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Abstract

We are only starting to understand how people be-
have when they are part of a crowd. This article
presents a novel approach for the study and man-
agement of crowds. The approach comprises of a
device to be worn by individuals, an infrastructure
to collect the information from the devices, a set of
algorithms for recognizing crowd dynamics, and a
set of feedback strategies to intervene in the crowd.
A fundamental element of our approach is to con-
sider crowds in terms of their tezture. The crowd
texture is represented through the proximity graph,
a data-structure that captures the spatial closeness
relationship between individuals over time. We ad-
dress its properties and limitations, a system archi-
tecture to measure and process it, and a few exam-
ples of insights that can be obtained from analyzing
it.

Introduction

We may be witnessing the dawn of a radical change
in the social sciences. With the availability of a
vast amount of online data through Online Social
Networks, and the usage of wearable sensing and
computing devices, scientists no longer need to rely
only on self-reported data on social behavior. The
availability of these digital traces now form an im-
portant asset for the field of Computational Social
Science [1] which investigates complex social sys-
tems through quantitative modeling. Research in
this field has so far focused mainly on the analysis
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of online social networks and of patterns emerging
from face-to-face interactions [2]. More recently,
attention is also being given to the study of crowds
and crowd dynamics.

The term “crowd dynamics” is used to refer to
patterns of crowd movement, and more precisely
to 'the coordinated movement of a large number of
individuals to which a semantically relevant mean-
ing can be attributed, depending on the respec-
tive application’ [3]. Examples include a queue of
people, the formation of uni-directional “lanes” in
bi-directional pedestrian flows, the intersection of
these lanes, or a group of people at a specific lo-
cation. We use the phrase texture of a crowd to
express the spatio-temporal relationships resulting
from the interdependencies in the social fabric of a
group of people. At this stage we may not yet fully
understand what potential insights can be derived
from crowd textures, but in any case it enables the
study of emergent spatio-temporal and social be-
havior of people in a crowd. For example, it allows
one to question to what extent a group is dispersed
in a crowd.

Discovering and investigating the texture of a
crowd is at the heart of research in crowd manage-
ment. As a prerequisite, it is essential to adequately
represent texture. A common approach is to sim-
ply place camera’s and collect their images and
videos. There are a few drawbacks: the computa-
tional cost of video analysis limits the scale at which
experiments can be run, cameras can be affected
by complications such as occlusion and incomplete
coverage, and privacy issues can emerge when the
footage is recorded from real-world events.

As an alternative, on-body sensors can be used.



Such sensors can collect rich information about the
individual behavior of each subject. We believe
a better understanding of crowd dynamics can be
achieved by sensing from within the crowd instead
of from an external observation point, as the sens-
ing is based directly on the crowd: the individuals
forming the crowd. An example of this approach
can be found in [3] where accelerometers are used
to recognize groups of people walking together.

A crowd is more than just a sum of individuals
and collective behavior results from a continuous
interaction and mutual influence between each in-
dividual and those nearby. The literature presents
a vast number of examples of such behaviors as ex-
hibited by animals such as swarms of insects, flocks
of birds and schools of fish, and there is evidence of
herding behavior also in humans [4]. Such networks
of influence are fundamental for the emergence of
collective behavior and are based both on the spa-
tial relationship between the individuals as well as
their social relationships.

In this paper, we address the representation of
the texture of a crowd through a (dynamic) proz-
imity graph'. The proximity graph provides a com-
putational representation of a crowd over time, it
allows the analysis of the crowd texture it repre-
sents, and it provides a way to compute the effects
of interventions into the crowd.

Modeling relationships between individuals
through a graph is not new. Social graphs rep-
resent social relationships between individuals
through edges. Also, on-body sensors have been
used to actually measure social graphs [2, 5.
Finally, since a few years various groups have been
dedicated to gathering data on the mobility of
people.

