
Cost-Effective Resource Allocation for Deploying
Pub/Sub on Cloud

Vinay Setty1, Roman Vitenberg1, Gunnar Kreitz2, Guido Urdaneta2, and Maarten van Steen3

1University of Oslo, Norway, {vinay,romanvi}@ifi.uio.no
2Spotify, Stockholm, Sweden, {gkreitz,guidou}@spotify.com

3VU University and The Network Institute, Amsterdam, The Netherlands, steen@cs.vu.nl

Abstract— Publish/subscribe (pub/sub) is a popular
communication paradigm in the design of large-scale
distributed systems. A fundamental challenge in de-
ploying pub/sub systems on a data center or a cloud
infrastructure is efficient and cost-effective resource
allocation that would allow delivery of notifications
to all subscribers. In this paper, we provide answers
to the following three fundamental questions: Given a
pub/sub workload, (1) what is the minimum amount
of resources needed to satisfy all the subscribers, (2)
what is a cost-effective way to allocate resources for the
given workload, and (3) what is the cost of hosting it
on a public Infrastructure-as-a-Service (IaaS) provider
like Amazon EC2.

To answer these questions, we formulate a problem
coined Minimum Cost Subscriber Satisfaction (MCSS).
We prove MCSS to be NP-hard and provide an ef-
ficient heuristic solution based on a combination of
optimizations. We evaluate the solution experimentally
using real traces from Spotify and Twitter along with
a pricing model from Amazon. We show the impact of
each optimization using a naive solution as the baseline.
Using a variety of practical scenarios for each dataset,
we also show that our solution scales well for millions
of subscribers and runs fast.

I. Introduction

Publish/subscribe (pub/sub) has become a popular
communication paradigm that provides a loosely coupled
form of interaction among many publishing data sources
and many subscribing data sinks [1]. Many applications
report benefits from using this form of interaction, such as
application integration [2], financial data dissemination [3],
RSS feed distribution and filtering [4], business process
management [5], and social interaction [6]. As a result,
many industry standards have adopted pub/sub as part
of their interfaces. Examples of such standards include
WS Notifications, WS Eventing, OMG’s Real-time Data
Dissemination Service, and the Active Message Queuing
Protocol.

Traditionally pub/sub engines have been deployed on
in-house enterprise clusters. However, with the advent of
cloud computing, a viable alternative of running pub/sub
services in the cloud became available. An enterprise may
choose between using a generic pub/sub engine (such
as Azure Service Bus or PubNub included in Microsoft

Azure and Amazon EC2, respectively) and moving the
deployment of its proprietary engine optimized for the
application needs to the cloud. While the questions of
cloud resource allocation and cost become critical in this
context, they have never been considered for pub/sub
services.

In this paper, to the best of our knowledge we provide
the first formal treatment of this subject. We consider
the problem for a subclass of pub/sub systems where
notifications are generated due to social interaction: fol-
lowing the tweets of selected users in Twitter, monitoring
updates to the profiles of friends in Facebook, or receiving
instant notifications related to favorite artists and albums
in Spotify. These pub/sub applications are characterized
by a significant data volume, e.g., the Spotify pub/sub
service described in [6] is required to send an order of 2
Terabytes of notifications every day and Twitter is known
to send at least 8 Terabytes of tweets every day [7].
In such applications, every notification is intended to
be read by a human user so that having a cumulative
delivery rate to a particular subscriber above a certain
threshold will not bring any benefit. Therefore, in order to
guarantee that every subscriber is satisfied, the system has
to ensure that the rate of notifications of interest delivered
to each subscriber is not below a configurable satisfaction
threshold delivery rate.

We adopt a standard cost model used by Infrastructure-
as-a-Service (IaaS) providers such as Amazon EC2. This
cost model includes separate expense components due
to the use of virtual machines and bandwidth, under
resource constraints for individual virtual machines. We
formulate a problem of Minimum Cost Subscriber Satis-
faction (MCSS), which is how to allocate resources for the
given pub/sub workload so as to minimize the cost while
keeping every subscriber satisfied. While the main goal
of solving this problem is to help companies that move
their operation to the cloud, the problem is also beneficial
for minimizing resource consumption for companies that
continue using in-house deployment. We show that in some
cases there is an interesting trade-off between minimizing
resources of different types: minimizing the number of
virtual machines may lead to increased bandwidth con-
sumption and vice versa. In other words, the problem of

optimizing the cost is more complex than just separately
minimizing resources of each type.

We prove MCSS to be NP-hard and provide an efficient
heuristic solution. The solution works in two stage: first we
select a subset of the workload that is sufficient for satis-
fying all subscribers. Then, we assign the chosen subset to
virtual machines using an algorithm based on a customized
version of bin packing, with a number of optimizations.
While separating between the two stages may lead to sub-
optimality in the solution, we show experimentally that
this sub-optimality is insignificant for practical workloads.

We evaluate the solution empirically using large-scale
real traces from Spotify and Twitter. We use two baselines
in the evaluation: a (possibly non-tight) lower bound that
we derive as well as a naive solution. We show that the
proposed approach can cut down costs by up to 74% with
Twitter traces and up to 38% with Spotify traces when
compared to the naive alternative. On the other hand,
our solution performs only 15% worse compared to the
lower bound in many cases. Additionally, we show how we
gradually improve the results by incrementally introducing
a number of optimizations and evaluating the impact of
each optimization. The proposed solution runs in under 30
seconds for the Spotify workload with 5 million subscribers
and 1.1 million topics and under 25 minutes for the Twitter
workload with 30 million subscribers and 8 million topics.

In summary, our main contributions in this paper in-
clude: (1) a technique to estimate the amount of resources
needed to deploy pub/sub for social interaction on data
centers, (2) cost-effective resource provisioning based on
the Amazon EC2 pricing model, (3) formalization of
the resource provisioning problem for pub/sub, and (4)
a large-scale empirical evaluation to show the practical
benefits of our solution.

II. Pub/Sub model and Problem Definition
A. Background and Motivation

In this paper, we consider the problem of resource provi-
sioning for a special class of pub/sub systems designed to
drive notifications due to online social interaction among
users [6]. For example, in Spotify, a pub/sub engine is
used to notify users about the music activity (e.g. music
playback, playlist updates) of their friends and favorite
artists. Another example is Twitter, where users can follow
any other user, and published tweets are disseminated to
all the following users. In such systems, we can model users
as both topics and subscribers. A user is a topic if she has
followers subscribing to her publications and at the same
time, she can be a subscriber if she follows some users.

The notifications generated by these systems are gen-
erally in the scale of several Terabytes per day [6], [7].
In addition to that, each user generally subscribes to a
high number of notifications. For example, in a sample
we analyzed, more than 3 million users were receiving
more than 1000 tweets per day. For human users, having
a cumulative delivery rate in a given time unit beyond a

certain threshold may not be beneficial. To this end, in [8]
we defined satisfaction metrics that ensure delivery rates
of at least a predefined threshold, but, past this threshold,
users are not considered to be more satisfied. A pub/sub
system designed to meet the satisfaction threshold for all
subscribers can save significant amount of resources (e.g.
number of servers and bandwidth consumed). Given the
large-scale workload to be handled by such pub/sub en-
gines, distributing the workload on several servers becomes
inevitable. This often results in replication of publications
and hence demands for more resources. As a result, de-
signing a scalable and cost-effective pub/sub engine to
be deployed on a data center or a public cloud could
benefit from a tool to estimate and minimize the total
costs involved.

Customers of IaaS providers can usually rent virtual
machines (VMs) of certain predefined CPU, memory and
bandwidth capacities either on an hourly basis or for a
fixed duration. In addition to this, they are also charged
by the total incoming and outgoing (to and from the cloud)
bandwidth consumption of their application. Our goal is to
find an allocation of the pub/sub workload to a set of VMs
such that it minimizes the total monetary cost (combined
cost of VM utilization and bandwidth) while ensuring that
all subscribers are satisfied.

