
happened during two distinct and temporally distant moments.
The k-distance is expressed in frames, so a k-distance of 1
represents 250ms.

To choose ε with k = 1, we concentrated on the elbow of
the curve where the slope increases quickly, i.e. between k-
distance 10 and 20 (for our experiments we chose a prudent
value of 14 to preserve specificity). The points in this range
represent detections that are in the sparse areas of the clusters
or at their boundaries. Their k-distances are good candidates
for our choice of ε . One has to be careful though, as a
larger ε increases the probability to merge adjacent clusters.
When this happens, the algorithm sets also the bits that
correspond to moments when the sensors were not in physical
proximity. The consequence is an increase in the number
of false positives. Although false positives do not affect the
sensitivity of the measurement, they decrease the specificity.
To investigate the relationship between ε , the sensitivity and
the specificity we ran DBSCAN on the data that belongs to
scenario 4slots10SNR250ms with different values of ε and
minPT S = 1. The results are presented in Figure 6.

The results show that the sensitivity of the measurement
increases with larger values of ε , as false negatives are turned
into true positives by the algorithm. The sensitivity slows its
slope after around ε = 20, as the optimal solution is reached.
After this point, adjacent clusters start being merged, with true
negatives being turned into false positives. This is evident by
the specificity curve that starts decreasing around that same
value of ε . These results show that good values of ε can be
chosen by a correct read of the k-distance plot. Similar results
can be obtained with larger values of minPT S. Note that the k-



(a) Accuracy for 1% of noise (b) Accuracy for 5% of noise (c) Sensitivity and specificity for 1% of noise

Fig. 7. Recognition of noise through different values of minPTS. Epsilon was chosen for each minPTS by reading the k-distance plot.

distance plot is often the only instrument available to estimate
ε , as the measurement of sensitivity and specificity requires
ground truth data.

Filtering out noise. Until now, we have kept minPT S fixed
to 1, so that also single detections could generate edges in the
proximity graph. In a scenario where isolated detections can
be generated by corruptions and interferences to the signal, a
larger value might be necessary. This way, DBSCAN requires
a larger minimum number of detections to establish a cluster,
and this enables it to recognise noise. The downside is that
short intervals of physical proximity risk to be filtered out as
well, when the number of detections that characterise them is
smaller than minPT S. This problem is particularly relevant for
larger frame lengths, as they produce a lower detection rate
and hence less detections for the same interval of time.

To investigate this hypothesis, we injected artificial noise
into the data generated by the simulators. We ran three
experiments where we set 1%, 5% and 10% of the bits in
each bit string, respectively. For each pair of nodes, the bits
were chosen uniformly at random. Each test was repeated 10
times and the results in Figure 7 show the average values of
accuracy in identifying the injected noise. The plots do present
error bars, but due to the very low standard deviation they are
not visible.

The results show that for 1% of noise the algorithm is able
to recognise 80% of the noise already with a minPT S of 4.
For the experiment with 5%, 60% of the noise is recognised
correctly with a minPT S of 10. We do not present results for
the experiment with 10% of noise as with minPT S of 10 the
accuracy was below 1%. These results validate our hypotheses.
In fact, by specifying a larger value for minPT S we are able
to recognise an increasing amount of noise. Moreover, by
increasing the detection rate the algorithm is able to recognise
more noise, i.e. a difference of 10% between the 1000ms
and 250ms frame length respectively. Note that, in particular
with higher rates of noise, some of the randomly selected bits
might be already set or belong to already existing bursts, hence
not producing actual noise. This means that a 100% accuracy
is an unrealistic result to reach. Overall, the results of these
experiments show that, for realistic noise rates, the algorithm
is able to recognise and filter out noise without a big impact
on the sensitivity and specificity of the instrument. Also, they
show the function of the detection rate with respect to the
ability to filter out noise.

IV. EVALUATION IN THE REAL WORLD

In this section we present the results obtained by applying
the proposed approach to data collected during two real world
social events.

