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1 Introduction

There is an increasing trend in monitoring large spatial areas, such as forests for fire detection,
mountains and hills for landslide and avalanches, and volcanoes for early warning or scientific
study. This class of detectors also includes experiments measuring cosmic rays, high energy par-
ticles from space whose origin and acceleration mechanisms are still under debate. For example,
the Pierre Auger Observatory consists of 1600 Surface Detector (SD) nodes spread over an area of
around 3000 km2. Similarly, LOFAR (Low Frequency ARray) for radio astronomy contains 8000
sensors and is spread over an area of more than 100 km in diameter. All these systems belong to
the class of spatial sensor networks.
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A characteristic feature of many of these spatial sensor networks is that each sensor node in
the network has a local “trigger” and not only collects data but also sends it to a central unit for
further analysis. However, as the amount of data that needs to be processed grows, and the area
becomes larger, realizing the communication path from sensor to central unit becomes problem-
atic. Firstly, the bandwidth requirements can be met only with special resources like fibre optic
links. Installing a fibre optic or any other wired infrastructure is often infeasible (certainly in large
areas). Consequently, wireless communication remains the only viable option. However, wireless
communication has its own drawbacks, notably, limited bandwidth and unreliability of communi-
cation. Secondly, the central unit can easily become a bottleneck when the number of nodes grow
and the rate at which data is collected grows.

Considering that sensed data often contains lots of raw measurements that will eventually be
aggregated into much more informative units requiring much less space, local processing by nodes
is essential for scalability. In many cases, significant improvements can be made if nodes in each
other’s proximity collaborate in the data analysis. This increases the complexity (computing power,
storage capabilities and costs) of a single node and how to balance these issues is the main topic of
this paper. Collaborative local data analysis may result in sending truly relevant aggregated (and
location based) information to a central unit for further analysis, and may be the only path toward
scalable solutions.

Local data analysis imposes additional requirements. For example, there may be a need for
additional communication with neighboring nodes to reach a decision, leading to relatively high
bandwidth usage. Likewise, while awaiting results from neighbors, temporary storage requirements
may be fairly high unless special measures are taken. Finally, we need to take into account that
local analysis may be computationally so demanding that algorithms may need to be tuned to what
sensor nodes can realistically accomplish.

As it turns out, there are many tradeoffs to consider in building scalable solutions based on
collaborative local data analysis. For example, how often and when should nodes exchange in-
formation? A low frequency of data exchange may lead to highly bursty traffic that may exceed
local bandwidth constraints and that incur local buffering demands — which can be resolved by
increasing the frequency of exchanges. However, frequent exchanges incur much higher energy
costs caused by communication.

In this paper, we consider a specific, challenging application to illustrate the exploration of
the design space for collaborative local data analysis in spatial sensor networks. The application
involves the detection of ultra-high energy cosmic rays using a wireless sensor network. The ap-
plication demands high communication bandwidth and involves large amounts of in-network data
processing. On the other hand, the sensor nodes are resource constrained in terms of energy budget
and capacity regarding computation and storage. In [1], we presented a distributed event detection
algorithm which is entirely based on collaborative local data analysis. We explored the application-
level resource requirements such as communication bandwidth for a certain level of performance
in an unreliable communication environment.

We make two contributions. First, in contrast to the work described in [1], we explore in this
paper the spectrum of tradeoffs that need to be considered while building scalable solutions based
on collaborative local data analysis. The application that we consider is a natural fit for collabora-
tive local data analysis. Therefore, a distributed system concept to detect high-energy cosmic-rays
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was proposed in [2]. However, the concept was not studied in further details. This is the first
paper to our knowledge to explore the possibility of applying collaborative local data analysis in
large-scale spatial wireless sensor networks to detect ultra-high energy cosmic rays. Second, we
provide all the necessary details required to come to full understanding of our distributed event
detection algorithm.

The rest of this paper is organized as follows. Section 2 presents our system model, specifying
the assumptions made and semantics of events continuously occurring in our system. In section 3
we describe our distributed event detection algorithm in detail. We illustrate, in section 4, the
tradeoffs to consider while building scalable solutions based on collaborative local data analysis.
Section 5 describes the experimental setup, performance metrics of our algorithm, and method-
ology to compare centralized and distributed event detection algorithms. In section 6 we provide
an experimental evaluation of our proposed distributed algorithm based on simulations. We dis-
cuss the centralized event detection approach and compare it with our distributed local detection
algorithm in terms of bandwidth requirement in section 7, thereby quantifying the scalability and
efficiency of our distributed approach. In section 8 we highlight related work. Finally, in section 9,
we conclude the discussion and present our future work.

2 The system model

Cosmic rays are high-energy charged particles, e.g. protons or atomic nuclei, that may originate
from astrophysical objects such as supernova remnants and active galactic nuclei. Despite over a
century of study, however, their origin and acceleration process is still under debate.

At the highest energies, the flux of cosmic rays decreases to 1 particle per square kilometer
per century, making direct detection infeasible. Instead, large spatial areas are instrumented with
particle detectors that then measure the extensive air shower created when the cosmic ray interacts
with the atmosphere of the Earth. In this work, we refer to the spatial area hit by a cosmic-ray air
shower as the event region.

Multiple techniques can be used to detect cosmic-ray air showers. The Pierre Auger Obser-
vatory in Argentina uses a hybrid array of water-Cherenkov particle detectors and fluorescence
telescopes to record the shower and indirectly measure the direction, energy, and composition of
the original cosmic-ray [3]. Additionally, an enhancement is being deployed to detect the radio
emission from the air showers: AERA [4], the Auger Engineering Radio Array. Because of the
demands of the radio-detection method in particular (see section 2.4), AERA is particularly suited
for consideration as a testbed for collaborative local data analysis. We describe the AERA antenna
array, and its triggering scheme, as a model for these studies, while noting that the distributed event-
detection scheme can also be applied to other large-scale cosmic-ray air-shower experiments.

2.1 System setup

We consider a vast field covered by a large collection of antenna stations. Each antenna station —
from now on called a station is a wireless sensor. The station can sense radio signals (in a specific
frequency range) and can communicate with neighboring stations in the field through a low-power
wireless medium. Each station is attached with a standalone energy-harvesting device (e.g., a
solar panel), implying a modest energy budget per station. Each station has limited processing
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capabilities and a storage capacity in the order of a few hundred megabytes. The latter may seem
much, but the incoming stream of raw, digitized samples that need to be analysed for cosmic rays
is such that storage is quickly filled up. As a consequence, data analysis needs to be done within a
limited time in order to free storage space.