Intuitively, the monetary costs of deploying a pub/sub
system in the cloud is directly proportional to the size of
the workload it will handle (e.g. number of publications
and number of recipient subscribers). Hence, choosing a
subset of workload amounting to the least bandwidth
consumption so as to meet satisfaction of all subscribers
can readily save costs. In our model, each topic has its
own publication rate and choosing the subset of the topics
to meet satisfaction metrics can reduce the workload.
However, selecting a topic with all of its subscribers may
not always be beneficial to all the subscribers. On the
other hand, if we have a choice to include or exclude topic-
subscriber pairs, depending on their contribution to the
satisfaction of subscribers, we can choose a more resource-
efficient workload and do a cost-effective allocation. Thus,
in our model we choose a subset of the pub/sub workload
at the granularity of topic-subscriber pairs.

To simplify the problem, the only capacity constraint
we take into account for allocating load to a VM is the
VM’s bandwidth capacity. We do not explicitly consider
the constraints on other resources such as CPU, memory
and disks. The reason is that, in our system, resource
consumption is driven by the delivery of publications to
subscribers, which is essentially a network-bounded opera-
tion. Thus, bandwidth constraints also serve as constraints
on other VM resources. A pub/sub system generally has an
incoming stream of publications for each topic and an out-
going stream of notifications to all the subscribers of the
topic, thus requiring incoming and outgoing bandwidth
resources for deployment on the cloud. In our model, we
consider minimizing both incoming as well as outgoing

t3

t2t1
User v

satisfaction	

threshold

b1

b2

(a) Selecting either t1, t2 together or t3 alone
meets the satisfaction threshold of user v

(b) VMs available, white space
indicates available capacity

Fig. 1. Tradeoff scenario

b1

t3

t2

t1

b2

b3

Solution 1: selecting t1, t2 can be allocated
to existing VMs (no extra VMs needed)
but costs higher total bandwidth

Solution 2: selecting t3 requires
deploying third VM b3 but costs lower
total bandwidth compared to solution 1

Fig. 2. Two possible allocations
to meet satisfaction threshold of
the user v.

bandwidth. Typically, every IaaS provider has different
costs for incoming and outgoing bandwidth consumption.
However, to simplify the problem, we assume they cost
the same and that each VM has the same incoming and
outgoing bandwidth capacity.

Given that we want to minimize the cost of VM utiliza-
tion and the cost of bandwidth consumption, it is worth
noting that, there is a trade-off between the number of
VMs and the amount of bandwidth that is needed to
satisfy all subscribers. For example, consider a user v
subscribing to topics t1, t2, t3. Assume that the satisfaction
threshold is specified in such a way that t1, t2 together
satisfy v or t3 alone satisfies v (shown in Fig. 1(a)). In
addition, assume that there are two VMs b1 and b2 with
available capacity as shown in Fig. 1(b). Now based on the
definition of our satisfaction metric, there are two possible
solutions to meet the satisfaction of subscriber v, as shown
in Fig. 2. The allocation shown in Solution 2 uses three
VMs and yet consumes less bandwidth than the allocation
done in Solution 1 with two VMs.

To balance this tradeoff, we set the goal of our prob-
lem as to minimize the combined cost of VM utilization
and total bandwidth consumption. We define an opti-
mization problem with this objective in Section II-C. In
Section III-B as part of the solution, we employ various
optimization techniques to balance the above mentioned
tradeoff.

B. Model and Notations
Before we define the problem more formally, we intro-

duce the following notations:
T : A collection of l topics {t1, t2, ..., tl} in the system.
V : A collection of n subscribers {v1, v2, ..., vn} partici-
pating in the pub/sub system. A subscriber can subscribe
to one or more topics from T . Subscribers in a typical
pub/sub system are generally end-user applications (e.g.
Spotify client software). In the rest of the paper we use
subscribers and users interchangeably.
Tv : The interest of subscriber v, that is, the collection of
topics subscribed by v.
Int : The collection of interests {Tv1 , Tv2 , ..., Tvn

} for all
subscribers in V .
evt : Event rate of the publications generated for a topic t,
that is, the average number of events published to topic t

during a time unit (e.g., per minute or per hour). Without
loss of generality, we assume that evt > 0. When we say
‘event’ in the rest of the paper we mean a publication-event
message generated by the publisher of a topic intended for
all subscribers of the topic.
τ : A system parameter that represents the satisfaction
threshold for a subscriber. It is defined as a constant
specifying the number of events to be delivered to a
subscriber in order for the subscriber to be considered
satisfied.
τv : Subscriber-specific satisfaction threshold. In prac-
tice, the total event rate of the topics subscribed to by
a subscriber is sometimes less than τ . In such cases we
need to serve all the events the subscriber is interested in
to meet the satisfaction threshold. It can be expressed as
follows: τv = min(τ,

∑
t∈Tv

evt).
Vt ⊆ V : The (non-empty) set of subscribers to topic t.
Given Int, Vt can be derived trivially.
cost(t, v): Represents the non-zero cost of serving a topic-
subscriber pair (t, v) by any server/VM. For evaluation
purpose cost(t, v) = 2 · evt, to include both incoming and
outgoing bandwidth requirements which are proportional
to the event rate of the topic.
C1 : A function to compute the cost of renting virtual
machines from the cloud service provider.
C2 : A function to compute the cost of consuming the total
bandwidth (both incoming and outgoing) on the cloud
by a given pub/sub workload. Note that, to simplify the
problem, we assume the same cost function to compute
the cost of both incoming as well as outgoing bandwidth.
BC : A fixed bandwidth capacity of a virtual machine
which cannot be exceeded. We assume that bandwidth
capacity includes both incoming and outgoing bandwidth
capacity. We exclude the bandwidth consumed by any
communication between the VMs in this capacity.
bwb : The total bandwidth consumption (incoming as well
as outgoing) of virtual machine b.
B : A set of virtual machines allocated to handle the
given pub/sub workload, and an individual virtual ma-
chine is referred to as b ∈ B. We want to minimize
C1 (|B|) + C2

(∑
b∈B bwb

)
.

C. Formal definition of the Minimum Cost Subscriber
Satisfaction (MCSS) problem:

Given an instance of T , V and their interests Int, the
goal of the MCSS(T, V, ev, Int, τ, BC, C1, C2) is to deter-
mine the minimum cost in terms of the number of required
VMs and the total bandwidth consumed to satisfy all the
subscribers.

To capture the allocation of topic-subscriber pairs to a
VM we introduce an integer variable xtvb = 0, 1 which is
1 if the topic-subscriber pair tv is assigned to the virtual
machine b.

xtvb =
{

1 if tv is assigned to b
0 otherwise (1)

We now define the problem more formally below:

Minimize C1 (|B|) + C2

(∑
b∈B

bwb

)

Where, bwb =
∑
v∈V

∑
t∈T

xtvbevt +
∑
t∈T

(
max
v∈Vt

xtvb

)
evt

Subject to: bwb ≤ BC,∀b ∈ B∑
v∈V

fv = |V |

(2)
Where, fv is a an integer variable that indicates if sub-
scriber v is receiving a number of events that meets the
satisfaction threshold:

fv =
{

1 if
∑

t∈Tv
(maxb∈B xtvb) evt ≥ τv

0 otherwise (3)

In the above definition the total bandwidth bwb consumed
by a VM b is defined as sum of two expressions. The
first expression represents the outgoing traffic (number of
topic-subscriber pairs assigned to b multiplied by the event
rates of the topics). The second expression represents the
incoming traffic, which is exactly the sum of the event rates
of the unique set of topics that are assigned to a VM b.
The goal of maxv∈Vt xtvb in Equation (2) is to avoid adding
the event rate of a topic once for each pair and instead
only once per VM. In Equation (3) we use maxb∈B xtvb

to ensure that a topic-subscriber pair (t, v) is considered
towards satisfaction of v only if (t, v) is allocated to at
least one VM b.