A. Methodology

To explore the behavior of our approach on real data,
we measured proximity information at two social events. In
particular, we first conducted a controlled experiment in our
laboratory, where we collected both proximity information
and ground truth. Afterwards, we conducted a large-scale
experiment during an IT conference attended by around 250
individuals. The devices were running the same software and
protocol as the virtual devices in our simulations, and were
hence using the GMAC protocol to broadcast their IDs every
second to a short distance of 2-3 meters. Every device recorded
the list of IDs received by the sensor at each second in the on-
board storage unit, and we later collected this data for our
offline analyses. The sensors were using 64 active slots and
would choose randomly which slot to use to broadcast their
ID. This combination represents a compromise between the
100slots and 4slots simulated setups. The devices were also
broadcasting a second type of transmission. In fact, between
two short-range transmissions, a long-range transmission was
broadcast up to about 20 meters. This second broadcast
contained the list of IDs received by each device during the
previous frame, hence comprising only short-range detections.
We captured these long-range transmissions through stationary
devices called “sinks”. Sinks capture the radio transmissions
exchanged by the devices, but do not transmit any data over
the ad-hoc wireless network. We used this data to visualize at
the events the evolution of the proximity graphs in real-time.
Long-range transmissions were not used to detect proximity.

B. Evaluation against ground truth data

We conducted a first experiment in a controlled environ-
ment to collect ground truth data about physical proximity. For
the experiment, 12 individuals participated to a cooperative
social game in our laboratory. The experiment lasted about
45 minutes and was designed to replicate a conference hall
scenario. The game required the individuals to form groups
and interact to solve a quiz. At any time the individuals could
switch groups, mimicking the way people switch conversations
during a coffee break. During the experiment, the individuals
were wearing our badge devices on their chest, in a similar



(a) k-distance plot (with zoomed curve) of the ICT
conference dataset

(b) (zoomed) k-distance plot for the controlled ex-
periment

(c) Sensitivity and specificity study for the controlled
experiment

Fig. 8. Analyses of the bit strings extracted during two real-world experiments.

way as a typical conference badge is worn. In addition to
our badges, we used a real-time location system (RLTS) 4 to
track the position of each individual at each time. Moreover,
we annotated the evolution of the formation of the groups
through 5 video cameras and a human observer. From these
two sources, we extracted two ground truth data sets.

Results. We performed the study of the sensitivity and
the specificity of our proximity measurements against both
ground truth data sets. The results were consistent with both
ground truth sets but, due to space constraints, we report in
Figure 8(c) only the results against the RLTS data, as it was a
harder task. In fact, when our badge is worn on the chest, the
body partially shields the transmissions, biasing the sensing
area towards the front. On the other hand, the ground truth
was extracted from the RLTS following the assumption of a
uniform disc. As a result, some detections might be missed
by our badges (e.g. when two individuals stand back to back),
decreasing the sensitivity of the measurement. Reading the k-
distance plot shown in Figure 8(b), we chose for ε a value
of 10. The validity of the choice is confirmed by the study of
the sensitivity and specificity for different values of ε shown
in Figure 8(c). Precisely, using our approach with this param-
eter the sensitivity of the measurement improved from 0.309
(raw measurement) to 0.670, while the specificity decreased
from 0.890 (raw measurement) to 0.733. Similar results were
obtained against the annotated ground truth (sensitivity from
0.389 to 0.792 and specificity from 0.908 to 0.759). These
results are strongly consistent with our simulations, as the
sensitivity is more than doubled in the face of a decrease in
specificity of only around 17%. This confirms the effectiveness
of our approach also in a real-world scenario and make us
confident of the quality of the measured proximity graphs.

C. Evaluation at an IT conference

We conducted a second experiment at an IT conference
attended by around 250 individuals, 137 of which were wear-
ing one of our devices. The conference presented six different
tracks, and the track rooms were all scattered around the main
hall of the event location. This main hall hosted the coffee
breaks, the lunch banquet, and the poster session. We recorded
proximity information for the whole event, but here we focus
on the two hours between 12:00 and 14:00 when the lunch
banquet and the poster session took place. No talks were given

4Ubisense: http//www.ubisense.net

during this period, and the individuals were all gathered in the
main hall. Figure 10 shows the device and the main hall. Due to
the nature and the scale of the experiment, it was not possible
to collect ground truth data.