However, using a spatio-temporal graph to rep-
resent the texture of a crowd has not been done
before, and we are not aware of any attempts to do
so at the scale of (tens of) thousands of people. Be-
sides its intended scale, the novelty of the proposed
approach lays in the content of the proximity graph
and the semantic interpretation of an edge. At a
specific moment in time, an edge merely represents
that two individuals were close to each other. Mea-
surements over prolonged periods will reveal social
groups (as we will discuss in this paper), spatial

1Our definition of proximity graph should not be con-
fused with that of a Relative Neighborhood Graph, although
the two share some of their properties.

structures (like lanes, clogging, and so on), but also
the changes in the texture that result from targeted
interventions (like displaying announcements on a
large public display). The main contribution of this
paper is introducing the concept of crowd textures
and their representation with proximity graphs.

The remainder of this paper is organized as fol-
lows. We connect the local spatio-temporal nature
of crowds and crowd dynamics to the concept of
crowd texture. We then introduce the proximity
graph as a representation of crowd textures, along
with analytic examples. We describe a system ar-
chitecture for an instrument to extract a series of
proximity graphs from a crowd, analyze it, and
communicate feedback to the crowd. We present
an analysis of the proximity graphs we collected
during a real-world experiment through a wearable
device. We conclude by discussing possible exten-
sions to the presented work.

Crowds and Crowd Dynamics

A generally accepted definition of a crowd is that it
is a sizable number of individuals gathered together
at a specific location with a sufficient density dis-
tribution, for a measurable amount of time and for
a specific purpose. Moreover, the individuals in a
crowd generally act in a coherent manner, sharing
a social identity and common goals, interests and
behavior, in spite of coming together in a typically
unfamiliar situation.

Crowd behavioral patterns emerge from individ-
ual human interactions, which typically have a
strong local character: individuals in a crowd in-
fluence one another, and this influence is stronger
between nearby individuals. In fact, several models
of crowd dynamics - which give rise to large-scale
emergent behavioral patterns - do take into account
local interactions between individuals, as well as
the related measures of crowd density. For exam-
ple, the social force model and its extension for
panicking pedestrians [6] considers physical forces
between individuals (as well as forces between indi-
viduals and the environment). The forces depend
on the dynamic spatial relationships among close
individuals (more specifically, their distance). This
model can be simulated to show most of the co-
ordinated and uncoordinated behavioral patterns
mentioned above.
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Figure 1: Examples of analyses to perform on the proximity graph

From these continuous interactions, reflected in
the crowd texture, behavioral patterns in crowd
dynamics can clearly emerge. Therefore, by mea-
suring the crowd texture, substantial information
about the underlying crowd dynamics can be gath-
ered. However, in order to be useful, this informa-
tion needs to be put in the context in which the
crowd exists. The contexts can be diverse, e.g. a
football stadium, a train station, a music festival or
a scientific conference. A pattern such as clogging,
for instance, may occur in all these diverse contexts
as it depends on environmental constraints such as
the existence of narrow passages. In a music festi-
val or stadium, clogging may occur at the entrance
or exit of the festival site or stadium. Finally, in a
train station, clogging may occur at the entrance to
the station hall or entrance to a train, or at the ac-
cess to stairs/escalators. The same measured crowd
texture will clearly mean different things in dif-
ferent situations, with corresponding different risk
level assessments and different feedback strategies
to intervene in the crowd.

The Proximity Graph

A static proximity graph is a representation of the
texture of a crowd at a specific moment in time. In
its basic form, each vertex corresponds to an indi-

vidual. Two vertices are joined by an edge if the
two individuals they stand for happened to be in
physical proximity, within a chosen distance. Each
edge represents only the Boolean relationship with-
out capturing the actual distance. Time is gener-
ally discretized into small slots. If and only if two
individuals were detected to be in each other’s prox-
imity during a time slot, their associated vertices
will be joined by an edge for that slot. A proximity
graph is therefore dynamic; we speak of a proxim-
ity graph at time ¢ as a (proximity graph) snapshot
at t. Note that a proximity graph is naturally rep-
resented by a time series of proximity-graph snap-
shots. Although a proximity graph contains spa-
tial information, it does not rely on absolute po-
sitioning data. It is the global representation of
the texture of a crowd constructed from the local
perspective of individuals within that crowd.