We also define DCSS(T, V, ev, Int, τ, BC, C1, C2, CT), the
corresponding decision problem of MCSS, which is to
determine if it is possible to achieve a total cost of at most
CT , where, CT is a given constant.

D. Hardness of DCSS problem
To establish the hardness of DCSS we prove that the

well-known NP-Hard problem Partition Problem (PP) [9]
can be reduced to a special case of DCSS. We now define
the PP problem.

Definition II.1 (Partition Problem (PP) [9]). The task
of an instance of a partition problem PP(S) is deciding
whether a given multiset S = {x1, x2, ..., xn} of positive
integers xi can be partitioned into two subsets S1 and S2
such that

∑
xj∈S1

xj =
∑

xk∈S2
xk and S \ S1 = S2.

Theorem II.2. DCSS is NP-Hard.

Proof: Given an instance of PP(S), we create an
instance of DCSS in the following way: For each integer
xi ∈ S, create a topic t with evt = xi and a single
subscriber vi of the topic. This means that each topic
t costs 2xi bandwidth to be served since the incoming
and outgoing bandwidth each cost xi respectively. Set
BC =

∑
xi∈S xi and τ = maxxi∈Sxi to ensure all topic-

subscriber pairs are selected as part of the solution. We
also set C1(x) = x, and C2(x) = 0, meaning that the cost of

a solution will be the number of VMs used. Finally, we set
the cost threshold CT for the decision problem DCSS as
2.

With this reduction, a reduced instance of PP is in
essence the same instance where all input values have
been doubled. In the reduced instance, all topic-subscriber
pairs must be picked and this will use up exactly as much
bandwidth as 2 VMs have. Thus, if the reduced instance
is a yes instance, a partition can be achieved by letting S1
consist of all topics served by one VM.

III. Solution Approach
The Integer Program formulation of MCSS defined in

Section II is NP-Hard according to Theorem II.2 and hence
it is expensive to solve optimally in practice. Specifically,
with the typical scale of pub/sub systems consisting of
millions of topics and subscribers we need to deal with
millions of variables to be considered in Equation (2). To
the best of our knowledge, we are not aware of any IP
solvers with the ability to scale to millions of variables.
Instead, we propose a heuristic approach to solve MCSS.
We solve the MCSS problem by dividing it into two
relatively simpler sub-problems which are solved one after
the other, thereby introducing two stages in our solution.

In the first stage, we solve a simplified version of the
MCSS in which we are given a hypothetical single VM
with unlimited capacity. Then the goal is to meet the
satisfaction threshold of all subscribers by selecting topic-
subscriber pairs and allocating them to this hypothetical
VM with unlimited bandwidth capacity. This sub-problem
aims at selecting those pairs that minimize the total band-
width consumption. After having solved the first stage, we
move on to the second stage, in which we know that the
output of Stage 1 satisfies the constraint

∑
v∈V fv = |V |

from Equation (2). The goal of the second stage is to
allocate the selected pairs to VMs in a manner to satisfy
the capacity constraints of the VMs from Equation (2). We
also want to consider the trade-off between the number
of VMs and total bandwidth consumption explained in
Section II-A.

A. Stage 1: Selection of topic-subscriber pairs
The pseudocode of Stage 1 is presented in Alg. 2. In

this stage, for each subscriber, we select a subset of topic-
subscriber pairs that meet the satisfaction threshold of the
user while trying to minimize the bandwidth cost. Note
that, for each subscriber, it is basically a variant of the
knapsack problem [10] that can be solved optimally using
dynamic programming. However, given the large number
of subscribers and topics, the optimal solution is too costly
in terms of execution time. Instead, we solve the problem
using a greedy heuristic based on a benefit-cost ratio for
each (t, v) pair (see Alg. 1.).

The cost of a (t, v) pair is the amount of bandwidth it
requires, which is 2 ·evt for every (t, v). This is the amount
of (incoming) bandwidth required to push events for topic

Algorithm 1: Heuristic value of topic, subscriber pair
(t, v) having selected S

1 GetBenefitCostRatio(t, v, τv , cost(t, v),S)
Input: t, v, τv , cost(t, v),S
Data: benefit← 0 : Benefit of t towards v
remv ← 0: Remaining event rate needed to satisfy user v

2 remv ← τv −
∑

{(t′,v):(t′,v)∈S∧t′∈Tv} evt′

3 if remv > 0 then
4 benefit← min

(
1, evt

remv

)
5 return benefit

cost(t,v)

Algorithm 2: Stage 1 of solution for MCSS: Greedy
pair selection

1 GreedySelectPairs(T, V, ev, cost, Int, τ)
Input: T, V, ev, Int, cost, τ
Data: A : Array of size |T |
Result: S ← ∅ : Output set of (t,v) pairs

2 foreach v ∈ V do
3 τv ← min(τ,

∑
t∈Tv

evt)
4 foreach t ∈ Tv do
5 A[t]←GetBenefitCostRatio(t, v, τv , cost(t, v),S)
6 while

∑
(t,v)∈S evt < τv do

7 t← argmax{t′∈Tv} A[t′]
8 S ← S ∪ {(t, v)}
9 A[t]← 0

10 foreach t′ ∈ Tv do
11 if (t′, v) 6∈ S then
12 A[t′]←

GetBenefitCostRatio(t′, v, τv , cost(t, v),S)

13 return S

t into the individual VMs plus the amount of (outgoing)
bandwidth required to deliver the event to user v.

We define the benefit of (t, v) in terms of the contribu-
tion of t towards the satisfaction of user v. To determine
this benefit, we first calculate the remaining event-delivery
rate required to satisfy v, which we refer to as remv, which
is τv minus the sum of the event rates of the topics already
included in the solution to which v has subscribed (see
Line 2). If v is already satisfied without adding (t, v), then
the benefit of (t, v) is zero. If including (t, v) in the solution
makes v satisfied, then the benefit of (t, v) is 1 (maximum
benefit value); otherwise, the benefit is the ratio evt/remv

(Line 4).
Under this heuristic, all topics that contribute to satisfy

v without exceeding the satisfaction threshold have the
same benefit-cost ratio and are preferred over those that
exceed the threshold. The latter are penalized in propor-
tion to the cost they introduce (Line 5).

For each subscriber, all pairs with topics in Tv are
potential candidates for our solution. However, we want
to select the pairs with the least bandwidth costs. In this
regard, for each candidate pair the benefit-cost ratio is
computed using Alg. 1 and stored in an array A (from
Line 4 to Line 5 of Alg. 2). Then, we select the (t, v)
pair with maximum heuristic value in each iteration until
the satisfaction threshold τv for subscriber v is met (from
Line 7 to Line 12). In each iteration after selecting a (t, v)

Algorithm 3: First-Fit Bin Packing Algorithm for
Stage 2 of MCSS:

1 FFBinPacking(S, BC)
Input: S, BC
Data: b← new VM with bandwidth capacity BC
Result: B ← ∅ : Set of VMs with allocated (t,v) pairs

2 foreach (t, v) ∈ S do
// try assigning to existing VMs

3 foreach b ∈ B do
4 if evt ≤ BC − bwb then
5 b← b ∪ (t, v)
6 S ← S \ (t, v)
7 bwb ← bwb + evt

// Deploy new VM if existing VMs cannot fit
8 if (t, v) ∈ S then
9 b← new VM with bandwidth capacity BC

10 B ← B ∪ b
11 b← b ∪ (t, v)
12 S ← S \ (t, v)
13 bwb ← bwb + evt

14 return B

pair, the heuristic value of the rest of the pairs is updated
since the benefit of a pair (t2, v) decreases after having
chosen (t1, v) as the remaining number of events decreases.
A set of all the chosen pairs for every subscriber V is
returned in Line 13.

