
Computing (2013) 95:759–784
DOI 10.1007/s00607-012-0264-2

GoSCAN: Decentralized scalable data clustering

Hoda Mashayekhi · Jafar Habibi ·
Spyros Voulgaris · Maarten van Steen

Received: 11 July 2012 / Accepted: 10 December 2012 / Published online: 3 January 2013
© Springer-Verlag Wien 2012

Abstract Identifying clusters is an important aspect of analyzing large datasets.
Clustering algorithms classically require access to the complete dataset. However, as
huge amounts of data are increasingly originating from multiple, dispersed sources in
distributed systems, alternative solutions are required. Furthermore, data and network
dynamicity in a distributed setting demand adaptable clustering solutions that offer
accurate clustering models at a reasonable pace. In this paper, we propose GoScan,
a fully decentralized density-based clustering algorithm which is capable of cluster-
ing dynamic and distributed datasets without requiring central control or message
flooding. We identify two major tasks: finding the core data points, and forming the
actual clusters, which we execute in parallel employing gossip-based communication.
This approach is very efficient, as it offers each peer enough authority to discover the
clusters it is interested in. Our algorithm poses no extra burden of overlay formation
in the network, while providing high levels of scalability. We also offer several opti-
mizations to the basic clustering algorithm for improving communication overhead
and processing costs. Coping with dynamic data is made possible by introducing an

Hoda Mashayekhi research was supported by the Research Institute for ICT under grant No: T/500/5197.

H. Mashayekhi (B) · J. Habibi
Computer Engineering Department, Sharif University of Technology, Tehran, Iran
e-mail: mashayekhi@ce.sharif.edu

J. Habibi
e-mail: jhabibi@sharif.edu

S. Voulgaris · M. van Steen
Department of Computer Science, VU University, Amsterdam, The Netherlands
e-mail: spyros@cs.vu.nl

M. van Steen
e-mail: steen@cs.vu.nl

123

760 H. Mashayekhi et al.

age factor, which gradually detects data-set changes and enables clustering updates.
In our experimental evaluation, we will show that GoSCAN can discover the clusters
efficiently with scalable transmission cost.

Keywords Distributed systems · Decentralized clustering ·
Gossip-based dissemination

Mathematics Subject Classification (2000) 68W15

1 Introduction

Discovering or identifying groups of similar elements, called data clusters, has always
been an important aspect of analyzing large datasets. Clustering algorithms generally
require access to the complete dataset, which is one reason why such algorithms
have traditionally been carried out in a centralized fashion. However, as data sets are
increasingly originating from multiple, dispersed sources, and at the same time are
increasing in volume, alternative solutions are needed. In a decentralized clustering
algorithm, multiple processes, each running at a different location, collaborate in
discovering clusters by exchanging metadata instead of the actual data. In other words,
data points belonging to the set that is being analyzed in principle do not, or barely,
change location. The dataset as a whole thus remains dispersed. Nevertheless, the
processes participating in a decentralized clustering algorithm will gradually discover
various clusters and can provide this information to third parties, if so required.

Distributed Data Mining (DDM) explores methods of applying data mining algo-
rithms to decentralized data, utilizing distributed resources of computation and com-
munication. Classically, data mining algorithms attempt to optimize storage and
processing costs, whilst additional requirements arise in DDM, such as maintain-
ing scalability, low communication overhead, and privacy. For a survey of DDM refer
to [3,22].

If data are kept in place, then what remains is to distribute the computations. A
common approach is to organize the computations in a hierarchical fashion by which
local models are computed first, to be sent to a logically higher-level process that
aggregates models, possibly returning results to the lower-level processes for further
processing [14,19,21]. In such approaches, output from the algorithm is much depen-
dent on sound functioning of the highest level process. To maintain scalability, nodes
may reduce the size of metadata in the high hierarchy levels. However, this adds a
trade-off between the processing load and the output accuracy. In pure unstructured
algorithms, where nodes act symmetrically, each node will eventually and individually
come to the same final result.

In the approach explored in this paper, all processes are treated the same and
each one gradually builds a view of which of its data points belong to which cluster.
Processes continuously exchange information on data points as well as information on
the clusters found so far. In this case, the robust and efficient dissemination of infor-
mation across all processes becomes important. Gossiping [5] has been demonstrated
to be a simple and effective means to this end, and is also the technique that we have

123

GoSCAN: decentralized scalable data clustering 761

adopted. Moreover, as we will show, gossiping is capable of handling changes in the
dataset while cluster discovery is taking place.