We assume that a GPS receiver is attached to each station allowing (1) the clocks of stations to
be globally synchronized,1 and (2) stations to be aware of their location. The stations are assumed
to be stationary. Each station is capable of communicating with at least one other station in the field.
Furthermore, the system has been set up in such a way that under normal conditions the network
of sensor nodes is strongly connected. In this paper, to illustrate the essentials of our solution, we
assume that all the communication channels are reliable.

Each station relays its data to a base station called the Central Radio Station (CRS). The CRS
has comparatively high capacity and sufficient energy. Among different possibilities of placement
of stations in the field are a grid-based placement (e.g, triangular, rectangular, or hexagonal etc.)
and a uniform random placement. We assume a grid-based placement.

2.2 Neighborhood semantics

We consider two notions of neighborhood of a station:

1. Geographical neighborhood: The geographical neighborhood of a station is defined as the
set of stations within a distance D from the station. We assume that a station has knowledge
about its geographical neighbors. The geographical neighborhood of a station s may change
due to addition, removal, or failure of one or more stations within distance D from s. In this
paper, we assume there is no change in geographical neighborhood.

2. Network-level neighborhood: In this case, the set of stations is represented by a graph
G(V,E), where vertex set V represents the set of all stations and set E contains an edge
(u,v) if u can directly communicate with v. The network-level neighborhood of a station
s is then defined as the set of stations within N hops from the station s. We assume direct
communication only between geographical neighbors.

2.3 Event semantics

As described in [4] each station picks up radio signals with an antenna. These signals are digitized
and filtered locally. The filtered signal is analysed for pulses above a certain threshold, which may
indicate the occurrence of a cosmic ray. Such an event generates what is called an N1 trigger.
In fact, the N1 trigger is equivalent to what is called the “level 2” trigger in [4]. Each trigger is
timestamped at nanoseconds resolution. For each trigger, in addition to the timestamp, a digitized
portion of the signal of 12.5 kilobytes is also buffered at the station. This buffered data is called
event data. The event data along with the timestamp is sent to the CRS upon positive decision
through a data analysis procedure; otherwise both the timestamp and event data are ignored.

The triggers of two geographically neighboring stations are said to be coincident if their times-
tamp difference ∆T is less than Tc, the travel time of light in a straight line from one station to the
other station. Tc is also called coincidence window. An N1 trigger at a station promotes to an N3
trigger in two cases:

1The accuracy is maintained within 10 nanoseconds through special devices.
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(1) the N1 trigger at a station is coincident with N1 triggers of at least two other geographical
neighbors

(2) the N1 trigger at a station is coincident with an N3 trigger of any of its geographical neigh-
bors.

Note that an N3 trigger fulfils the minimal requirement for what is called a Level 3 trigger
in [4] where the CRS forms the Level 3 by computing coincidence among multiple (at least three)
adjacent stations.

Normally, an N1 trigger at a station is discarded if it does not promote to an N3 trigger.
However, due to link failures, it may not be possible to safely discard data, in which case the N1
trigger is still sent to the CRS.

Figure 1 illustrates the occurrence of two independent cosmic ray air shower events. The
event regions are shown shaded and labelled as R1 and R2. Each station in the event region has
an N1 trigger. For illustration, we assume that the triggers in an event region are coincident. The
assumption holds for both R1 and R2. We have the following two cases:

• General case: Each of the stations A, B, and C or any other station in R1 can be in coinci-
dence with at least two other geographical neighbors in R1 and promotes its N1 trigger to an
N3 trigger.

• Special Case: Station F, as opposed to stations D and E or any other station in R2 has only
one geographical neighbor in the event region. Apparently, the N1 trigger of station F cannot
find coincidence with two other neighbors in R2. However, station F is required to promote
its N1 trigger to an N3 trigger. Any cosmic-ray detection technique must be able to handle
this special case besides the general case.

Figure 2 is a sample skymap of Level 3 triggers measured at the CRS [4]. It shows the sky
in polar coordinates, where the center is directly overhead, and the dark circle near the edge is the
horizon. The z-axis (color scale) is the Level 3 trigger density in log(eventdensity/a.u.). It is clear
from figure 2 that the dominant number of Level 3 triggers are caused by several point sources
from the horizon. There are relatively fewer Level 3 triggers that indicate the direction of arrival of
cosmic rays. This implies the need for criteria to filter out Level 3 triggers that are caused by point
sources from the horizon. To carry out such filtering, we introduce a sense of direction.

The direction of the signal that caused the Level 3 trigger is reconstructed using timestamps
and geographical positions of the stations that took part in the coincidence. Note that we assume
direction reconstruction only for N3 triggers. The reason for considering only N3 triggers is ex-
plained later in section 2.4. The direction reconstruction uses what is known as a plane wave fit.
The reconstructed direction is represented as a tuple of zenith and azimuth angles. An N3 trigger
becomes an event of interest if the direction of signal causing the N3 trigger is within a user-defined
range of directions representing the horizon. Note, however, that the range representing the horizon
is crucial to the performance of the algorithm. A small range will allow more N3 triggers to be
reported to the CRS, whereas a large range may lead to producing false negatives: discarded N3
triggers that were caused by an actual cosmic ray air shower.
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Figure 1. Two independent cosmic-ray air shower events. The event regions are shown shaded. Stations A,
B, and C illustrate a general case in which their N1 triggers promote to N3 triggers. Stations D, E, and F
illustrate a special case of promoting the N1 trigger of station F to an N3 trigger. Note that station F has
only one neighbor in the event region.
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Figure 2. A polar skymap of the reconstructed direction of sample Level 3 triggers, showing several man-
made pulse radio sources on the horizon. The color scale indicates log(eventdensity/a.u.). The figure is
reproduced from [4].

The direction reconstruction process may fail for various reasons. First, the timestamps of N3
triggers may not be all from the same (real) signal. For example, 1 or 2 timestamps may be from
accidental coincidences, and in this case there is no unique direction. Second, the timestamps are
all from a real signal, but considering that the direction reconstruction process uses heuristics to
compute direction, it may not converge and compute an incorrect result. In either case of direction
reconstruction failure, the N3 trigger is considered as a false positive. In case of a false positive,
the timestamp and associated event data of the N3 trigger is sent to the CRS. Figure 3 summarizes
all possible state transitions of an N1 trigger.
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Figure 3. State transition diagram of N1 trigger.