As an example for the selection of topic-subscriber pairs
consider the scenario in Fig. 1 of Section II-A. According to
our heurisitc, both t1 and t2 have benefit-cost ratio of 1/τv

but t3 has benefit-cost ratio of 1/(2·evt3). Assuming evt3 >
τv > evt1 > evt2 , (t1, v) and (t2, v) pairs are selected as
part of the solution and (t3, v) is omitted.

In order to illustrate the importance of cost-effective
selection topic-subscriber pairs, we compare and con-
trast GreedySelectPairs (GSP) against a naive solution
RandomSelectPairs (RSP) (for pseudocode refer to
Appendix A of [11]). In the naive approach, for each
subscriber v in V , enough (t, v) pairs are selected in no
particular order to reach the satisfaction threshold τv.

B. Stage 2: Allocation of topic-subscriber pairs to VMs
In the second stage, the goal is to allocate the topic-

subscriber pairs in S selected from Stage 1 to VMs. It is
interesting to note that the goal of our second sub problem
is very similar to the well-known bin packing problem [12].
Hence, as a first attempt we propose First-Fit Bin Packing
FFBinPacking (FFBP) (e.g. used in [13], [14]) as a
solution for Stage 2. In Alg. 3, the pseudocode to allocate
the topic-subscriber pairs to VMs in a First-Fit manner is
given. Each topic-subscriber pair in S is considered in no
particular sequence (Line 2 to Line 13). If a pair (t, v) can
be allocated to an existing VM it is done so with the first
found VM having enough free capacity to include it (Line 2
to Line 6). If none of the existing VMs has enough free
capacity to include (t, v), a new VM is deployed and added
to the collection B of existing VMs (Line 9 to Line 13).

While the First-Fit strategy for bin packing is simple
and strives to minimize the number of VMs used, in our
setting, it is not favorable with respect to bandwidth

(t₁, v₂)(t₁, v₁) (t₂, v₂) (t₂, v₃)(t₂, v₁)

b₁

b₂

60 KB/min

100 KB/min

20 KB/min 10 KB/min 10 KB/min 10 KB/min20 KB/min

(a) VMs with no allocation
(t₁, v₂)

(t₁, v₁)

(t₂, v₂) (t₂, v₃)

(t₂, v₁)b₁

b₂

(b) FFBinPacking

(t₁, v₂)

(t₁, v₁)

(t₂, v₂) (t₂, v₃)(t₂, v₁)

b₁

b₂

(c) VMAllocation without expen-
sive topic first

b₁

b₂ (t₁, v₂)(t₁, v₁)

(t₂, v₂) (t₂, v₃)(t₂, v₁)

(d) VMAllocation with expensive
topic first

Fig. 3. Various VM allocation optimizations

consumption. We illustrate this with an example. Consider
a case with two topics t1 and t2 with evt1 = 20 events/min
and evt2 = 10 events/min with each message around 1KB,
let τ = 30 events/min and consider 3 subscribers forming
5 pairs: (t1, v1), (t2, v1), (t2, v2), (t1, v2), (t2, v3). Assume
there are two VMs b1 and b2 with a remaining capacity of
60 KB/min and 100 KB/min respectively (both incoming
and outgoing bandwidth combined in Fig. 3a) and their
respective occupied capacity is shown in dark grey and
their respective available capacity is left unfilled. In Fig. 3b
the outcome for FFBP from Alg. 3 is shown. Because
of the First-Fit strategy, the topic-subscriber pairs of the
same topics are split across different VMs resulting in total
bandwidth consumption (both incoming and outgoing) of
130 KB/min. Note that allocating t1 and t2 to both b1 and
b2 results in additional overhead of replicating publications
events, hence in total an extra 30KB/min (20KB/min from
t1 and 10KB/min from t2) is contributed to the overall
bandwidth consumption.

Here we make an important observation that FFBP has
high runtime complexity of O

(
|T ||V ||B|

)
, because each

topic-subscriber pair is considered individually. This can
be improved if we group the topic-subscriber pairs of the
same topic before allocating them to the VMs. This op-
timization, in addition to speeding up the algorithm, also
has an advantage of saving bandwidth overhead. Because,
all pairs of a topic are considered at the same time, the
splitting of pairs across different VMs will be reduced,
thereby reducing the incoming bandwidth overhead. This
can be observed in Fig. 3c. With this optimization the
pairs related to t2 are on the same VM avoiding replication
of publications related to topic t2 (cost is amortized once
per VM), hence total bandwidth consumption is down to
120 KB/min. However, the pairs related to t1 are still on
different VMs. We can improve this further by selecting
the topic with maximum event rate first and the VM with
most free capacity first. These optimizations give priority
to the allocation of pairs of topics with maximum event
rate, which have the most overhead when split among
different VMs, to the VMs with most free capacity. In
Fig. 3d we can see that by applying these optimizations
we allocate each topic and its subscribers on minimal
number of VMs, thereby reducing the incoming bandwidth
consumption to 100 KB/min instead of 130 KB/min using
FFBP.

Algorithm 4: Stage 2 of MCSS: Customized bin
packing

1 CustomBinPacking(S, BC, C1, C2)
Input: S, BC
Data: P ← ∅ : Temporary set to hold topic-subscriber pairs to

be allocated to VMs
b← new VM with bandwidth capacity BC : VM currently
being allocated
Result: B ← ∅ : Set of VMs with allocated (t,v) pairs

2 while S 6= ∅ do
3 t← argmax{t′}

∑
(t′,v)∈S evt′

4 foreach v ∈ Vt do // Group subscribers of topic t
5 if (t, v) ∈ S then
6 P ← P ∪ (t, v)
7 S ← S \ (t, v)

8 if CheaperToDistribute(t,B, BC, P, C1, C2) is true then
9 b← argmaxb′∈B{BC − bwb′}

10 while P 6= ∅ and evt ≤ BC − bwb do
11 while evt ≤ BC − bwb do
12 b← b ∪ (t, v)
13 P ← P \ (t, v)
14 bwb ← bwb + evt

15 b← argmaxb′∈B{BC − bwb′}

// For the remaining pairs deploy new VMs
16 while P 6= ∅ do

// Deploy new VM
17 b← new VM with bandwidth capacity BC
18 B ← B ∪ b
19 while evt ≤ BC − bwb do
20 b← b ∪ (t, v)
21 P ← P \ (t, v)
22 bwb ← bwb + evt

23 return B

The pseudocode for the solution for Stage 2 Cus-
tomBinPacking (CBP) with the optimizations men-
tioned above is presented in Alg. 4. We consider topics
and their associated subscriber pairs in the non-increasing
order of their event rates for the purpose of allocation
(Line 3). We then group the topic-subscriber pairs of the
same topic together (From Line 4 to Line 7). Next we
compare the cost of distributing among existing VMs to
cost of deploying new VMs and choose the most cost-
effective option (Line 8). The comparison of costs is
done in CheaperToDistribute (Alg. 5). The Cheap-
erToDistribute algorithm is a heuristic to decide on
distributing the pairs of the current topic in question to
already deployed VMs or to allocate them to a new VM.
This algorithm is used when the pairs of the current topic
in question cannot be allocated to the current VM. In
Alg. 5, we first compute the estimated total cost when
deploying new VMs and allocating to them (between
Lines 2 and 4). Then we iteratively compute the cost of
allocating to a VM with maximum available capacity, until
there are no more pairs left in P (between Lines 5 and 15)
or none of the existing VMs have enough capacity left to
accommodate even a single pair. It is possible that some
pairs can be left unallocated to the existing VMs in which
case new VMs need to be deployed. The cost of the extra
VMs needed and corresponding bandwidth consumption is
computed between Lines 16 and 18. Finally Alg. 5 returns
true if allocating to existing VMs is cheaper and returns