Being able to deal with the dynamics of datasets is particularly important when
datasets grow in size, and their sources increase and become more dispersed. There
are essentially two aspects regarding the dynamics that we need to take into account.
First, we must expect that data points are added and removed continuously. As a
consequence, a clustering algorithm will need to run continuously as well; there is, in
principle, no final answer. Second, and related, is that any information on the currently
discovered clusters will most likely always be outdated. Therefore, it is essential that
the speed by which clusters are discovered matches the rate at which the underlying
dataset changes, or that an indication of the mismatch can be provided.

Existing distributed clustering algorithms either rely on a central site [14], assume
a special logical or semantic structure [19,21], require synchronization or state-aware
operation of nodes to some extent [4,12], or include multiple rounds of message flood-
ing [6,10], to achieve a global clustering model. Although a majority of algorithms
include summarization techniques to reduce communication costs, the employed
design principles conflict with scalability requirements in large-scale networks. More-
over, existing algorithms lack efficient solutions for adaptability in dynamic settings,
which introduces significant challenges for applying them in large-scale real-world
networks. Handling dynamics of data using an adaptive method, without requiring the
algorithm to restart, is among the novelties of GoSCAN.

Density-based clustering has proven to be effective for analyzing large amounts of
data. Algorithms in this class generally require no previous knowledge of the number
of clusters, they can discover clusters with arbitrary shapes, and they inherently allow
for discovering outliers [8]. In this paper, we propose GoSCAN: a completely decen-
tralized density-based clustering algorithm. GoSCAN enables each peer to detect
which clusters its local (or obtained) data objects belong to. Our solution builds upon
DBSCAN [8] employing a continuously changing unstructured peer-to-peer overlay
network. We identify two major tasks: finding the core data points, and forming the
actual clusters, both for which we use gossiping communication. Gossiping poses
no extra burden of overlay formation in the network, while providing high levels of
scalability.

We offer several optimizations to the basic clustering algorithm for improving
communication overhead and processing costs. An important improvement consists
in employing the gossip-based peer selection service Vicinity [29] to let peers find
good communication partners.

This paper is organized as follows. First our system model as well as the DBSCAN
algorithm are described in Sect. 2. In Sect. 3, the basic decentralized version of
GoSCAN is introduced. In the succeeding section we scrutinize the effects of churn
and propose adjustments to the basic algorithms. Simulation results are discussed in
Sect. 6, followed by related work and conclusions.

2 Basics

In the following subsections, the DBSCAN algorithm is briefly described, followed
by the assumptions, notations and basic model of GoScan.

123

762 H. Mashayekhi et al.

2.1 DBScan

As mentioned, GoSCAN is based on the well-known DBSCAN algorithm [8].
DBSCAN considers data points to be placed in an m-dimensional metric space with
an associated distance metric δ. Let x denote a data point belonging to the dataset D.
A key concept in DBSCAN is that of a core point, for which we first need to define
the ε-neighborhood of a data point x:

Nε(x) = {x ′|x ′ ∈ D ∧ δ(x, x ′) ≤ ε} (1)

A data point x is a core point if |Nε(x)| ≥ MinPts, where MinPts is a user-defined
local-density threshold.

As their name suggests, core points are used to define clusters in the sense that
data points should lie “close” to core points. To make this precise, consider a core
point x0. Each data point x ∈ Nε(x0) is said to be directly density reachable from
x0. Likewise, xb is density reachable from xa if there is a chain of data points
xa ≡ x1, x2, . . . , xk ≡ xb such that xi is directly density reachable from xi−1 (imply-
ing that each xi (i < k) should be a core point). Note that density reachability is an
asymmetric relationship. Finally, two data points xa and xb are density connected, if
there exists a core point x0 such that both xa and xb are density reachable from x0.
A density-based cluster can now be defined as a maximal set of density-connected
points.

To discover the clusters in a dataset, first the ε-neighborhood of each data point is
examined, allowing us to identify the core points. Next, the method iterates through
each core point and finds all other data points that are density reachable from it, and,
consequently, density connected with each other. All such data points belong to the
same cluster. The points that do not belong to any cluster are labeled as noise. To clarify,
consider a graph whose vertices are formed by core points and an edge indicates that
its end points are directly density reachable. In this model, discovering clusters first
reduces to finding the connected components. Next, any core point incorporates into
its cluster exactly those data points that are in its ε-neighborhood.