2.4 Motivation for collaborative local data analysis

A challenge of the radio detection of cosmic rays is that the antennas sense not only radio pulses
emitted from air showers but are triggered also by pulsed random noise and man-made distur-
bances (e.g., power transformers or airplanes). While several techniques have been developed to
distinguish air shower pulses from man-made noise (see ref. [4]), the system must still be robust to
elevated and highly variable trigger rates.

A typical initial trigger rate at an AERA antenna is roughly 200 Hz. Since each trigger has an
associated event data, this means that every detector must, in principle, relay a huge amount of data
to the CRS over wireless links, which is practically impossible. This is the primary motivation for
a hierarchical trigger scheme. Requiring at least 3 antennas in time coincidence can reduce the rate
to around 20 Hz.

As shown in figure 2, around 90% of these triggers can be localized at the horizon, and are
therefore likely man-made noise. However, a directional reconstruction requires timing information
from multiple antennas. In a centralized system, this decision must be made at a single point that
collects all the trigger times from all of the stations.

Collaborative local data analysis can play a pivotal role to discard the uninteresting man-made
noise events. In principle, each station is able to find a time coincidence with its geographical
neighbors, if it knows their timestamps. A station can then decide locally whether its N1 trigger
is an event of interest. This idea is the main motivation behind devising a distributed event detec-
tion algorithm that will allow to build scalable and energy efficient solutions for ultra-high-energy
cosmic-ray detection.

3 The distributed event detection algorithm

The goal of our Distributed Event Detection (DED) algorithm is twofold. Firstly, to decide whether
an N1 trigger generated locally at a station should be promoted to an N3 trigger. Secondly, provided
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type N1Entry = record

srcId : integer;

seconds : integer;

nanoSeconds : integer;

end;{ type N1Entry }

type AdvertEntry = record

srcId : integer;

seconds : integer;

nanoSeconds : integer;

neighborN1 : N1Entry[];

end;{ type AdvertEntry }
Figure 4. Data types for Algorithm I.

that an N1 trigger has been promoted to an N3 trigger, to reconstruct, locally, the direction of the
radio signal that caused the trigger. Recall that the direction reconstruction helps filter out man-
made disturbances including signals transmitted by point sources from the horizon. The direction
is reconstructed using timestamps and positions of the neighboring stations that helped to promote
the N1 trigger to an N3 trigger.

3.1 Algorithm I: a conceptual view of DED

As a first attempt, we design a distributed algorithm that takes decisions based on local information.
A station can communicate with all of its geographical neighbors, and we assume no communica-
tion failure.

The basic idea of the distributed event detection is the following. Whenever an N1 trigger
occurs at a station, the station stores the N1 trigger locally and informs all of its geographical
neighbors. The information consists of a message of type N1Entry whose structure is shown in
figure 4. Furthermore, when a station receives N1 triggers from its neighbors, it looks for a coinci-
dence of the received triggers with its local ones. A station promotes its N1 trigger to an N3 trigger
if its N1 trigger has coincidence with N1 triggers of at least two geographical neighbors.

To cover stations on the boundary of an event region with only one geographical neighbor in
the event region, a station not only requires to broadcast its N1 triggers, but also its N3 triggers.
We call the latter type of broadcast messages advertisements. The information contained in an
advertisement are of type AdvertEntry whose structure is shown in figure 4. An AdvertEntry entry
contains (1) the timestamp of the local N1 trigger that was promoted to an N3 trigger, and (2) the
two N1 triggers that had coincidence with the local N1 trigger. An advertisement helps a station
promote its N1 trigger to N3 trigger if its N1 trigger has coincidence with the N3 trigger contained
in the advertisement message.

Figure 5 shows the pseudocode of our algorithm. When an N1 trigger occurs at a station p, it
adds the trigger to its local cache. The local cache has a limited capacity. On the other hand, there
is a continuous stream of new triggers arriving into the cache due to which the cache may become
full thus requiring a cache eviction policy. To this end, we consider the cache as a FIFO queue
and remove the oldest trigger when the cache becomes full. Therefore, the algorithm is required to
process each trigger before it is removed under the cache eviction policy. This requirement imposes
a time constraint on the processing of each trigger. Obviously, the time span within which a trigger
should be processed by the algorithm depends on the size of the cache. Next, the station also
informs all of its geographical neighbors about the occurrence of its N1 trigger by broadcasting a
message of type N1Entry.
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/*** On Local N1 Trigger ***/

// Runs when a local N1 trigger occurs at station p
localCache.add(N1(p)))
for all q ∈ Neighp do

send < N1(p),q >

/*** Receive from neighbor ***/

// Runs when receiving an N1 trigger or Advert

receive < N1(q),q >

OR

receive < advert(q),q >

for any qi, q j ∈ Neighp do

if coincidence(N1(p), N1(qi), N1(q j)) then

N1(p) → N3(p)
process(N3(p))
for all q ∈ Neighp do

send < advert(p),q >

localCache.remove(N1(p)))

for any q ∈ Neighp do

if coincidence(N1(p), advert(q)) then

N1(p) → N3(p)
process(N3(p))
localCache.remove(N1(p)))

/*** On Remove Trigger ***/

// Runs when a local N1 trigger is marked for

// removal under the cache eviction policy

if NOT isDecided(N1(p)) then

apply user defined criteria

Figure 5. Pseudocode for Algorithm I.

The station then starts listening to (1) N1 triggers from any of its geographical neighbors, and
(2) advertisement messages from any of its geographical neighbors. Whenever an N1 trigger is
promoted to an N3 trigger, it will be discarded by the station after a computation that involves
the following:

• Direction reconstruction of the signal that caused the trigger.

• Deciding, based on the reconstructed direction, if the trigger is an event of interest, false
positive, or noise.

In case that station p promotes its N1 trigger to an N3 trigger because of coincidence with N1
triggers of two of its geographical neighbors, the station informs all its geographical neighbors by
broadcasting a message of type AdvertEntry. On the other hand, if station p promotes its N1 trigger
to an N3 trigger because of coincidence with an N3 trigger of any of its geographical neighbors,
the promoted N3 trigger is not broadcast to the neighbors. The reason for this is that station p has
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Algorithm I ID ID ID ID

S S S S · · ·
NS1 NS2 NS3 NS4

ID S NS1 NS2 NS3 NS4 . . .Algorithm II

message field
common field

ID: source station id
S: Seconds of N1 trigger

NS: Nanoseconds of N1 trigger

Figure 6. Grouping N1 triggers having the same value of seconds field into a bundle.

only one neighbor in the event region which has already promoted its corresponding N1 trigger to
N3. For station p, broadcasting the advertisement in this case is useless. Once an N1 trigger is
promoted to an N3 trigger it is removed from storage, in order to be sent to the CRS.