A proximity graph incorporates information to
support the modeling of crowd dynamics where
the individual behavior is defined only on relative
neighborhood information. Basic models of flock-
ing behavior are of this kind, as they are controlled
by the following simple rules [7]. (1) Separation:
avoid crowding neighbors (short range repulsion),
(2) Alignment: steer towards average heading of
neighbors, (3) Cohesion: steer towards average po-
sition of neighbors (short range attraction) . Each
of the three rules can be applied by a member of



the crowd based only on local information, namely
its neighbors’ states, and no global view or absolute
spatial reference points are necessary. This type of
modeling has been successfully applied to human
herding behavior as well [4]. The above set of rules
has been extended in different ways since its intro-
duction to incorporate emotions, leadership etc.

Analyzing the proximity graphs

We now introduce a few examples of categories
of analyses that could be performed on proxim-
ity graphs, which correspond to the contexts men-
tioned in the previous section.

Fig. 1a presents a scenario where a crowd is ex-
iting a stadium. As each individual approaches the
exit, the local density increases given the physical
bottleneck imposed by the gate. In the proxim-
ity graph, the local density is represented for each
vertex by its degree, the number of incident edges
(depicted in the figure for a particular vertex with
thicker lines). Recognizing a congestion requires
measuring the gradient of the average density of a
crowd as it approaches the exit.

Fig. 1b presents a scenario at a train station
where a pedestrian flow is forming on a platform.
There are two groups of individuals: on the left
there is a stationary group waiting for a train,
on the right there is another group that has just
stepped out of another train and is heading towards
the exit. The detection of the pedestrian groups is
based on the transience of edges. In a time interval,
the transience of edges, and their repetition, deter-
mines the degree to which neighborhoods remain
the same. Intra-group edges present a relative sta-
bility. Instead, inter-group edges, depicted in red
in the figure, are characterized by a short-living na-
ture. By filtering out these edges, it is possible to
detect the two connected components representing
the two groups.

Fig. 1c presents a scenario at a music festival.
This type of event is usually attended by groups
of socially related individuals that tend to stick to-
gether during its course. Nonetheless, groups might
occasionally split e.g. to reach the bar, the rest
room, or due to the density in front of the stage.
In the figure, we picture a moment where a crowd
stands in front of a stage. The edges represent the
current proximity between the individuals, and the
thickness represents the accumulated time spent

close to each other over the whole period. Edges
representing past proximity have not been drawn.
In fact, they are not valid to describe the current
crowd texture, but are used to compute the accu-
mulated time. The detection of social groups re-
quires preserving only the edges that present a long-
lasting time interval when compared to the others.
Each vertex is annotated with a group label it has
been assigned to. Note that vertices that are far
apart can still belong to the same group as some of
its members might have currently and temporarily
split.

The awareness of the context

Up to this point, we have considered vertices corre-
sponding only to individuals. However, the proxim-
ity graph can be extended to represent other types
of objects as well, e.g. a door, an ATM, or a food
stand. This type of extension allows for a semantic
and contextual interpretation of the observed be-
havior. In fact, different interpretations can be ap-
plied to the same crowd texture, depending on the
context where the observation took place. Fig. 2
presents an example of how the same proximity
graph can be interpreted differently. Knowing it
was collected in front of an ATM, the left-most
graph can be interpreted as a queue. Instead, the
same graph can represent an orchestra, knowing
that the context was a stage (in this case the right-
most vertex in the graph corresponds to the con-
ductor while the other vertices correspond to the
musicians). Location awareness allows for the dis-
ambiguation of the meaning a proximity graph can
assume.

The concept of awareness can be generalized
through annotations. An annotation to a vertex
is a key-value pair that describes a specific prop-
erty of the object represented by that vertex, e.g.
gender, age, exit number, gate capacity, GPS co-
ordinate, staff role, etc. Annotations contribute
to awareness as they allow to picture more pre-
cisely the observed texture and support informed
decision-making. For example, through an anno-
tated graph it is possible to recognize at what spe-
cific exit a congestion has formed, if children are
involved, or whether stewards are already around
the area for support. Also, static vertices with GPS
coordinates annotations can act as absolute posi-
tioning reference points when necessary.
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Figure 2: Example of the dependency of the prox-
imity graph on contextual information

A consequence of the relative nature of the prox-
imity graph is that movement cannot be attributed
to vertices. An edge “breaks” when at least one
of the two individuals involved in the relationship
moves away. As the result of these actions is the
same, determining which one occurred is not possi-
ble. Going back to the platform example in Fig. 1b,
recognizing the short-living edges, depicted in red,
allows for the detection of relative movement be-
tween the two groups. Again, it is not possible
to determine for each group whether it is moving
or not. Extending the graph with static vertices
spread along the platform provides a solution to
the problem. In fact, the vertices belonging to the
moving groups would create short-living edges with
these static vertices allowing inference of move-
ment.