2.2 System model

We consider a set V = {p1, p2, . . . , pn} of n networked peers. Each peer p ∈ V
stores and shares a set of data points Dint

p , denoted as its internal data. We do not
assume that internal datasets stay fixed: points may be added to or removed from a set.
A data point x is represented as an m-dimensional feature vector. D = ⋃

p∈V Dint
p is

the set of all data points available in the network. While discovering clusters, p may
also store data points from other peers in the network. These data points are referred to
as the external data of p, denoted as Dext

p . The union Dp of internal and external data
of peer p constitutes the local data of p. That is, Dp = Dint

p ∪ Dext
p . Our algorithm

transmits only meta data, including data feature vectors, and the actual data objects
are never moved. In the rest of the paper, we ignore this issue and will simply refer to
transmission of data objects.

123

GoSCAN: decentralized scalable data clustering 763

The set of (internal and external) core points at peer p is denoted as Dcore
p , and

clearly Dcore
p ⊆ Dp. Like DBSCAN, GoSCAN has two unique parameters, ε and

MinPts, which represent the radius and minimum number of required points for core
points, respectively. The result of running GoSCAN is a set of density-based clusters
Cp = {C p

1 , C p
2 , . . . , C p

kp
} in each peer p, with respect to ε and MinPts. Each cluster

is represented by the set of all its core points, if it has any, or by a single data point,
otherwise. DBSCAN is employed as the basic clustering algorithm in each peer.

Generally, each peer should be able to find the correct clusters for its internal data.
Nevertheless, the algorithm permits any peer to collect information on any arbitrary
cluster. Ideally, the algorithm should be able to adapt itself to changes in the dataset,
such that it can produce accurate results on the fly. However, due to latency in dis-
tributing changes throughout the system, maximal accuracy cannot be achieved when
running GoSCAN under real-world conditions.

3 Decentralized density-based clustering

A density-based clustering algorithm can be separated into two tasks. DETECT iden-
tifies the core points in the dataset by exploring the ε-neighborhood of each data
point. MERGE merges clusters by looking for core points that are in each other’s
ε-neighborhood. DETECT can be executed independently, while MERGE requires
the output of DETECT to execute. However, an important observation is that the two
tasks can execute repeatedly and continuously in parallel. As DETECT proceeds to
identify more core points, MERGE progresses to amend clusters. Note that in a static
setting, this approach cannot miscategorize noise points or mistakingly merge differ-
ent clusters. However, it may take some time for the algorithm to conclude on the
actual clusters.

GoSCAN is executed in a completely decentralized manner without requiring cen-
tral coordination. Because the data is distributed, accomplishing the two tasks requires
adequate cooperation of peers and communication among them. Each peer should
execute DETECT, continuously attempting to gather sufficient information about the
ε-neighborhood of its internal data, and thus identifying its core points. It will adver-
tise this information, upon request, to feed MERGE. Execution of MERGE, however,
is performed by peers optionally and selectively, only with respect to clusters they are
interested in, i.e., clusters for which they need to know the core points.

We use two gossip-based, cyclic algorithms to accomplish these tasks. In each cycle,
each peer p selects another peer q for a three-way information exchange, as shown in
Fig. 1. Peer p collects data points that are in ε range of its internal data. To this end,
it sends its internal data Dint

p to peer q and expects to receive at most MinPts data
points for each of its sent internal data points (which is represented by the trimmed()
operation). The operation updateLocalData() is used to store the received data and
to decide whether any internal data can be promoted to a core point. Note that only
the owner of a data point can decide to promote it to a core point.

Recall that the conveyed information in messages is metadata and not the actual
data objects. To save bandwidth, a peer may decide to transfer a representative of
several close data objects (along with some radius parameter to cover all omitted

123

764 H. Mashayekhi et al.

(a) (b)
Fig. 1 Threads for the core-point detection (task DETECT): a active thread for peer p and b passive thread
for selected peer q

data), in the active thread of DETECT. In the passive thread however, the amount of
transmitted data is bounded and repetitive data objects are sent only once. If plenty of
features exist in feature vectors of data objects, messages can grow. This latter concern,
which applies to high-dimensional data, can be dealt with by using compression and
dimension reduction techniques, which is out of scope of this paper.