When a trigger is marked for removal under the cache eviction policy and it has not yet been
decided by the algorithm (if the trigger is an N3) then there are two possibilities to decide about
this trigger before being removed. First, under the assumption of reliable communication, the
trigger is discarded; concluding it is not an N3 trigger. Second, under the assumption of unreliable
communication, which we do not consider in this paper, station p may apply some user-defined
policy. The user-defined policy is usually a heuristic filter that is applied to the local N1 triggers
of a station. One such heuristic filter is that the N1 triggers occur at repeated time intervals. For
example, some N1 triggers are caused by electrical power lines passing over the field where antenna
stations are installed. These triggers show periodicity correlating with the usual AC power line
frequency of 50 or 60 Hz and should be ignored.

3.2 Algorithm II: a periodic broadcast algorithm for DED

We notice that each station broadcasts its local N1 triggers at a rate of 200 Hz next to broadcasting
its advertisement messages. Our previous algorithm suffers from high bandwidth consumption. To
reduce bandwidth consumption, we use an alternative algorithm discussed in this section.

The idea behind this algorithm is that we can save a significant amount of bandwidth by group-
ing local N1 triggers that share the seconds field. The triggers are bundled such that N1 triggers
with different values of nanoseconds field share a common value of the seconds field.

Figure 6 compares messages used in both algorithms to broadcast four N1 triggers generated
at a station to its geographical neighbors. We assume that the timestamps of all the four triggers
have the same value for the seconds field. It is obvious that our first algorithm uses one message per
N1 trigger and broadcasts an extensive amount of redundant information in the form of the srcId

and the seconds fields. Our modified algorithm can save a significant amount of bandwidth, without
loss of accuracy, by simply grouping together the N1 triggers having the same value for the seconds

field. We call the N1 triggers grouped in this way an N1 bundle, as shown in figure 7. In our system,
N1 triggers occur at each station at an average rate of 200 Hz. We see that by bundling these N1
triggers together, having the same value for the srcId field and assuming they share the same value
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type N1Bundle = record

srcId : integer;

seconds : integer;

nanoSeconds : integer[];

end;{ type N1Bundle }

type N1Entry = record

srcId : integer;

seconds : integer;

nanoSeconds : integer;

end;{ type N1Entry }

type AdvertBundle = record

srcId : integer;

seconds : integer;

advertBundleEntry

: AdvertBundleEntry[];

end;{ type AdvertBundle }

type AdvertBundleEntry = record

nanoSeconds : integer;

neighborN1 : N1Entry[];

end;{ type AdvertBundleEntry }

Figure 7. Data types for Algorithm II.

for the seconds field, the bundle will carry only one instance of both srcId and seconds fields and a
list of distinct nanoseconds. This reduces, in principle, the bandwidth consumption by around 66%.

Similar to the N1 bundle formation, the local N3 triggers that share the same value for the
seconds field can be bundled as an advertisement bundle, also shown in figure 7. The bandwidth
consumption can further be reduced by compressing bundles before their broadcast. Note, however,
that this involves computational overhead caused by compression and decompression.

Figure 8 shows the pseudocode of our revised algorithm. When an N1 trigger occurs at a
station p, it adds the trigger to its local cache. Due to limited storage capacity each trigger is
discarded from the local cache under a certain cache eviction policy. We use a simple cache eviction
policy that removes the oldest trigger from the cache. The trigger is also added to a local N1 bundle
that will be broadcast to geographical neighbors of the station.

The algorithm executes two threads: active and passive. The active thread is executed pe-
riodically. It broadcasts N1 bundles and advertisement bundles of a station to the geographical
neighbors of the station. The passive thread listens to incoming messages. Upon receipt of an N1
bundle or an advertisement bundle from a geographical neighbor, the thread looks for a coincidence
of each trigger in the bundle with the local N1 triggers. Whenever an N1 trigger is promoted to an
N3 trigger, it will be discarded if it came from an invalid direction as before.

If a coincidence has been found among the local N1 trigger and N1 triggers of the geographical
neighbors, then these N1 triggers are added to the advertisement bundle.

When a trigger is marked for removal under the cache eviction policy and it has not yet been
decided by the algorithm (if the trigger is an N3) then it is treated exactly the same way as before.

4 Design space analysis

We measure the accuracy of our algorithms according to the number of false negatives and effi-
ciency according to the number of false positives and the amount of communication among geo-
graphical neighbors during event detection. The algorithm is said to have produced a false negative
if a trigger is not reported to the CRS which would have been marked by a reference/ideal algo-
rithm as part of a potential cosmic-ray air shower. Similarly, the algorithm produces a false positive
if a trigger is reported to the CRS because there is not sufficient information to conclude that it is
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/*** On Local N1 Trigger ***/

// Runs when a local N1 trigger occurs at station p
localCache.add(N1(p)))
N1Bundle.add(N1(p)))

/*** Active thread ***/

// Runs every T seconds

for all q ∈ Neighp do

send < N1Bundle(p),q >

for all q ∈ Neighp do

send < AdvertBundle(p),q >

/*** Passive thread ***/

// Runs when receiving an N1Bundle or AdvertBundle

receive < N1Bundle(q),q >

OR

receive < advertBundle(q),q >

for all entry ∈ Bundle do

coincidence = localCache.coincidence(entry))
if coincidence then

N1(p) → N3(p)
process(N3(p))
i f entry ∈ N1Bundle do

N1Bundle.add(entry))
localCache.remove(N1(p)))

/*** On Remove Trigger ***/

// Runs when a local N1 trigger is marked for

// removal under the cache eviction policy

if NOT isDecided(N1(p)) then

apply user defined criteria

Figure 8. Pseudocode for Algorithm II.

caused by man-made noise and hence discard it. Ideally, the algorithms should neither produce
false negatives, nor false positives. However, due to the constraints of limited amount of communi-
cation bandwidth, storage, and computational power, we need to consider various tradeoffs. These
tradeoffs may cause the algorithms to produce false negatives and false positives.

We use our proposed first algorithm under ideal conditions as reference point for comparison.
There are several cases related to our revised algorithm where tradeoffs can be considered. These
cases are discussed below and summarized in figure 9.

1. By using bundles, we reduce local communication at the price of increased local computation
and (temporary) storage.

2. Compressing bundles will further decrease communication costs, yet also increase local com-
putational effort. In addition, more local storage is needed in comparison to not using any
bundles at all, although compression will help to keep this required additional storage low.
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o no effect

Figure 9. Design space exploration for collaborative local data analysis techniques.