(a) The device (b) The experiment location

Fig. 10. Setup of the real world experiment at an IT conference.

Results. After the experiment, we collected from each
device the logs containing the list of IDs each device detected
at each moment, and we converted the logs for each pair of
devices to our binary format. Figure 8(a) shows the k-distance
plot for the two hours we focus on. Also here, the k-distance
plot presents a single density distribution, with a stable slope
that increases only towards the right side of the plot. This
result was expected and is consistent with the data previously
obtained. We used this k-distance plot to choose the parameters
to extract the proximity graphs from the dataset. Figure 9
shows the effect of the different values for the parameters used
to cluster the detections between two specific individuals. Each
plot represents the same bit string, and each vertical black tick
in it represents a set bit in the raw data. The horizontal colored
lines over the ticks represent the clusters the ticks have been
assigned to. Each bit under these lines will result in an edge
in a proximity graph. Ticks that are not beneath a colored
line have been classified as noise. The top plot shows the
results of clustering the ticks with ε = 30 and minPT S = 2,
the center plot shows the results of clustering the ticks with
ε = 60 and minPT S = 4, and the bottom plot shows the results
of clustering the ticks with ε = 120 and minPT S = 2. These
plots show how, by increasing ε , clusters grow by merging
with adjacent clusters or by including isolated detections
nearby. Also, they show how certain isolated detections can
be classified as noise as a result of larger values of minPT S.
Looking at these plots, it is possible to conclude that the two



Fig. 9. The results of clustering detections using different values of epsilon and minPTS. Each plot represents the same proximity data between a pair of
devices. (Top) epsilon = 30, minPTS = 2 (Center) epsilon = 60, minPTS = 4 (Bottom) epsilon = 120, minPTS = 2. Each vertical tick represents a set bit, the
colored horizontal lines on top of the ticks represent the clusters those ticks have been assigned to. Ticks that are not beneath any line are classified as noise.

individuals were in physical proximity multiple times, with
two larger intervals and a few shorter ones.

When designing an instrument that will be deployed to real
environments, sources of misdetections should be considered
with high priority. During the experiment, we also measured
the radio transmissions with a special device called an RF
sniffer. This device scans a tunable band of radio frequency
waves and attempts to interpret the observed signals as packets
at high resolution. Where a normal device will observe nothing
in the event of two messages colliding, an RF sniffer will
observe some combination of the two messages generated by
the overlapping of the two individual radio signals. As such,
this device allows us to make some observations about the
number of collisions/corrupt packets that would be experienced
by devices in the vicinity of this sniffer. During the experiment
our RF sniffer observed 277764 packets. Of these packets,
137077 were valid and 140687 (or just over 50%) were
corrupt. These corrupt transmissions could be the result of
many factors (e.g., interference from nearby WiFi devices),
but the most likely cause is message collisions with other
devices. These collisions will result in missed detections. In
addition, it is likely that some corrupt packets (incorrectly)
passed the CRC check, resulting in being accepted as valid
data. The effect of these messages would be false positives, as
the corrupt data would cause the device to detect other devices
that are not truly at distance range, for example by modifying
the transmitted ID with the ID of another device due to a
flipped bit. These statistics show the necessity for a method
such as ours to cope with these effects.

V. DISCUSSION AND FUTURE WORK

We have shown how the application of data mining
techniques to data collected through a number of wearable
sensors can increase the reliability and the accuracy of physical
proximity measurements. We have also shown how the setting
of the parameters can influence sensitivity and specificity. In
particular, trying to increase sensitivity exceedingly can cause
specificity to decrease. Using an overly large value for ε can
cause true negatives to be turned into false positives. Hence,
there is a trade-off between the number of false negatives
that can be turned into true positives and the number of true
negatives that will be turned into false positives. It depends
on the different applications and algorithms whether false
negatives should be preferred to false positives and vice versa,
putting the choice in the hands of practitioners. Regardless
of this choice, one cannot assume a filtering of the data that

yields to a perfect reconstruction of the measurement. In fact,
algorithms and applications should be designed to cope with
unreliable and inaccurate data, instead of assuming perfect
measurements.