The active and passive algorithms executed by an arbitrary peer p on behalf of
MERGE, are shown in Fig. 2. Clusters are identified by their constituting core points.
However, each cluster can have an estimate representation to reduce transmission costs.
For instance, a cluster can be estimated with a minimum bounding hyperrectangle
which surrounds its core points, or by a single data point if the cluster has no core.
The initiating peer p sends these cluster estimations C̃p to the selected peer q, which,
in turn, computes overlaps and returns those overlapping clusters to p. Peer p also
computes any overlaps and returns those to q.

At this stage, both parties have enough information to independently verify which
clusters qualify to be merged. In particular, any two core points belonging to different
clusters, which are in ε range from each other, cause those clusters to be merged. Upon
successful merging of two clusters, the peer will store all of the core points belonging
to the new cluster, executed by the operation mergeClusters(). After merging all
received clusters, the peer would again check the local clusters to see if any of them
can be locally merged together.

The two algorithms start with a preprocessing operation. In this basic algorithm,
these operations have no special function, thus we defer the discussion to Sect. 4.
The operation selectPeer() used in Figs. 1 and 2 returns a peer selected uniformly
at random (see, e.g. [15]). In Sect. 5, we will introduce another selection operation
that can enhance and accelerate both the core detection (DETECT) and the cluster
merging (MERGE) tasks.

This basic algorithm will gradually tend to discover the density-based clusters in
distributed data. Any peer executing the MERGE task will collect all of the core points

123

GoSCAN: decentralized scalable data clustering 765

(a) (b)
Fig. 2 Threads for cluster merging (task MERGE). Note that only cluster estimations, or core points are
transferred. a active thread for pi and b passive thread for selected peer p j

belonging to the clusters of its internal data. Also with a minor extension, a peer can
gather core points of any cluster: it should first locate a single data point belonging to
that cluster, and then look for core points of that cluster.

4 Dynamic dataset

Real-world peer-to-peer systems change continuously. First, nodes join and leave the
system, also known as churn. Second, nodes change their data by adding, removing,
or changing data points. These dynamics impose changes to our algorithms, not in the
least because copies of data points are actually spread throughout the system to allow
a node to decide on its clusters. Obviously, at each moment in time, the view that a
node has on clusters will, by definition of continuous change in the overall dataset, be
outdated. In the following, we discuss how this staleness can be handled.

In order to quantify staleness, each external data point stored by a peer has an
associated age. Copies of the same data point may have different ages at different
peers. In particular, agep(x) denotes the time that peer p believes has passed since x
was obtained from its originating owner peer. Time is measured in terms of gossiped
cycles. Every time peer p starts a new communication or is contacted by another peer,
it increments the ages of all external data points it holds. The age of internal data always
remains zero to reflect that it is stored (and up-to-date) at its owner. If a peer p receives
a copy x ′ of a data point x it already stores, agep(x) is set to min{agep(x), agep(x ′)}
(and x ′ is further ignored).

When a data point x is removed (e.g., because its owner leaves the system), the
minimal recorded age among all its copies will only increase. At a certain moment, a
peer p storing a copy of x will necessarily have to come to the conclusion that x has
been removed by its original owner when agep(x) passes a threshold MaxAge. At that
moment, p will also remove its copy of x .

123

766 H. Mashayekhi et al.

An important observation is that at any time t , it is theoretically possible to take a
snapshot of the entire dataset and compute a correct set of clusters C(t). However, using
a decentralized algorithm, in order for each peer to correctly assign its internal data
points to clusters, it will need to have received sufficient data points from other peers.
Propagating data points through gossiping then introduces a natural delay before peers
can come to the correct clusters, leading to a global set of clusters C(t ′), with t ′ > t .

Moreover, because propagation speeds are not uniform, if data changes occur con-
currently and originate at different sources, only under very specific conditions will it
be possible to even attain C(t). In other words, it may happen that for each time t we
may be able to obtain only an approximation C̃(t ′) at some later time t ′. Problems are
further aggravated if data is removed before having had the chance to be sufficiently
propagated. Handling the first case is extremely difficult, if not impossible without
introducing a notion of global ordering of updates. The second case can be dealt with
by simply treating the removal of internal data the same as with external data: start
increasing an internal point’s age until it reaches MaxAge before actually removing
it. Note that this procedure can be applied only when a peer wants to remove internal
data; it cannot be used for peers crashing or otherwise prematurely leaving the system.