3. Probabilistic data structures like Bloom filters [5] for exchanging N1 triggers, result in re-
duced communication during local data analysis. Actually, each local N1 trigger is hashed to
a single bit and instead of broadcasting a bundle of local N1 triggers, a bit vector representing
the triggers is broadcast to the neighbors. Then a node compares its local bit vector with the
bit vectors received from the neighbors. The lookup operation is cheaper. Moreover, being a
characteristic of the Bloom filters, no false negatives are produced. However, this technique
increases the number of false positives, in turn, implying increased communication overhead
with the CRS.

4. We can reduce the memory usage at the cost of increased computation as follows. Instead
of storing the timestamp of a local N1 trigger in a pair of seconds and nanoseconds fields,
we store it as an offset to a certain base time. The full information on an N1 trigger can be
computed back using this base time and the offset.

5. If the frequency with which a station broadcasts its N1 bundle and advertisement bundle
is increased, then it will allow stations to decide on their local N1 triggers earlier. Since
an N1 trigger is removed from the local cache when it has been evaluated, increasing the
broadcast frequency will result in reduction of memory usage for storing N1 triggers. On the
other hand, the increased broadcast frequency will increase the number of bundles exchanged
overall, and this increased number of bundles will increase the computational overhead re-
quired for each bundle. Moreover, an increased broadcast frequency will also consume more
bandwidth which means consuming more energy.

6. For the same transmission range, increasing the neighborhood size beyond a certain mini-
mum has a negative effect on performance. The reason is that more N1 triggers are generated
whose collaborative processing consumes resources for no gain. Note that this statement is
based on the assumption of reliable communication channels. In case of unreliable commu-
nication channels, increased neighborhood size will improve the robustness of the system.
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7. As mentioned earlier, a station may apply some user-defined heuristic filter to the local N1
triggers of the station. The heuristic filter discards those N1 triggers which fall within certain
time windows along the time domain. If the length of the window is kept too small then
fewer N1 triggers will be discarded. On the other hand, keeping a larger window the filter
may discard some N1 triggers which are potential N3 triggers. This situation gives rise to
false negatives.

5 Experimental setup and methodology

We carried out simulations to demonstrate the accuracy and efficiency of our distributed event
detection algorithms. The simulations were conducted using the OMNET++ [6] simulation envi-
ronment. The OMNET++ platform is expressive, efficient, modular, and prevailing as the de-facto
simulation environment for mobile ad-hoc and sensor networks [7]. We used traces of N1 triggers
collected from AERA testbed. The current testbed consists of 24 stations and uses wired infrastruc-
ture for communication between stations and the CRS. The data analysis procedure in the testbed
is centralized: every station sends its N1 triggers to the CRS for analysis. It is important to em-
phasize that the occurrence of N1 triggers is independent of the data analysis procedure. So the N1
triggers generated in the testbed with wired infrastructure and centralized data analysis procedure
could still be used to validate and analyse our proposed solution based on wireless infrastructure
and collaborative local data analysis procedure.

5.1 Validation

To validate our approach, we compared the functionality of our algorithms based on distributed
event detection (DED) to that of the centralized event detection (CED). In the CED, each station
sends timestamps of its N1 triggers to the CRS. The CRS performs multi-station coincidences. If
three or more stations are in coincidence the corresponding group of triggers is promoted to Level
3. The CRS then requests each of these stations to send their corresponding event data.

The current implementation of CED disregards geographical neighborhood for the computa-
tion of Level 3 triggers. This implies that the triggers from every two stations in the system are
considered for possible coincidence. In this case the coincidence window is kept as large as the
travel time of light across the entire array (not just the distance between the two stations which
are checked for coincidence). The array width is approximately 750 meters for AERA. Thus, an
array-level coincidence window Tc = 2.5 µs is used in the CED.

There are several implications of the coincidence criteria based on the array-level Tc. First,
although an exhaustive search for pairwise coincidence is fast for a small array like the current
AERA, it may be computationally infeasible as the array size grows to thousands of stations. Sec-
ond, there is an upper bound (approximately 10 Km2) on the surface area that can be hit by a
highest-energy cosmic-ray air-shower. Therefore, searching for coincidence between two stations
that are far apart from each other (beyond the mentioned upper bound) is meaningless.

On the other hand, DED assumes that a station can communicate only with its geographical
neighbors, and thereby search for coincidence in the geographical neighborhood. Moreover, the
coincidence criteria is based on the travel-time of light between the pair of stations whose triggers
are checked for coincidence. Currently, the average interstation distance in AERA is 150 m, which

– 14 –



2
0
1
3
 
J
I
N
S
T
 
8
 
P
0
3
0
1
1

means Tc = 0.5 µs. Comparing the array-level Tc of CED and pair-level Tc of DED we observed that
the set Sced of N1 triggers promoted to Level 3 by CED is a superset of the corresponding set Sded

produced by DED. This is indeed an expected outcome because DED uses more strict coincidence
criteria than the CED.

An important question that arises here is whether the difference of the sets of triggers Sced\Sded

are actual false negatives. To answer this question, we inspect closely the CED system. In addi-
tion to the different coincidence window, CED employs a domain-specific filter called dynamic
histogram [4]. This filter removes hot spots (triggers which arrive periodically from the same di-
rection) from the set of triggers Sced and results in a set Shist, representing groups of triggers that are
potential cosmic-ray air-showers. We observed that the difference Shist\Sded is empty, and hence,
DED does not drop any trigger that is part of a potential cosmic-ray air-shower. However, to make
a fair comparison between the performances of CED and DED, we imposed the same set of as-
sumptions on CED and DED, namely, geographical adjacency (and, thus, the coincidence window
Tc = 2.5 µs). For these two assumptions DED should detect the same set of Level 3 triggers as
detected by CED. In other words, if Sced = Sded then the output of DED is valid and the related
performance comparisons will be fair.

We impose geographical adjacency on the CED system as follows. Consider the network as a
simple undirected graph G(V,E), where stations are nodes in V . Two nodes are connected by an
edge in E if these nodes are geographical neighbors. All stations involved in a Level 3 trigger i
captured by CED form a subgraph Gi(Vi,Ei) ∈ G. (Note that a subgraph Gi may be a disconnected
graph). According to our connected component criteria, two nodes in Gi have an edge e ∈ E
between them, if they are geographical neighbors, and are in coincidence with each other. We
search for connected components in Gi, and select all connected components (CC) of Gi with the
size ≥ 3. The resulting set of CC for all Level 3 will satisfy geographical adjacency.