The temporal information encoded in the prox-
imity graph allows for more than the description
of crowd dynamics. As proximity can be a by-
product of social interaction, socially related indi-
viduals tend to spend more time close to each other
than strangers. This principle is at the basis of the
example depicted in Fig. 1c. For example, in [8] the
authors were able to analyze the social ties within
organizations by looking at low-frequency proxim-
ity information. In general, knowing how much
time two or more individuals have spent close to
each other, with possible addition of contextual in-
formation about location, enables the inference of
the type of social relation incurring between them.

Temporal information also enables the inference

of consequentiality. Imagine the festival scenario
depicted in Fig. 1c. Suppose we observe individual

Figure 3: Experimental device used for capturing
the proximity graph

A conversing first with B and later with C. If, later
on, we would note A, B and C conversing together,
we could imagine that B and C were introduced by
A. In the same way, we could predict that an indi-
vidual who was observed in proximity to a counter,
where tickets for drinks are sold, will eventually
show up at the bar. Similarly, the temporal di-
mension of face-to-face interactions has also been
investigated to study the spreading patterns of epi-
demic diseases in different types of social events,
e.g. a conference or a museum [5].

An Instrument

We identify the following requirements for an in-
strument to measure and analyze the proximity
graphs presented thus far. (1) It is composed of
a device that is wearable by an individual, and
(2) that is detectable, within a chosen distance
range, to measure proximity. (3) The informa-
tion measured by the devices is extracted and col-
lected through an infrastructure. (4) The collected
proximity graph is analyzed by a processing system
looking for patterns, and (5) feedback is transmit-
ted from the system to the individuals.

One notable way to implement our sensing de-
vice is an application running on a mobile phone.
Mobile phones are widely diffused across the popu-
lation, and already ship with both high computing
power, e.g. dual-core processors, and a broad range



of sensors, e.g. accelerometers, microphones, cam-
eras etc. On the other hand, with the decrease in
price and size of wearable technology, another way
of implementing our device is through a smart chip-
card, such as those currently used for public trans-
port tickets or for badges on the working places
(the same technology can be easily integrated into
a festival bracelet as well). Fig. 3 shows the device
we currently use for our experiments with the prox-
imity graph. We return to its description shortly.

Sensing technologies

As far as detectability is concerned, multiple tech-
nologies have been investigated in the past. In-
frared, ultrasound and radio-frequency sensors, e.g.
RFIDs and Bluetooth, have been utilized to track
face-to-face interactions and co-location. The gen-
eral approach to detection requires the assignment
of a unique identifier to each device. The ID is
periodically transmitted to nearby devices over the
communication medium, and the reception of such
a message constitutes a detection. Various aspects
influence the functionality of proximity detection,
and determine the vertices’ neighborhoods. The
range, direction, and angle of the transmission cone
bias the type of interaction being recorded. For ex-
ample, face-to-face interaction is tracked through
a transmission range within about 2 and 4 meters,
a frontal direction, and a narrow cone of about 20
degrees, e.g. via an infrared sensor. Conversely,
co-location is measured through long-range omni-
directional transmission, e.g. via Bluetooth. The
theory of Proxemics guides the choice of transmis-
sion range depending on type of social behavior
that one wants to measure. Measuring a crowd
texture poses a set of constraints to the detection
strategy: omnidirectionality to maximize the recall
of nearby devices, short-range transmission to de-
tect only close-by devices, and high-frequency to
grasp instantaneous changes to the texture.