If data points can be removed, then this may affect the status of other data points
that had been promoted to core points. To capture this situation, we again associate a
(locally computed) core point age with each core point. To this end, let N−

ε (x, k) ⊆
Nε(x) denote the k youngest data points at ε range of data point x . We then define
coreAgep(x) as the maximum age of the youngest MinPts data points in Nε(x) local
to p:

coreAgep(x) = max
x ′∈N−

ε (x,min Pts)
{agep(x ′)}

Note that a core point age should be inspected and possibly adjusted at each gos-
siping cycle. Obviously, the age of a core point may drop if new, younger data points
are discovered. It will increase otherwise. Any core point whose age passes a thresh-
old, MaxCoreAge, will be marked as noncore. If the data point demoted from core to
noncore is internal, the peer can advertise this new state in later communications to
assist other peers in quickly revising their clusters.

To incorporate these new concepts in the basic algorithm, the two preprocessing
operations are modified to handle age updates. Also the trimmed() operation of Fig. 1,
should now return the youngest MinPts data points for each internal point of the other
peer. Moreover, the two operations updateLocalData and mergeClusters should be
amended to handle the aging of data points. Operation mergeClusters should now
control partitioning of clusters as a result of core point elimination. Figure 3 illustrates
these operations. Note that increasing the age and core point age is done both at the
initiating and the selected peer. This prohibits propagation of wrong age values through
the system.

5 Improvements

In this section we review and improve our algorithm with respect to storage, computa-
tional, and communication resources. The reduction of communication may negatively

123

GoSCAN: decentralized scalable data clustering 767

Fig. 3 Operations used in the DETECT and MERGE algorithms

affect the accuracy of the algorithm. In essence, we are trading improvement of con-
vergence speed for lower accuracy, which we consider justified when data changes
rapidly. We again discuss optimizations in terms of their benefits for the DETECT
and MERGE tasks.

5.1 DETECT

In both the active and passive threads of DETECT, when peer p receives a set Dq of
data points from peer q, it looks up all local data points within ε range of any x ∈ Dq .
This is, however, not necessary.

Lemma 1 Let x be a core point stored in q. Any new data point x ′ added to Dq can
affect the core point status of x only if x ′ ∈ N−

ε (x, MinPts), that is, x ′ also belongs to
the youngest MinPts data points within ε range of x.

Proof The core point status of x changes only if coreAgeq(x) exceeds MaxCore-
Age. The way coreAgeq(x) evolves, depends only on data points belonging to
N−

ε (x, MinPts). Other data points, although belonging to Nε(x), are older than all
points in N−

ε (x, MinPts); Therefore, they have no impact on the core status of x .

To elaborate further, note that if x ′ ∈ N−
ε (x, MinPts), then agep(x ′) ≤ coreAgeq(x).

Therefore, x ′ may reduce coreAgeq(x), causing x to retain its core status longer.
In the original DETECT algorithm, process p constructs a set D∗

p(x) ⊆ Dp of
MinPts data items of minimal age and within ε range of the point x , which it has
received from q. Any data point x only requires MinPts −|Nε(x)| to be promoted to a

123

768 H. Mashayekhi et al.

core point. However, D∗
p(x) can contain more data points, if they are younger than the

points already contained in N−
ε (x, MinPts). Let MaxAgeε(x) = max{ageq(x ′)|x ′ ∈

N−
ε (x, MinPts)}. If |D∗

p(x)| > MinPts − |Nε(x)| then for each item x ′ ∈ D∗
p(x), a

restriction should be set such that agep(x ′) < MaxAgeε(x). According to the lemma
above, there is no need to send older data points. To realize this reduction, peer q
should send |Nε(x)| and MaxAgeε(x) along with its request containing x .

5.2 MERGE

If a peer executing MERGE encounters a cluster with many core points in a dense
area, it will suffer from a large computation and communication overhead for main-
taining and advertising these core points. Here, we describe a solution to this problem,
presenting a trade-off between accuracy and efficiency.