5.2 Performance metrics and system parameters

In order to analyse the effect of using collaborative local data analysis, we considered a represen-
tative station S in our simulation. Recall that our centralized approach would have sent all the N1
triggers generated at station S to the CRS. We were interested to see whether station S, under our
collaborative local data analysis approach, can actually reduce the data that is sent to the CRS. To
that end, we monitored the frequency of the following variables for station S:

• N1 triggers

• N3 triggers

• False positives

• False negatives

• Events of interest

Here, an event of interest is defined as the N3 trigger for which the direction reconstruction process
is successful and the zenith angle (in degrees) lies outside the interval [90-η , 90+η]. The signal
arriving from an angle within the interval [90-η , 90+η] is considered as a signal from the horizon
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Figure 10. Collaborative local data analysis at station S.

(i.e. man-made disturbance). Here, η is an adjustable parameter to analyse the tradeoff between
accuracy and efficiency of direction reconstruction filter.

As argued in section 3.2, our enhanced algorithm can save a significant amount of bandwidth
by bundling consecutive local N1 triggers before broadcasting to geographical neighbors. To see
this effect we compared the bandwidth utilization of our basic algorithm and our enhanced algo-
rithm with respect to the following variables for station S:

• Transmission rate (bits/sec)

• Reception rate (bits/sec)

Finally, we examined the effect of additional computation at the stations on communication.
To that end, we applied compression to the N1 bundles and advertisement bundles in our enhanced
algorithm. We used lossless compression (zlib-1.2.5) so that the receiving station is able to recon-
struct the original bundle.

6 Results

We first focused on validation of our collaborative local data analysis approach. We followed our
validation method explained in section 5.1 and confirmed that our algorithms indeed observed the
same N3 triggers that should have been noticed. This means that our algorithms are functioning
correctly.

Let us now consider the local filtering capability of our algorithms, by focusing on our repre-
sentative station S. Figure 10 shows the local data analysis performed at station S over a period of
100 seconds. The frequency of N1 triggers (generated at station S) during the experiment is shown.
Next, as a result of executing our distributed event detection algorithms, the fraction of N1 triggers
at station S that were promoted to N3 triggers is shown.
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Figure 11. The tradeoff between discarding N3 triggers based on reconstructed direction at the cost of
producing false negatives.

Wireless communication offers limited bandwidth, therefore, efficient utilization of bandwidth
becomes essential. From figure 10 we can see that our distributed algorithms enable a station to
discard a huge amount of data by communicating only with its geographical neighbors. Only a
relatively small amount of data is chosen to be sent to the CRS for further analysis. This is a
positive indication for efficient bandwidth utilization.

Our algorithms may produce false positives. Therefore, we monitored the occurrence of false
positives during the experiments. A false positive is a consequence of the direction reconstruction
process failure. As discussed in section 2, there are two reasons for this failure. First, there might be
no real signal underlying the corresponding N3 trigger. If we were sure that there is no real signal
underlying the N3 trigger, then instead of reporting it as a false positive we could confidently
discard it locally. This would enable the station to send even less data to the CRS. Second, the
direction reconstruction process, using heuristics, may fail to reconstruct direction for an N3 trigger
caused by a real signal. In both cases we need more efficient methods for direction reconstruction
which will help in further reduction of the amount of data sent to the CRS. However, in our sample
trace of the N1 triggers for station S, we did not observe any false positives.

Efficient utilization of bandwidth, under high frequency of N1 triggers, also involves several
tradeoffs. As an example we consider our definition of event of interest, which we defined to be
an N3 trigger whose zenith angle (in degrees) lies outside the interval [90-η , 90+η]. Note that the
interval represents the direction of signals from the horizon. We took η ∈ {0,0.5,1, . . . ,4.5,5} and
analysed the impact of width-of-horizon on accuracy and efficiency of the algorithm. The results
are shown in figure 11. As we increase this interval, more N3 triggers will be discarded. This
means that the amount of data that is sent to the CRS is further reduced and subsequently more
efficient bandwidth utilization. On the other hand, keeping a large interval to represent the hori-
zon may lead to producing false negatives. This situation shows a tradeoff between accuracy and
communication cost.

It is important to note that both of our algorithms produce the same output in terms of N1
triggers promoted to N3 triggers, false positives produced, and N3 triggers declared to be events of
interest. The only difference between the two algorithms is in bandwidth utilization. The enhanced
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Figure 12. Performance comparison of Algorithm-I and Algorithm-II with respect to communication band-
width consumption for station S.

algorithm is expected to utilize the bandwidth more efficiently than the basic algorithm. Figure 12
shows a comparison of bandwidth utilization by our basic algorithm, our enhanced algorithm, and
our enhanced algorithm with bundle compression. The measurements were performed at our rep-
resentative station S. We see that there is a substantial difference between the bandwidth utilization
of the basic algorithm and the enhanced version.

Figure 12 also demonstrates the effect of compressing N1 bundles and advertisement bundles
in our enhanced algorithm before broadcasting to its geographical neighbors. The bundle compres-
sion significantly reduces the number of transmitted bits per second. The effect of compression
becomes more pronounced in case of reception of compressed bundles. This was to be expected
considering the fact that station S receives from multiple neighbors. We believe the effect of com-
pression can be made more significant by applying compression techniques that consider the nature
of the data we are handling.

7 Centralized versus distributed event detection

The motivation for using DED is twofold. Firstly, the DED saves on bandwidth by avoiding trans-
mission of N1 triggers to the central station (both DED and CED detect the same set of N3 triggers).
Second, DED has the advantage of spreading the computational load over the entire array instead of
a single central computer. In this section we elaborate on when DED becomes more cost-effective
(in terms of bandwidth) than CED. We moreover discuss the technological aspects of distributed
event detection.

7.1 Bandwidth

We compare the bandwidth requirement of DED (algorithm-II) to that of CED. In general, the
detection mechanism requires bandwidth in two phases: 1) event detection, and 2) routing the event
data. As shown in the previous section, DED and CED produce the same number of N3 triggers,
meaning that both approaches have the same bandwidth requirement for the second phase. Thus,
we compare bandwidth requirement only for the event detection and exclude event data routing in
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both CED and DED. The threshold network size is derived, based on bandwidth requirements, for
which DED is more cost-effective than CED.