Algorithm 5: Computes the cost of distributing cur-
rent topic to existing VMs

1 CheaperToDistribute(t,B, BC, P, C1, C2)
Input: t,B, BC, P, C1, C2
Data: curbw ←

∑
b∈B bwb: Current bandwidth consumption

curvms← |B|: Number of VMs currently in use
extravms← 0: Extra VMs needed if existing VMs used
extrabw ← 0: Extra bandwidth requirement
newvmsbw ← 0: Bandwidth needed if new VMs are used
newvms← 0: Number of new VMs needed for allocation
TV ← ∅: Temporary set of VMs
Result: distribute← false
// Estimate the cost of deploying on new VMs

2 if P 6= ∅ then
3 newvms← d(|P | · evt)/BCe
4 newvmsbw ← (|P |+ newvms) · evt

// Estimate the cost of distributing to existing VMs
5 while P 6= ∅ and B \ TV 6= ∅ do
6 b← argmaxb′∈B\T V {BC − bwb′}
7 newbw ← 0
8 while P 6= ∅ and newbw ≤ BC − bwb do
9 (t, v)← any random (t′, v′), such that (t′, v′) ∈ P

10 newbw ← newbw + evt
11 if (t, v) /∈ b then
12 newbw ← newbw + evt

13 P ← P \ (t, v)
14 extrabw ← extrabw + newbw
15 TV ← TV ∪ b
16 if P 6= ∅ then
17 extravms← d(|P | · evt)/BCe
18 extrabw ← extrabw + (|P |+ extravms) · evt

19 if C1(curvms+ extravms) + C2(curbw + extrabw) <
C1(curvms+ newvms) + C2(curbw + newvmsbw) then

20 distribute←true
21 return distribute

Algorithm 6: Lower bound for MCSS
1 GetLowerBound(T, V, ev, Int, τ, BC, C1, C2)

Input: T, V, ev, Int, τ, BC, C1, C2
Data: bwcostlb← 0 : Lower bound on the cost to satisfy all

subscribers
2 foreach {v ∈ V } do
3 τv ← min(τ,

∑
t∈Tv

evt)
4 bwcostlb← bwcostlb+ max (τv ,mint∈Tv evt)
5 return C1(dbwcostlb/BCe) + C2(bwcostlb)

false otherwise (in Lines 19 and 20).
Each of the above optimizations gives an incremental

improvement to our solution in practice. We explore the
impact of each optimization with Spotify and Twitter
traces in Section IV-D.

C. Lower Bound
Combining the solutions for both stages GSP from

Alg. 2 and CBP from Alg. 4, gives us a complete solution
for MCSS. While dividing the solution into two stages
makes it simpler to solve, it renders our solution sub-
optimal. By separately considering the selection of topic-
subscriber pairs and their allocation to VMs, we lose an
opportunity to make a better allocation of the pairs to the
VMs. However, in Section IV we show that our approach
works well in practice.

Deriving theoretical bounds on our solution is difficult
because of various optimizations we introduce and we omit

it from this paper. However, using Theorem III.1 for a
given data input we can estimate a lower bound on the
objective of MCSS.

Theorem III.1. Given an instance
MCSS(T, V, ev, Int, τ, BC, C1, C2), for any solution B it
holds that:

C1 (|B|) + C2

(∑
b∈B

bwb

)
≥ C1

∑
v∈V

max
(
τv,min

t∈Tv

evt

)
BC

+ C2

(∑
v∈V

max
(
τv,min

t∈Tv

evt

))
Proof: The goal here is to derive a lower bound on

the total cost of the allocation. Consider the capacity
that must be spent to add a user to the solution set. A
subscriber v can be satisfied when topics with total event
rate of τv are selected in the solution. Hence, the minimum
capacity that must be spent to satisfy a subscriber is τv.
To tighten this bound slightly, we also observe that if
∀t∈Tv

evt ≥ τv, then the semantics of the MCSS definition
dictates that we must choose at the granularity of topic-
subscriber pairs. Hence, the capacity that must be spent
in such a scenario is mint∈Tv evt. Hence, we derive the
clause max (τv,mint∈Tv evt) as a cost to satisfy a single
subscriber. So summing up these bounds, we get the lower
bound on the outgoing bandwidth consumption to satisfy
all subscribers.

Now, to derive a bound on the number of VMs, we
simply divide the total bandwidth consumption by the
bandwidth capacity of the individual VM BC and round
it up.

Theorem III.1 can be easily turned into an algorithm to
derive the lower bound and the pseudocode is presented
in Alg. 6. For each subscriber we select the bare minimum
bandwidth cost required to satisfy the subscriber (Line 2
to Line 4). Then we derive the lower bound on the number
of VMs by dividing the lower bound on bandwidth con-
sumption by bandwidth capacity BC per VM and using
cost functions we derive the lower bound on total cost in
Line 5. In Section Section IV-D we evaluate GSP with
CBP and RSP with FFBP and compare them against the
lower bound obtained using Alg. 6.

IV. Experimental Evaluation
The goal of the experimental evaluation is to study the

effectiveness of the proposed solution in minimizing the
total cost of deploying pub/sub for social interaction in
systems like Spotify and Twitter on a public cloud service.
In this section, we evaluate our solution by considering
each stage of the solution incrementally. We repeat all
our experiments for Spotify as well as Twitter traces with
various practical settings.

A. Experimental Setup
We implemented all algorithms presented in this paper

using C++. All experiments were executed on a server
with Intel Xeon 1.87GHz processors and 132 GB of RAM.
We executed experiments with τ varying from 10 to 1000.
For the cost function we followed the Amazon EC2 cost
model1. We used the pricing for On-Demand Instances
with Compute Optimized - Current Generation. For our
experiments, we considered the pricing for 2 types of VM
instances c3.large (costs $0.15 per hour) and c3.xlarge
(costs $0.3 per hour), these instance types are our choice
for evaluation because they have specified bandwidth
limits2. We set c3.large and c3.xlarge with bandwidth
capacities of 64 mbps and 128 mbps respectively derived
from Amazon specified bandwidth limits. Even though we
repeated our experiments using other instance types, we
omit their results due to lack of space and because they
provide no significant new information. For the bandwidth
cost we use $0.12 per GB for both incoming as well as
outgoing bandwidth taken from data transfer costs of
Amazon EC2 pricing model (subject to change).

Bandwidth consumption is measured in bytes per unit
of time; hence, we need to convert the event rates in our
model to bytes. We know that each tweet has a maximum
length of 140 characters. However, from the information
given in [7], the mean size of a tweet is 200 bytes; thus,
in our experiments we set the message size of a twitter
publication as 200 bytes as well. For the Spotify case, after
measuring the mean message size of a sample of messages
from Spotify traces we found it to be 111 bytes. But we
set the message size as 200 bytes to make the comparison
with Twitter traces easier.

B. Data Traces
a) Spotify Traces: The trace consists of about 1.1

million topics and 4.9 million subscribers forming about
12 million topic-subscriber pairs. The traces were gathered
for 10 days (9th Jan 2013 to 19th Jan 2013) from Spotify’s
data center at Stockholm (one of the three data centers).
The events we collected were restricted to the music
playback events from users with at least one follower. For
more information about the Spotify trace, and its detailed
analysis see [6].

b) Twitter Traces: We use the publicly available
Twitter social graph well studied in [15]. We model the
Twitter users as topics and their followers as subscribers.
The subscriptions (subscribed topics) of a subscriber is the
followings of a user (the list of Twitter users followed by
the user). The number of tweets published by a particular
user t corresponds to the event rate evt for a given period
of time. Since the Twitter user ids in this data set are real
user ids, we made use of the public Twitter APIs to obtain
the number of Tweets of each user in the data set from 30th

1http://aws.amazon.com/ec2/pricing
2https://awsdocs.s3.amazonaws.com/EC2/latest/ec2-ug.pdf

Oct 2013 to 9th Nov 2013. We consider all the Twitter
users who tweeted at least once during those 10 days
(active users) and omit the rest. This process provided us
with around 8 million active users and their corresponding
30 million subscribers, and around 683.5 million topic-
subscriber pairs. This data trace can be downloaded from
the link provided3.