The solution enables each peer to independently choose between higher accuracy
or more efficiency. Classically, clusters with arbitrary shapes are represented by using
all points in the cluster [11]. The cluster, however, can also be approximated as the
union of ε-range spheres, one for each core point. As the main cause of inefficiency
comes from maintaining a large number of nearby core points, the solution should
try to store fewer core points for dense areas. If the sphere S with center x is fully
covered by the spheres of nearby core points, then there is no need to keep x . However,
identifying core points like x is still a complex computational task.

We propose to reduce the number of core points by considering relatively young
core points that (approximately) cover the same data points as other (external) core
points. Internal data points, and thus also internal core points, cannot be eliminated.
More precisely, consider the set C P p

k of core points of cluster C p
k of peer p. We

eliminate a core point x1 ∈ C P p
k if there is another core point x2 ∈ C P p

k such that:

1. δ(x1, x2) ≤ ϕ

2. ∀xa ∈ C P p
k − {x1}∃xb ∈ C P p

k − {x1} : δ(xa, xb) ≤ ε

where ϕ denotes a design-time error-tolerance parameter. We demand that connectivity
of a cluster is guaranteed, which is expressed by the second condition. This method of
core-point elimination guarantees that the shape of the resulting cluster is close to the
original one with no more than ϕ error at each point. To prevent partitioning clusters
because of maintaining old core points, an additional requirement can be introduced
which ensures that the covering core point is not too old:

coreAgep(x2) ≤ α · MaxCoreAge where 0 ≤ α ≤ 1

All conditions can be met incrementally as new core points are discovered. If two
clusters C and C ′ are to be merged, we can assume that both clusters are already
processed in terms of removing core points according to conditions 1 and 2. Thus,
after merging clusters, it suffices to check conditions 1 and 2 only for the core points
relying in the overlapping region of C and C ′. A range query with radius ϕ should be
executed for each of these core points, to determine those which satisfy condition 1 and
the extra limitation stated above. Next, the cluster connectivity in the absence of each

123

GoSCAN: decentralized scalable data clustering 769

selected core point should be verified (condition 2). Overall, the operations required to
satisfy the conditions incrementally are range and cluster connectivity queries, which
are executed (when required) for each core point in the overlapping region.

Several structures exist to facilitate range query processing on dynamic data [2]. For
example, if a range tree is constructed for core points of a cluster C , updating the tree
and executing actual range queries will cost O(logm−l(|C P|) and O(logm−l(|C P|)+k)

respectively, where C P is the set of core points in C , and k is the number of returned
query results.

Consider a graph whose vertices are the core points of a given cluster, and an
edge between two core points indicates that they have a maximum distance of ε from
each other. Determining connectivity of the cluster in case of removing a core point
reduces to the problem of determining graph connectivity in a fully dynamic graph
structure. The connectivity query in the worst case can be answered in O(|C P| + e)
using breadth-first search, where e is the number of edges in the graph. However, more
efficient solutions exist in the literature such as [13], which guarantees O(log2(|C P|))
processing cost for responding to connectivity requests.

Note that, in general, any peer can decide for itself what the value of ϕ should be
based on the resources it possesses and the accuracy it desires. Two extreme values
for ϕ are 0 and ∞, which result in keeping all core points, or only one of them,
respectively.

5.3 Convergence rate

Both DETECT and MERGE tasks can be accelerated if the selectPeer() operation
is designed in a clever way. DETECT becomes more effective if peer p gossips
with a peer q owning “similar” data, as the two are most likely looking to allocate
their data to the same clusters. To this end, we deploy Vicinity [29], a gossip-based
protocol for topology construction in overlay networks that tends to link two nodes
according to some systemwide user-defined proximity function Δ. This proximity
function essentially defines the target structure. Each peer maintains a dynamic, fixed-
length list of neighbors, called its Vicinity view, or just view. In the target structure,
each peer’s view is populated with the closest possible other peers based on the defined
proximity function. The protocol gradually evolves each view to contain links to other
peers so that the target structure is approximated as closely as possible. Evolution
is accomplished by exchanging fixed-length subsets of views between peers during
gossip. The proximity function is used to select the neighbors to keep.

Here we aim at organizing a topology where the peers whose data points are close
to each other, have links to each other. The proximity function Δ for peers p and q is
defined below:

Δ(p, q) =
{

0, if ∃x p ∈ Dint
p , xq ∈ Dint

q : δ(x p, xq) ≤ ε

1, otherwise

To make use of Vicinity, each peer should advertise its internal data when commu-
nicating with others. Conveniently, this information is already being exchanged by
DETECT.