System architecture

As neighborhood information needs to be extracted
and collected from the devices, they need to be con-
nected to a network that allows them to reach a cen-
tral repository. The mobility and the high density,
which characterize a crowded environment, make
centralized networks, such as cellular networks and

WiFi, unsuitable for this utilization. In contrast,
decentralized ad hoc wireless networks provide the
flexibility to design problem-specific protocols that
guarantee higher scalability. Typically, such net-
works make use of special devices, usually called
sinks, that receive data from on-body devices to
subsequently store that data at a central reposi-
tory. Sinks are spread around the event location
to achieve high coverage. The on-body devices can
reach the sinks by using a high transmission range,
or through dissemination protocols, e.g. gossiping
and routing. The sinks bridge the ad hoc wireless
network with the network where the central repos-
itory and the processing systems are situated. The
central repository and the processing system can
be deployed to one or multiple servers at the event
location or in a cloud service.

We connect the devices through an ad hoc wire-
less network, as it matches the given constraints
while enabling both the transmission of detection
messages and the exchange of information between
the devices. Also, it allows for the communication
with the external network for processing and feed-
back.

While data streams from the devices to the cen-
tral repository, the global view of the proximity
graph gets constantly updated. Periodically, the
processing system analyses the proximity graph,
examining the crowd texture for known patterns.
Recognition of crowd dynamics is a classification
problem that requires statistical analysis of the
metrics of the graph, either at vertex, group, or
global level. The temporal information in the prox-
imity graph is exploited by analyzing snapshots, de-
fined by time intervals whose duration depends on
the analysis being performed. Graph algorithms
are potentially computationally expensive, intro-
ducing additional latency between the measure-
ment and the recognition of patterns. This requires
a system with sufficient computational power to an-
alyze a proximity graph within the required time
constraints.

Once the information is extracted from the prox-
imity graph, it can be presented for feedback. The
feedback can be sent to the crowd managers or di-
rectly to the crowd, either through the devices or
through fixed infrastructure, e.g. screens, speakers,
etc. While feedback can reach the control room
and the infrastructure over the reliable network,
devices can be reached via the ad hoc wireless net-
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Figure 4: Block diagrams for the processing chain

work. In the same way information is extracted
and collected from the devices, dissemination pro-
tocols allow feedback to reach specific individuals,
groups or the whole crowd. The intervention strat-
egy defines the information, the destinations, and
the techniques used to give feedback to the crowd.

A processing chain

We present now a processing chain that incorpo-
rates all the components presented above into a
loop. The processing loop is presented in Fig. 4a.
Each individual wears a device with a proximity
sensor capable of detecting the other devices within
a chosen distance range. The devices share a com-
munication medium that enables transfer of infor-
mation. The loop starts with the measurement of
the individual’s neighborhood through the device’s
sensor. Once the neighborhoods are measured, the
next step consists in the collection of the neighbor-
hoods from the devices to a central repository, to
compose the global view of the proximity graph.
Afterwards, the proximity graph can be analyzed
by a processing system to recognize crowd dynam-
ics. Possibly, feedback is computed, and sent to the
managers or to the crowd. At this point, the new
state of the crowd can be measured and the loop
can start again.

Fig. 5 shows a possible future instantiation. Peo-
ple at a train station are assumed to have proximity
sensors, for example, embedded into their smart-
phones, allowing for the detection of a proximity
graph. The analysis of the situation in the train
and on the platform may be used to subsequently
inform people where to board, or to leave the train.

Note that centralization is not strictly necessary
to the instrument. As individual behavior depends

on local context represented by the individuals and
the objects in close proximity, the analysis algo-
rithm can often be expressed based on a vertex-
centric local view of the graph. Following this ap-
proach, nearby devices can exchange their neigh-
borhoods right after the measurement step, and an-
alyze their local view of the graph autonomously,
without relying on a global view of the graph con-
tained in the central repository. This autonomy de-
creases the interval between the moment the state
of the crowd is measured, and the moment feedback
can be generated. This alternative is presented in
Fig. 4b. However, a third possibility is available: a
hybrid system where the devices locally aggregate
and process proximity information, and only these
aggregated views are later collected and processed
centrally. This latter approach provides both de-
creased latency in feedback generation and central
monitoring of the crowd. Moreover , it minimizes
the overhead of data extraction from the devices,
as only aggregated information is transmitted.