First, we estimate how much data is produced by a station. Each station bundles its N1 triggers
in time intervals of one second. The bundle consists of the station identity (16 bits), seconds of the
N1 triggers (32 bits), and list of nanoseconds (each ns is 32 bits). The station-level bandwidth
requirement λstation (bits/sec) can thus be estimated in terms of a frequency of N1 triggers fN1 by
the following equation:

λstation = 32 · fN1 +32+16 = 32 · ( fN1 +1.5) (7.1)

For CED, λstation is the amount of data that needs to be routed, over h hops, to the CRS for analysis.
Here h depends on the location of a station w.r.t. the CRS. Thus, the minimum requirement for the
bandwidth by CED can be derived as follows:

λced = 32 · ( fN1 +1.5) ·h (7.2)

Likewise, we estimate the bandwidth required by a station in DED. In DED, not only N1 triggers
are bundled by a station but also N3 triggers of the current round are gathered in a separate ad-
vertisement bundle. The N1 bundle consists of station identity (16 bits), seconds (32 bits), and
nanoseconds (each ns is 32 bits). The amount of data produced by an N1 bundle (in a time interval
of one second) is:

λN1 = 32 · ( fN1 +1.5) (7.3)

Similarly, the advertisement bundle consists of station identity (16 bits), seconds (32 bits), and
a list of type AdvertBundleEntry. Each AdvertBundleEntry has nanoseconds (32 bits) of the local
N3 trigger, identities of two neighbors (2 · 16 bits), and nanoseconds of the N3 triggers of these
neighbors (2 ·32 bits). The amount of data produced by an advertisement bundle (in a time interval
of one second) is:

λadvert = (32+2 ·16+2 ·32) · fN3 +32+16 = 32 · (4 · fN3 +1.5) (7.4)

Here fN3 is the frequency of N3 triggers. The total bandwidth requirement λded for a station in
DED is the sum λN1 +λadvert.

We noticed during our experiments that the ratio of promoted N3 triggers to the total N1
triggers is approximately 0.6. For simplicity, we assume that this ratio is constant over time and is
the same for all stations. Then, substituting fN3 = 0.6 · fN1 in equation (7.4), we get:

λded = 32 · (3.4 · fN1 +3) (7.5)

In general case, i.e. for any ratio of fN3 and fN1, equation (7.5) becomes

λded = 32 · (β · fN1 +4) (7.6)

From equation (7.2) and (7.6), we see that h and β are the determining factors for bandwidth
requirements of CED and DED, respectively. In other words, CED and DED have the same band-
width requirement if the average number of hops h for each bundle to travel from the source station
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Figure 13. Bandwidth usage for CED and DED (during event detection phase). The x-axis represents size
of a network. The y-axis represents the total amount of data transmitted in the network per second (during
the detection phase). It is assumed that each station in the network has a trigger rate of 200 Hz.

to the CRS is equal to β . Clearly, CED requires less bandwidth than DED if h < β . However,
for h > β DED outperforms the CED. For our network configuration, triangular grid topology, and
assuming that the CRS is located at the center of the network, the corresponding network size N
can be determined by:

N = 1+6
2h−1

∑
i=1

i, where h = f loor(β ) (7.7)

(The central position of the CRS in CED provides the optimal communication path.) For the
specific case of equation (7.5), where β = 3.4, the threshold network size N on or above which
DED outperforms CED is 91.

Figure 13 elaborates further the comparison of bandwidth requirement for CED and DED
for various network sizes. A network of size N is assumed to have a triangular grid topology.
Furthermore, the stations are placed along the grid such that they form concentric hexagons. The
CRS is in the centre. This means that the stations placed along the inner-most hexagon will be
one hop from the CRS. Similarly, stations along the outermost Nth hexagon will be N hops away
from the CRS.

We see in figure 13(a) that for smaller network sizes such asN ≤ 40, CED has less bandwidth
requirements. However, as the network size increases, the bandwidth requirement of CED becomes
higher than DED. This can be seen for the threshold network size N = 91. Figure 13(b) depicts a
typical situation for the Auger North with 4400 SD stations and five concentrators. Every concen-
trator would have to cover approximately 900 SD stations. In this case the bandwidth requirement
for CED will be 3.44 times higher than DED.

7.2 Technical considerations

The design of the trigger system for the Pierre Auger Observatory evolved over time to fulfil various
objectives. These include scientific significance, quantity, and quality of data. The observatory was
envisioned to have two sites, namely, Auger North and Auger South. The objective was to cover

– 20 –



2
0
1
3
 
J
I
N
S
T
 
8
 
P
0
3
0
1
1

both the northern and southern hemisphere of the Earth. Moreover, to collect a large quantity of
data, large geographical areas were instrumented on both sites. Currently, the AERA is under
construction with the aim of getting high quality data that will help answer some questions related
to high-energy cosmic-rays [8].

The changes in trigger systems reflected both in the design of detector stations and the related
infrastructure for detector-to-CRS communication. These changes were made to overcome the then
existing limitations of the trigger systems. However, they also posed new challenges. We focus on
these changes and discuss how the decisions taken may be helpful in the design of a distributed
trigger for AERA to overcome the new challenges and exploit, at the same time, the opportunities
in AERA for richer data collection.

The southern site, Auger South, uses wireless communication system organized in a two-layer
hierarchy [3]. The area instrumented with detectors is divided into sectors. Each station commu-
nicates directly via directional antennas with a dedicated base station for that sector. Note that all
the base stations are mounted on four concentrator towers. The detector-to-base station communi-
cation uses custom radio hardware and proprietary network access protocols. The base stations are
connected via a microwave network (with a standard telecommunication architecture). The data at
the base stations are transferred via the microwave network to the Central Data Acquisition System.
The microwave network provides sufficient capacity including a margin for future use. However,
the bottom layer involved in detector-to-base station communication was designed to support a
bandwidth of 1200 bits/sec.

The communication paradigm was reviewed for the northern site, Auger North, due to various
reasons [9]. These include increased bandwidth requirement for detector-to-base station commu-
nication, difference in terrain of both sites, and the cost of towers to cover the comparatively larger
area of the Auger North. The detector array is considered as a wireless sensor network (WSN).
Essentially, it is a peer-to-peeer (P-2-P) communication paradigm. More specifically, each detec-
tor can communicate with its geographical neighbors. A detector is enabled to send its data to
the concentrator via multi-hop communication using neighboring detectors as intermediate relays.
Each detector is equipped with semi-custom radio hardware which uses four licensed, dedicated
channels in the 4.6 GHz band. The WAHREN protocol [9], essentially a TDMA MAC with spe-
cific schedule for the Auger North setup, is implemented on top of the specified hardware. Each
detector requires the minimal bandwidth of 2400 bits/sec. Since detectors also relay data of their
neighbors, the total bandwidth requirement is met at achievable bit rates, such as 11 Mbps. An
important lesson learnt is that as the scale of required bandwidth per detector and the area instru-
mented with detectors increases, multi-hop communication is more cost-effective than single-hop
detector-to-concentrator communication.