The presented approach assumes a single density distribu-
tion of detections that is valid for all pairs of devices at each
time. While this assumption is reasonable for scenarios such as
those described in this paper, where the density distribution of
individuals in space tends to be uniform and stable, more dy-
namic scenarios and longer measurements require a refinement
of our approach. For example, individuals located in highly
dense areas will experience a higher rate of false negatives and
will require a larger ε . The same individuals, at a different
time, might experience a lower rate in areas characterized
by lower density. For this reason, for our future work we
plan to extend our technique to consider data collected only
during a limited amount of time, and adapt the estimate of
ε accordingly. Moreover, we plan to investigate a stream-
based technique that will allow us to consider only these
most recent measurements in an online fashion. Ultimately,
this more localized approach should enable the integration of
the techniques directly on the devices.

VI. RELATED WORK

Extracting proximity information about social behavior
with on-body sensors is not a new idea. The Sociometer
[9] is a wearable device that can measure social signals
through IR sensors, microphones, Bluetooth, accelerometers,
etc. As the focus of the Sociometer is to measure face-to-
face interactions, proximity is sensed within a narrow frontal
cone-shaped region of up to two meters. Given that people
move around when they are talking, also the Sociometer suffers
from bursty measurements. For this reason, the data extracted
from the four IR sensors is processed with a Hidden Markov
Model that is trained to learn patterns of IR signals over an
annotated dataset. The focus on a frontal measurement and the
dependence on annotated data pushed us to persue a different
approach. Hitachi’s Microscope [5] is a device that provides
similar features to those characterizing the Sociometer.

In [7] an approach based on RFIDs is presented. Similar
to our approach, the device is worn on the chest of the
individuals, and the devices periodically exchange their IDs
through radio packets to detect physical proximity at close
range. One of such detections accounts for an interval of
proximity of 20 seconds. According to the authors, the devices
operate with parameters that can assess physical proximity



with a probability in excess of 99% over such time interval. As
the parameters and the method are not described, it is difficult
to identify the reliability of this assessment. Moreover, we aim
at a more sensitive measurement than the one provided over
those 20 seconds of potential false positives.

A different approach is followed for the iBadge [27]. The
iBadge is a wearable device that can measure location, orien-
tation and tilt, environmental settings, and speech. Orientation
and tilt are measured from acceleration and magnetic sensors.
The localization process is based on the location knowledge
of fixed beacons (devices with known location) attached to the
ceilings and the ability of the iBadge to accurately measure the
distance between itself, the fixed beacons, and other iBadges
in the room. The distance is measured by recording the arrival
time difference of a simultaneous transmission of an RF signal
and an ultrasonic burst. Using the distance measurements from
multiple beacons in the room, iBadge estimates its precise 3-
D location. Although iBadges cooperate in this localization
process, the measurement of physical proximity is based on
beacons. We consider this approach limiting and prefer a
decentralised approach that does not need or produce location
information.

VII. CONCLUSIONS

In this work we have presented a method to sense physical
proximity reliably. The method is based on a miniaturized
device running an energy-efficient protocol for social ad-hoc
wireless networks. The instrument can operate for weeks with
one battery charge, making it suitable for long studies. The de-
tections extracted from the network can be processed through
a data mining technique that reconstructs missed detections
and filters out noise. We evaluated both in simulation and in
real-world experiments that the approach is able to increase
the sensitivity of the sensor without lowering its specificity too
much. The approach does not require a learning phase, but only
a few parameters. We have provided a non-parametric method
to choose the values for these parameters. The method provides
a reliable measurement of proximity that is not bounded to the
particular technology used to sense physical proximity, and
can hence be used in a variety of scenarios and applications.
Our approach is not specific to our devices or to a particular
medium, but it is applicable to different technologies and
protocols, as long as the technological layer underneath can
map onto the proposed binary model.
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