Real-World Experiment

To give a flavour of what can be achieved following
our approach, in this section we describe an exam-
ple application based on a real-world experiment we
conducted at an ICT conference. The conference
was divided into 7 tracks, each focusing on a spe-
cific ICT topic, such as High-Performance Comput-
ing, Software Engineering, Security, etc. Of the 250
attending individuals, 139 were wearing one of our
devices as a name tag throughout the whole day.
We asked each of the participants for their main
track of interest, as a hint to community member-
ship (note that the groups were not balanced, as for
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Figure 5: How to sense and use the texture of a crowd at a train station. The density inside the train
and on the platform is used to guide the individuals towards the less crowded coaches.

example one had only four individuals participat-
ing in the experiment). Table 1 shows the distribu-
tion of the participants across the tracks. The de-
vice, depicted in Fig, 3, has an Atmel ATXMegal28
CPU with 8k of RAM, 128k of flash memory, and
a Nordic nRF24L01+ wireless radio. To communi-
cate, the devices create an ad hoc wireless network
through an energy-efficient MAC protocol designed
for mobile social networks [9]. Through this net-
work, every second each device transmits its ID to
the devices nearby, within some 2-3 meters of dis-
tance, allowing for its detection.

The devices log detections on the on-board stor-
age unit along with their timestamps. At the end
of the event we downloaded these logs from the de-
vices for offline analyses. The devices were also
broadcasting a second type of transmission. Be-
tween two short-range transmissions, a long-range

transmission was broadcast up to about 20 me-
ters. This second broadcast contained the list of
IDs received by each device during the previous
second, hence comprising only short-range detec-
tions. We captured these long-range transmissions
through the “sinks” we installed in the main hall of
the event location. We used this data to visualize
at the event the evolution of the proximity graphs
in real time. Long-range transmissions were not
used to detect proximity.

Although we recorded proximity information
during the whole conference, we concentrate here
on the two hours between 12:00 and 14:00, when
the poster session and the lunch break took place.
During this time, all the participants gathered in
the main hall. Our goal was to investigate to what
extent during this time the participants stayed close
to people they share interests with, as indicated by



Track 1

Track 2 Track 3 Track4 Track5 Track 6 Track 7

Participants 27 9
In LCC 15 7
Correct Detections 0.53 1.0

0.62

19 4 26 10 27
13 3 20 4 22
0.0 0.74 0.0 0.77

Table 1: Sample statistics and results of the analysis.

Additional 17 participants were part of the

organization and were not labelled with one of the main tracks.

their main track of interest. To perform this anal-
ysis, we aggregated the series of proximity-graph
snapshots into a single undirected static graph, for
which we decided to join two vertices by an edge
if the two corresponding individuals had been in
physical proximity for at least 600 seconds during
the two hours. Each edge has a weight that ac-
counts for the total number of seconds the two in-
dividuals have spent in physical proximity. On the
largest connected component (LCC) of this graph,
we ran a state-of-the-art community-detection al-
gorithm [10].

The analysis we performed is analogous to
the detection of social groups presented earlier.
The community-detection algorithm assigns ver-
tices to communities trying to maximize modular-
ity. Graphs with high modularity tend to have
dense connections between vertices within com-
munities and sparse connections between vertices
across different communities. Intuitively, it groups
together vertices that are interconnected and have
spent long time together. Fig. 6 shows the results
of the analysis. Vertices are colored according to
the community they have been assigned to by the
algorithm, and labelled according to the main topic
of interest. The clustering tends to assign vertices
with the same label to the same community, sup-
porting our hypothesis and showing the validity of
the data extracted through the instrument. Note
that the algorithm does not make use of the noted
information about interests, but only of the topol-
ogy of the graph. One should not consider the main
track of interest as ground truth. In fact, many of
the individuals indicated their interest as one of
out of more possible ones. Moreover, as the partic-
ipants came from a number of universities and de-
partments, they tended to socialize also according
to different criteria, for example, with people with
whom they shared affiliation. Finally, the nature
of poster sessions and banquets stimulate people to
spend time in proximity to people belonging to dif-

ferent communities. We leave a deeper and more
sophisticated analysis of the experiment for future
work.