On the other hand, AERA antenna stations use different detection technique than the one used
by Surface Detectors in Auger South and Auger North. Although the antenna stations collect richer
data they also raise the detection-phase bandwidth requirement per antenna station (˜6900 bits/sec).
Note that this bandwidth estimate is based on a typical trigger rate of 200 Hz. The trigger rate
may be as high as between 400 Hz to 600 Hz. Based on the lesson learnt from Auger North and
the highest bandwidth requirements of the antenna stations, localized event detection is a natural
further step to cope with the high demands for bandwidth by antenna stations.

A full design of communication system for DED is beyond the scope of this paper and re-
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quires further investigation. Nevertheless, we indicate two options that can be considered. First,
investigate the TDMA schedule of the Auger North for a potential reconfiguration that allows each
antenna station to exchange messages with its geographical neighbors. Second, the use of Com-
mercial Off The Shelf (COTS) communication hardware. A potential candidate is ZigBee-Pro
(IEEE-802.15.4, with operating frequency of 2.4 GHz in the ISM band). ZigBee-Pro offers an out-
door communication range up to 1500 meters and a data-rate upto 250 Kbps. However, the MAC
protocol used is based on CSMA. This means that packet collisions can be expected which will
require redundant packet transmission. Therefore, further investigation is needed to experimen-
tally evaluate the performance of DED executed on top of ZigBee-Pro communication technology.
Currently, we are working on the latter option. A report based on a full picture of DED is expected
by the end of 2013.

8 Related work

The common model for event detection in wireless sensor networks (WSNs) is that each node
relays all of its locally generated data to the base station without local processing [10]. This model
works well for small-scale networks, a small amount of data per event, and lower rates of events
per node. This model is inefficient for large-scale networks, as aggregated data transmissions can
easily exceed the available bandwidth en route to the central station.

Another model for event detection involves in-network processing. In this model, processing
is done by the nodes to compute events of interest against certain criteria known to the nodes. This
may significantly reduce the amount of communication and, hence, the energy consumed.

In TAG [11] data is processed along the routing path at its intermediate nodes. This approach
works well for computing aggregates like max, min, count, and sum etc. However, it is not suitable
for event-detection schemes where acknowledging the node about detection of event of interest
is mandatory.

In [12], the network is divided into equally sized cells. Each cell has a leader. Nodes within
the cell route their data to a leader. The leader processes the data and informs other nodes in the cell
about the decision. This scheme is scalable and also satisfies the requirement of acknowledging a
node about the decision. However, this scheme will easily produce false negatives in case an event
occurs on the border of two or more cells.

In [13], Wittenburg et al. present a distributed event detection scheme where each node decides
for itself based on information from its neighbors. Their scheme scales well. The node is also
aware of the final decision made about the occurrence of an event. However, they do not explore
the tradeoffs associated with this scheme under a high frequency of local events.

In [14], Werner-Allen et al. deal with handling high rates of events up to 102 Hz per node.
They use a distributed event detection scheme that works as follows. When a node triggers a local
event, it broadcasts a vote message. If any node receives enough votes from other nodes during
some time window, it initiates global data collection by flooding a message to all nodes in the
network. This scheme implies that when an event occurs it is detected by all nodes in the network.
However, based on this assumption, the scheme is not scalable.

Finally, Werner-Allen et al. argue in [15], to use a WSN as a scientific instrument. They deal
with an event rate of 100Hz per node and high resolution data. Because of the high data rates it is
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infeasible to transmit all sensor data. So nodes locally detect interesting events and only transmit
data related to interesting events. They use an event detection algorithm that is basically centralized.
When a node triggers an event, it is transmitted to the base station. If the base station receives
triggers from 30% of the active nodes within a 10 second window, then it is considered as an event
of interest and data collection is initiated. However, this scheme of event detection is not scalable
for large geographical areas and only applicable to specific domains, with network-wide events.

Concluding, the requirements that we mentioned have been partially addressed by a multitude
of schemes. However, to the best of our knowledge, no work lies in the intersection of these areas
to propose a scalable solution and address the design tradeoffs for the applications class we target
at under the constraints of limited energy and capacity of the WSN nodes.

9 Conclusion and future work

We notice that our proposed distributed event detection algorithms use information only from geo-
graphical neighbors and perform analysis locally at the station to discard irrelevant data. In contrast,
a centralized approach requires each station to send its data (N1 triggers) to the CRS for analysis.
This implies that as the number of hops between the station and the CRS increases, the commu-
nication cost of sending the N1 triggers to the CRS also increases. We see in figure 13(a) that for
a network of size N = 91, with average hop-distance h = 3 and maximum hop-distance hmax = 5
from the CRS, the distributed approach outperforms the centralized. This means that the central-
ized approach is not geographically scalable. On the other hand, our algorithms enable a station to
analyse data locally and show strong affinity for geographical scalability.

In this paper we focused on exploring the possibility of collaborative local data analysis to
build geographically scalable solutions for ultra-high energy comic ray detection. The devices
used for cosmic ray air shower detection have limited communication, processing, and storage
capacity. Each detector also has a limited energy budget.

Wireless communication among cosmic-ray detectors is the only way to cover a large spatial
area for detecting cosmic-ray air showers. Each cosmic-ray detector generates a huge amount of
data that needs to be sent to the CRS. But wireless communication offers limited bandwidth that
does not meet the bandwidth requirements of a centralized solution for this application.

We present a distributed event detection algorithm that enables a cosmic ray detector to analyse
its data locally based on information from its geographical neighbors. The ability of collaborative
local data analysis makes our algorithm attractive for building large geographically scalable solu-
tions. The results from simulating our algorithm show that a significant amount of irrelevant data
can be filtered out locally. This allows a detector to utilize wireless communication bandwidth
more efficiently. We also explore several design tradeoffs that help understand the relationship
between accuracy of our algorithm and various resources usage.

We know that wireless communication medium has not only limited amount of bandwidth but
wireless communication links are also unreliable. In this paper, we assume that links are reliable.
As future work we will explore the behaviour of our distributed event detection algorithm under
unreliable communication channels.
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