C. Comparison of approaches for Stage 1
We first explore the impact of using GreedySelectPairs

(GSP) presented in Alg. 2 with RandomSelectPairs (RSP)
presented in Appendix A of [11] as a baseline on the
total cost with FFBinPacking as Stage 2 solution for
both. We run experiments with c3.large and c3.xlarge VM
cost functions. From Section III we know that, unlike
RSP, GSP selects topic-subscriber pairs to satisfy all
the subscribers while trying to minimize the bandwidth
requirement. This helps in reducing both the number of
VMs and bandwidth consumption and hence the total
cost. Fig. 4a shows the impact of GSP using Spotify traces
and c3.large. With τ = 10 it results in a 33% reduction
in the number of VMs, 22.9% bandwidth reduction and a
33% reduction in total cost. However, as τ increases to 100
and 1000, the cost reduction drops to 27.6% and 10.9% re-
spectively. The reason for the drop in cost reduction is that
higher values of τ leave little room for optimization, since
a higher fraction of all topic-subscriber pairs are needed
to satisfy the problem constraints. A similar pattern is
observed in Fig. 4b for VM type c3.xlarge with BC =
128 mbps. A 32.7% reduction with τ = 10 and 17.6% and
10.8% reduction with τ = 100 and τ = 1000 respectively.

Now we study the impact of GSP with Twitter traces.
As seen in Fig. 5a, the cost reduction is significantly
higher compared to Spotify traces. With τ = 10 there is a
reduction of 71% and 51.4% with τ = 100. However, with
τ = 1000 the reduction is only 29.1%, suggesting that as τ
increases, the room for minimizing cost also decreases. We
observe the same pattern in Fig. 5b as well with BC = 128
mbps. The improvements are 70%, 51.9% and 20.3% for
τ = 10, 100, 1000 respectively.

D. Comparison of approaches for Stage 2
In Stage 2 of our solution, the goal is to allocate the

topic-subscriber pairs from Stage 1 to VMs so as to
minimize the cost. In this section we explore the impact
of various optimizations introduced in Section III-B for
Stage 2 of our solution on the total cost. To analyze the
effectiveness of these optimizations, we fix the approach
for Stage 1 as GSP for the rest of the experiments unless
mentioned explicitly. By incrementally introducing the
optimizations we study their incremental impact in the
following order: (a) with only FFBinPacking (FFBP),
(b) introducing grouping of pairs by topics, (c) intro-
ducing most expensive topic first, (d) introducing most

3http://tidal-news.org/data/icdcs14/tweetrates.tgz

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

τ=10 τ=100 τ=1000

C
o
s
t
in

 $
Total Cost

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

τ=10 τ=100 τ=1000

N
u
m

b
e
r

o
f
V

M
s

Number of VMs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

τ=10 τ=100 τ=1000

B
W

 i
n
 G

B
s

Total Bandwidth Consumption

RSP + FFBP

(a) GSP + FFBP

(b) GSP +
 Grouping of Topics
(c) Introducing Expensive
 topic first
(d) Introducing Most
 free VM first
(e) Introducing Cost-based
 decision
Lower Bound

(a) Cost metrics for Spotify data with BC = 64 mbps (c3.large VM type)

 0

 1000

 2000

 3000

 4000

 5000

 6000

τ=10 τ=100 τ=1000

C
o
s
t
in

 $

Total Cost

 0

 10

 20

 30

 40

 50

 60

 70

 80

τ=10 τ=100 τ=1000

N
u
m

b
e
r

o
f
V

M
s

Number of VMs

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

τ=10 τ=100 τ=1000

B
W

 i
n
 G

B
s

Total Bandwidth Consumption

RSP + FFBP

(a) GSP + FFBP

(b) GSP +
 Grouping of Topics
(c) Introducing Expensive
 topic first
(d) Introducing Most
 free VM first
(e) Introducing Cost-based
 decision
Lower Bound

(b) Cost metrics for Spotify data with BC = 128 mbps (c3.xlarge VM type)

Fig. 4. Impact of introducing optimizations (a) to (e) with Spotify traces

free VM first, (e) introducing choice of allocation based
on cost-model. In Figs. 4 and 5 the bar plots contain
the corresponding bars to represent the improvement in
total cost, number of VMs and bandwidth consumption
respectively, in the same order of the optimizations listed
above. Finally, we also compare the impact of including
all these optimizations with the lower bound obtained by
running the Alg. 6.

We start with optimization (a), FFBP presented in
Alg. 3. In Figs. 4a and 4b the outcome of FFBP when used
in conjunction with GSP topic-subscriber pair selection
technique can be seen for different values of τ and for
c3.large and c3.xlarge VM types. However, as mentioned
in Section III-B since FFBP considers the pairs to be
allocated to VMs in arbitrary order and at individual pair
level, there is room for improvement. Hence, we introduced
optimization (b), (presented in Alg. 4 CustomBinPack-
ing (CBP)) the grouping of pairs belonging to the same
topic and analyze its effectiveness. The grouping-of-pairs
optimization results in a cost reduction of about 3.5%
for Spotify traces in most cases. However, in some cases
we see an increase in cost up to 1.6%. This behavior
is because of the trade-off between number of VMs and
total bandwidth consumption. For example, in Fig. 4a
for τ = 10 and in Fig. 4b for all values of τ , it can be
noticed that, even though there is a decrease in band-
width consumption of about 8 to 10%, the corresponding
number of VMs increase by 2 to 4%. The increase in
total cost in some cases suggests that grouping of topics
alone is not always beneficial. This behavior is due to
the fact that the grouping-of-pairs optimization is aimed
at minimizing bandwidth consumption. As explained in
Sections II and III, because of the trade-off between the
number of VMs and bandwidth consumption, we see an

increase in total cost. As we show later in the experiments,
this optimization has an impact in conjunction with other
optimizations. For Twitter traces, we can observe a be-
havior similar as that seen in Figs. 5a and 5b. In all cases
there is a slight decrease in cost due to the grouping of
topics, even though in some cases there is an increase in
the number of VMs. This can be clearly observed with
τ = 1000 and BC = 128 mbps, in Fig. 5b. In this case
there is a decrease in bandwidth consumption of 8% which
results in increase of 0.5% in VMs (one VM). However, the
total cost still decreases because the decrease in bandwidth
consumption overshadows increase in number of VMs.
This behavior is again attributed to the trade-off between
the two metrics. Next we study the impact of introducing
optimization (c), the ordering of topics in decreasing order
of event rates and selecting the topics and their pairs with
maximum event rate for allocation first. As explained in
Section III-B, the rationale behind this optimization is to
give priority to expensive topics to avoid pairs belonging
to the same expensive topic being allocated to different
VMs. This optimization can result in an increased number
of VMs with a slight decrease in bandwidth consumption
in some cases, as in Fig. 4a for τ = 100. However, in
most cases it results in a decrease in the total cost up
to 2.5%. For Twitter traces, in Figs. 5a and 5b we can
notice a slight decrease in total cost up to 2.4%. It is worth
noting that, even though this optimization does not show
many benefits on its own, we next show that it works well
together with selecting VMs with most available capacity
first.