The unreliability of the wireless communication
and of the devices causes misdetections, meaning
that detections are missed or erroneously added.
Typical examples of these causes are “collisions,”
interferences of other sources of radio-frequencies
(such as WiFi spots), the shielding of the human
body, data corruption due to faults in the de-
vice, etc. For this reason, to extract the proxim-
ity graphs used in our analysis we pre-processed
the logs with a density-based clustering algorithm.
The algorithms exploits the “bursty” nature of the
collected data to reconstruct part of the missed de-
tections and filter out noise. Our simulations show
that this filtering phase greatly increases the sensi-
tivity of the instrument [11].

Discussion

The local nature of individual behavior in crowds
also affects the analysis of crowd dynamics through
other modalities. In [3], the authors propose a
processing chain for the recognition of crowd be-
havior from mobile sensors with pattern analysis
and graph clustering. Subjects wear on-body sen-
sors, and move collectively. Activity patterns are
then extracted from the sensors for individual be-
havior recognition, e.g. from accelerometer data.
Afterwards, a pairwise correlation of this informa-
tion between each pair of individuals is computed,
forming what they call a disparity matrix. Finally,
this information is transformed into a graph by per-
forming multidimensional scaling. In the obtained
graph, each vertex corresponds to a subject. The
neighboring nodes have similar behavioral charac-
teristics, and are thus more likely to participate in
the same dynamics. By performing a graph cluster-
ing algorithm, they are able to predict that the sub-



Figure 6: Community detection at an ICT confer-
ence. Colors indicate the detected communities,
labels indicate the main topic of interest of the in-
dividuals, edge thickness indicates the total amount
of time the individuals have spent in physical prox-
imity. The vertices have been positioned through a
spring-embedding algorithm. The algorithm takes
into account only the topology of the graph, hence
the layout is not related to location information
within the main hall. We have labelled each com-
munity with the label that appears most frequent
in it, and the value expresses the percentage of ver-
tices with that label appearing in their community.

jects corresponding to the vertices belonging to the
same cluster participated in the same group. By ex-
ploiting the information contained in the proximity
graph, only the behavioral data between neighbor-
ing vertices could be compared, reducing the cost
of an expensive step of the processing chain. The
proximity graph is a representation of the crowd
texture that can be used either to directly recognize
crowd dynamics, or to support recognition through
other modalities.

The mutual influence between individuals is an
interesting aspect of social behavior, as it can be
used to guide a crowd by targeting a subset of the
individuals through feedback information about the
current state. Although during the last few years,
we are starting to better understand crowd dynam-
ics, less is known about how to influence a crowd.

10

The proximity graph is a representation of a crowd
and it allows to compute interventions towards a
desired behavior. Consider the following (admit-
tedly still speculative) examples of simple interven-
tions on crowds as presented previously in their sce-
narios.

The example in Fig. 1la could represent a bottle-
neck at the entrance of a stadium. This is a typical
situation where people get pushed, and in the most
dramatic conditions also walked over. This behav-
ior often finds its origins in the absence of infor-
mation. The individuals at the back of the crowd
cannot see the high density at the entrance, or the
presence of a congestion, and may start to push. A
screen on top of the gate, visible for all the indi-
viduals, could depict with colors the density in the
front.

The example in Fig. 1b could represent a plat-
form in a train station. A common situation in
such a scenario is that people getting out of the
train tend to head towards the closest exit. Uneven
usage of exits could be avoided by feeding back in-
formation about less crowded exits.

Finally, the example in Fig. 1c could represent
groups of visitors to a festival. Such events are usu-
ally visited by groups of friends. It is common that
people lose contact with some members of their
group. Once the groups are detected, each member
of the same group can be guided towards the same
exit, so that they can find each other there.

These are just a few examples of the many pos-
sibilities that emerge once the texture of a crowd is
captured in a proximity graph. Our approach has
great potential to accelerate the emerging field of
Computational Social Science. In particular, the
capability of sensing the crowd from within, with-
out any requirement for location information or
centralization, in respect of the privacy of the indi-
viduals in the crowd. Moreover, it allows to com-
pute timely insights about the state of the crowd,
and communicate feedback to ensure safety and
comfort.
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