As done in Alg. 4, we try to allocate all the pairs of
a topic to the most recently deployed VM. If that is
not feasible, we try to allocate them to existing VMs.
Now we analyze the impact of introducing optimization

 0

 5000

 10000

 15000

 20000

 25000

τ=10 τ=100 τ=1000

C
o
s
t
in

 $
Total Cost

 0

 100

 200

 300

 400

 500

 600

τ=10 τ=100 τ=1000

N
u
m

b
e
r

o
f
V

M
s

Number of VMs

 0

 1000

 2000

 3000

 4000

 5000

 6000

τ=10 τ=100 τ=1000

B
W

 i
n
 G

B
s

Total Bandwidth Consumption
RSP + FFBP

(a) GSP + FFBP

(b) GSP +
 Grouping of Topics
(c) Introducing Expensive
 topic first
(d) Introducing Most
 free VM first
(e) Introducing Cost-based
 decision
Lower Bound

(a) Cost metrics for Twitter data with BC = 64 mbps (c3.large VM type)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

τ=10 τ=100 τ=1000

C
o
s
t
in

 $

Total Cost

 0

 50

 100

 150

 200

 250

τ=10 τ=100 τ=1000

N
u
m

b
e
r

o
f
V

M
s

Number of VMs

 0

 1000

 2000

 3000

 4000

 5000

 6000

τ=10 τ=100 τ=1000

B
W

 i
n
 G

B
s

Total Bandwidth Consumption
RSP + FFBP

(a) GSP + FFBP

(b) GSP +
 Grouping of Topics
(c) Introducing Expensive
 topic first
(d) Introducing Most
 free VM first
(e) Introducing Cost-based
 decision
Lower Bound

(b) Cost metrics for Twitter data with BC = 128 mbps (c3.xlarge VM type)

Fig. 5. Impact of introducing optimizations (a) to (e) with Twitter traces

(d) in which we choose the VMs with most free capacity
first while allocating the pairs among already deployed
VMs. For both Spotify and Twitter traces, we observe a
reduction in cost with this optimization. The reduction
in number of VMs is the main contributor for reduction
in cost with this optimization. In most cases bandwidth
consumption remains the same or even slightly increases
again due to the trade-off with the number of VMs. For
Spotify traces there is a decrease in cost of up to 10.7%
and for Twitter traces the decrease is up to 9.5%. An
interesting observation here is that the decrease in cost
is slightly higher for τ = 100 and 1000 than τ = 10. It
is worth noting that the improvement we see from this
optimization is also the result of optimizations (b) and
(c).

Finally, we introduce the optimization (e), the decision
to allocate to existing VMs at the cost of extra bandwidth
consumption against deploying new VMs based on the
cost-model presented in Alg. 5. The decision to deploy
a new VM instead of existing VMs is done if it results
in decreased total cost. This optimization is supposed to
balance the trade-off between the number of VMs and
bandwidth consumption. However, we observe lower cost
reduction than expected. For Spotify, the maximum cost
reduction is 1.2% and for Twitter it is 0.2%. The reason
for this behavior is that, in our cost model, the bandwidth
per GB is only $0.12. Thus, the bandwidth is significantly
inexpensive. For example, for a topic t with evt 10000
events/day (2 MB/day), even if all the subscriber pairs
of t are spread across 100 different VMs the bandwidth
overhead is 200 MB and costs only $0.024. With such a
low overhead the cost model hardly makes a difference.
In addition to that, the cost model is suboptimal since it
takes the decision for each topic independently. Hence, the

overhead of extra bandwidth due to distributing the pairs
of a topic is generally significantly lower than deploying
the new VMs. We leave further exploration of this opti-
mization for future work.

E. Runtime performance evaluation
In this section, we show the runtime performance of

our approaches. The faster runtime performance of the
VM allocation approaches on cloud are crucial, since the
allocation may be required to run periodically to adapt
to the workload. We first analyze the running times of
solutions for Stage 1. It is clear that selecting an arbitrary
set of pairs (RSP) is faster than selecting pairs according
to the greedy heuristic (GSP). However, in Fig. 6 we can
see that the runtime of GSP for Stage 1 with Spotify
traces is only at most two seconds slower than GSP in
all cases. Increasing τ requires more topic-subscriber pairs
to be selected. The near-constant time for GSP suggests
that our approach is scalable with τ . In Fig. 7 we can see
a similar pattern for Twitter traces. However, since the
Twitter trace has a much higher number of pairs (638.5
million), it results in significantly higher runtime for both
RSP and GSP compared to Spotify traces. RSP takes up
to 986 seconds, on the other hand GSP takes up to 1471
seconds. The slower running time of GSP is because it
inspects all the 638.5 million pairs at least once to select
the best pairs according to the heuristic. On the other
hand, RSP selects the first subset of pairs meeting the
satisfaction threshold and returns pairs which result in
significantly higher cost. This is a clear trade-off between
quality of output and running time.

Next we analyze the runtime performance of FFBP and
CustomBinPacking (CBP) solutions for Stage 2. We
restrict our comparison between running times for op-

 0

 5

 10

 15

 20

 25

 30

 35

τ=10 τ=100 τ=1000

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s
GreedySelectPairs

RandomSelectPairs

Fig. 6. Stage 1 Runtime for
Spotify traces

 0

 400

 800

 1200

 1600

 2000

 2400

τ=10 τ=100 τ=1000

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

GreedySelectPairs
RandomSelectPairs

Fig. 7. Stage 1 Runtime for
Twitter traces

 0

 2

 4

 6

 8

 10

τ=10 τ=100 τ=1000

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

CustomBinPacking

 0.8 0.8 0.9

FFBinPacking

Fig. 8. Stage 2 Runtime for
Spotify for c3.large

 0

 200

 400

 600

 800

 1000

 1200

 1400

τ=10 τ=100 τ=1000

R
u

n
n

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

CustomBinPacking

 3.4 4.1 13.7

FFBinPacking

Fig. 9. Stage 2 Runtime for
Twitter for c3.large

timization (a) and the solution in Alg. 4 including all
other optimizations (optimization (a) to (e)) and assuming
input from GSP readily available in main memory. From
Figs. 8 and 9 we can see that CustomBinPacking (CBP)
outperforms FFBP up to 10 times better with Spotify
traces and around 1000 times with Twitter traces. The fast
runtime of CBP is attributed to the optimization related
to grouping of pairs on a per-topic basis to allocate them
to VMs (O

(
|T ||B|

)
). On the other hand, FFBP considers

the VMs in the order of first fit, hence in the worst case
it may have to check the feasibility to allocate with all
the deployed VMs (O

(
|T ||V ||B|

)
). It is worth noting that

even though GSP is slower than RSP on its own, in
combination with CBP the overall runtime performance is
better than RSP in combination with FFBP in most cases.
For example, GSP with CBP takes 1484.7 seconds in total
compared to 2186 seconds taken by RSP with FFBP for
Twitter traces with τ = 1000 on a c3.large instance.

F. Summary and Discussion
In this section, we empirically evaluate our solu-

tion by considering the isolated impact of each stage
and each optimization. We compare the performance of
GSP and RSP while using FFBP as a solution for stage
2. In summary, GSP provides an improvement in the total
cost of up to 33% for the Spotify and 71% for the Twitter
traces. Subsequently, we fix GSP as the solution for Stage
1 and analyze the incremental impact of individual opti-
mizations ((b) to (e)) introduced for Stage 2. Even though
each optimization is improving the cost in only a subset
of cases, we observe a cumulative improvement of up to
5%. With a combination of GSP and CBP we attain a
total saving of up to 74% for the Twitter traces and 38%
for the Spotify traces. In absolute values, this translates
into $4000 and $2000 for the Twitter and Spotify traces
respectively. Note that these savings are for sampled traces
(about 10% sample for Spotify and 1% sample for Twitter)
for a 10 day period. We can expect higher savings for a
longer period and full traces.

The runtime for the Spotify traces on a moderate
strength server is under 30 seconds for our complete solu-
tion, suggesting that it is fast and it can be run periodically
to re-allocate the workload. For example, it can be run
every hour to adapt to the changes in the event rates,
new subscriptions, unsubscriptions, etc. However, for the

Twitter traces it runs relatively slower (about 25 minutes)
because of the larger scale. Even though our solution can
be run at longer periods (e.g., once per day), it is desirable
to adapt in a dynamic and online fashion. In some works
such as [16] dynamic approaches are suggested for adaptive
provisioning. However, in order to solve our problem there
is a need to take into account additional factors such as
the effects of dynamic workload on the user satisfaction
metric. We plan to tackle the challenge of devising an
online algorithm as part of future work.

V. Related Work

There are many types of pub/sub systems proposed in
the literature [1]. In this paper, we focus on a specific
class of topic-based pub/sub which facilitates social inter-
action among users in systems such as Spotify pub/sub [6]
and Twitter. In [8] satisfaction metrics were defined for
improving the satisfaction of human subscribers in the
context of pub/sub for social interaction. That work also
addresses problems related to maximizing the number of
satisfied subscribers under resource constraints imposed
on the pub/sub engine as a single black box. However,
in data center or cloud settings, pub/sub systems are
scaled horizontally and hence treating the engine as a
black box limits the effectiveness of resource provisioning.
In this paper we address this limitation by considering
a multi-server setup typical of a data center. We also
focus on a different problem of estimating the monetary
costs assuming realistic pricing models from public IaaS
providers such as Amazon EC2.

There are several papers addressing resource provision-
ing in the cloud to minimize monetary costs [13], [14],
[17]. The provisioning techniques used in these works
are generic and oblivious to internal semantics of the
applications they consider, which limits the optimality of
allocation and its cost-effectiveness. For example, this ren-
ders most optimizations introduced in this paper, such as
grouping of topic-subscriber pairs by topics and selecting
topics with maximum event rate first, infeasible.

To the best of our knowledge there exist no works ad-
dressing the problem of cost-effective resource provisioning
tailored for topic-based pub/sub systems. One relevant
area of research is stream processing in the cloud [18],
[19]. However, there are only a few works in this category
that specifically consider resource provisioning [16], [20].

In [16], the authors propose adaptive resource provisioning
for processing stream queries with the goal of optimizing
query latency. On the other hand, this work does not
aim at minimizing monetary costs. The number of VMs
is adapted in the proposed scheme to accommodate the
incoming event rate of streams. At the same time, the
solution does not focus on minimizing bandwidth con-
sumption or exploring the trade-off between the number
of VMs and bandwidth consumption. While in [20], the
authors propose a demonstration of cost estimation for
streaming queries, they do not aim at minimizing this cost.
In contrast to our work, the idea is specific to the domain
of streaming queries. Finally, in both [20] and [16], there
is no concept of subscriber satisfaction metric, which is
essential in our problem.

There exist works that provide a formalization for the
general problem of resource provisioning in the cloud, with
emphasis on theoretical analysis. In [21] a variation of bin-
packing with various collocation constraints is considered
for the problem of VM allocation and proved NP-hard.
However, these works do not take into account the specifics
of resource previsioning for pub/sub. For example, the
problem of MCSS has a unique set of constraints stemming
from the satisfaction requirement and from the fact that
topics are shared across the subscribers, resulting in the
need for cost-effective selection of topic-subscriber pairs.
Furthermore, the fact that the incoming bandwidth de-
pends on the distribution of topic-subscriber pairs poses
additional challenges and calls for customized allocation
algorithms, which we address by introducing a customized
version of bin-packing with a number of optimizing heuris-
tics.

VI. Conclusions and Future Work
In this paper, we have proposed a new approach for

resource provisioning for pub/sub in the cloud using a
cost-effective resource allocation. The approach is directed
towards a particular class of pub/sub that is used to
drive social interaction, e.g., among Spotify and Twitter
users. To formalize the challenge of cost-effective resource
allocation, we have introduced the MCSS problem and
established its hardness by a reduction from the well-
known partitioning problem. We have provided an efficient
heuristic for MCSS consisting of a number of optimiza-
tions. Our approach can be used as a tool by pub/sub
architects to estimate and provision resources to satisfy
all subscribers in a data center or in a cloud. We have
evaluated the proposed heuristic solution empirically using
large-scale real traces from Spotify and Twitter. Using
an Amazon EC2 pricing model, we have showed that our
solution can save up to 74% and up to 38% of the total
cost for Twitter and Spotify respectively when compared
to a naive alternative. We have also provided a comparison
against a derived lower bound and showed that in many
cases our approach results in a cost that is only 15%
higher.

Finally, our approach has a reasonably low computation
time, as corroborated by the experiments. Hence, it can
also be used for dynamic allocation if run at periodic
intervals to re-provision the resources and re-allocate to
the workload. In the future, we plan to extend this work
to fully support dynamic on-demand provisioning and
allocation for pub/sub.

References
[1] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM CSUR, 2003.
[2] J. Reumann, “GooPS: Pub/Sub at Google,” Oslo, Norway,

Lecture & Personal Communications at EuroSys & CANOE
Summer School, 2009.

[3] “Tibco rendezvous,” http://www.tibco.com.
[4] H. Liu, V. Ramasubramanian, and E. Sirer, “Client behavior

and feed characteristics of RSS, a publish-subscribe system for
web micronews,” in IMC, 2005.

[5] G. Li, V. Muthusamy, and H. Jacobsen, “A distributed service-
oriented architecture for business process execution,” ACM
Transactions on the web, 2010.

[6] V. Setty, G. Kreitz, R. Vitenberg, M. van Steen, G. Urdaneta,
and S. Gimåker, “The hidden pub/sub of spotify,” in DEBS,
2013.

[7] R. Krikorian, “Twitter by the numers,”
http://www.slideshare.net/raffikrikorian/twitter-by-the-
numbers.

[8] V. Setty, G. Kreitz, G. Urdaneta, R. Vitenberg, and M. van
Steen, “Maximizing the number of satisfied subscribers in
Pub/Sub systems under capacity constraints,” in INFOCOM,
2014.

[9] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, 1979.

[10] S. Martello and P. Toth, Knapsack problems. Wiley New York,
1990.

[11] V. Setty, R. Vitenberg, G. Kreitz, G. Urdaneta, and M. van
Steen, “Cost-effective resource allocation for deploying pub/sub
on cloud,” University of Oslo, Tech. Rep. 436, January
2014, URL: http://tidal-news.org/techreports/Setty-TR-436-
01-2014.pdf.

[12] R. Lewis, “A general-purpose hill-climbing method for order in-
dependent minimum grouping problems: A case study in graph
colouring and bin packing,” Computers & Operations Research,
2009.

[13] S. Genaud and J. Gossa, “Cost-wait trade-offs in client-side
resource provisioning with elastic clouds,” in CLOUD, 2011.

[14] D. Villegas, A. Antoniou, S. Sadjadi, and A. Iosup, “An analysis
of provisioning and allocation policies for Infrastructure-as-a-
Service clouds,” in CCGRID, 2012.

[15] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a
social network or a news media?” in WWW, 2010.

[16] J. Cerviño, E. Kalyvianaki, J. Salvachúa, and P. Pietzuch,
“Adaptive provisioning of stream processing systems in the
cloud,” SMDB, 2012.

[17] N. Vasic, D. Novakovic, S. Miucin, D. Kostic, and R. Bianchini,
“Dejavu: accelerating resource allocation in virtualized environ-
ments,” in ASPLOS, 2012.

[18] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente,
and P. Valduriez, “Streamcloud: An elastic and scalable data
streaming system,” IEEE TPDS, 2012.

[19] R. Barazzutti, P. Felber, C. Fetzer, E. Onica, J. Pineau,
M. Pasin, E. Rivière, and S. Weigert, “Streamhub: A massively
parallel architecture for high-performance content-based pub-
lish/subscribe,” in DEBS, 2013.

[20] T. Heinze, P. Meyer, Z. Jerzak, and C. Fetzer, “Demo: Measur-
ing and estimating monetary cost for cloud-based data stream
processing,” in DEBS, 2013.

[21] M. Sindelar, R. Sitaraman, and P. Shenoy, “Sharing-aware al-
gorithms for virtual machine colocation,” in SPAA, 2011.