123

770 H. Mashayekhi et al.

Fig. 4 Sample data sets with different number of points as used in the experiments

In the improved version of the algorithm we deploy Vicinity, and selectPeer() is
selects some peer from the Vicinity view, rather than a randomly selected one.

6 Performance evaluation

In this section, we evaluate GoSCAN in static and dynamic settings.

6.1 Experimental setting

We consider a network of N peers, executing the DETECT and MERGE tasks. The
synthetic datasets consist of two-dimensional data points picked by several Gaussian
distributions, along with a 5 % random noise. The MinPts parameter of DBSCAN is set
to 10 The ε value for each data set is set to a fraction of the Gaussian distribution vari-
ance, such that nonoverlapping distributions with different mean values are assigned
to different clusters. Some of the data sets used in the experiments, which contain
different numbers of data objects, are depicted in Fig. 4. Overlapping distributions,
being assigned to the same cluster, form various cluster shapes.

We also use the points data set from the SEQUOIA 2000 benchmark [26]. This
dataset contains 62,584 names of landmarks in California, extracted from the US Geo-
logical Surveys Geographic Names Information System, together with their location.
Regarding the number of data points required in the experiments, a random sample of
this dataset is used, which is the same approach taken in [8]

Each peer is assigned internal data points in the beginning of the experiment based
on two strategies:

– random data assignment: Each peer is assigned data randomly chosen from the
global dataset.

– dense data assignment: If available, data points that are at ε distance from some
internal data of a peer p, are assigned to p, else a random data point is assigned
to p. It is ensured that no more than 10 % of the nodes have internal data points
within ε-range of a given peer’s data points.

The second assignment strategy abates the average number of peers that have data
close to each other. In such a setting, as we will see later, distributed clustering may
be more challenging.

In the dynamic setting we use the random data-assignment strategy, which changes
cluster core points, yet approximately maintains the overall coverage of clusters. Also,

123

GoSCAN: decentralized scalable data clustering 771

Table 1 Simulation parameters

Parameter Description Value range (default)

N Number of peers 128–1024 (128)

ρ Fraction of data replaced in each gossiping round 0.01–0.05 (0.01)

MaxAge Threshold for both age and coreAge parameters 30–80 (40)

ϕ The clustering error parameter for optimizing MERGE 0–1 ×ε (0)

α The MaxCoreAge controller ratio in optimizing MERGE 2/3

vs Vicinity view size 0.05 × N

Nint Number of internal, shared data points per peer 10

dim Number of dimensions of the data space 2

to assess the performance of the algorithm in presence of concept drifts, another data
assignment strategy is used, which assigns data randomly from sequentially selected
data clusters. This latter strategy is named cluster-aware data assignment, and forces
full assignment of data in a cluster before proceeding to the next one.

6.2 Evaluation metrics

Different parameters used in conducting the experiments, along with their default
values, are presented in Table 1. Performance is expressed in terms of communica-
tion bandwidth (i.e., amount of communicated data) and attained clustering accuracy.
The communication cost is measured in terms of average amount of data (in KB)
transmitted by each node, per gossip round.

Clusters are represented by the set of core points they consist of. For instance, a
cluster C is represented as C = {x1, x2, . . . , x|C|}.

In order to assess the efficiency of GoSCAN in detecting clusters, we compare its
outcome to that of (centralized) DBSCAN. Executing DBSCAN centrally on a given
data set results in a set of clusters {C1, C2, . . . , Ck}, which we will be referring to
as real clusters. Likewise, at any time while executing GoSCAN each peer p will
have placed its internal data in a set of clusters {C p

1 , C p
2 , . . . , C p

kp
}, which we will call

computed clusters of peer p.
Finally, for each real cluster Ci , we define its projection cluster Ĉi

p on peer p as the
computed cluster that shares the most core points with Ci among all computed clusters
C p

j of peer p. More than one computed clusters of p could qualify as projections of
a given real cluster Ci , however only one is chosen, typically the one with the least
number of core points. For a real cluster Ci that has no data points (core or noncore)
in common with a peer p, we define Ĉi

p = {}.
We define two accuracy metrics to assess the performance of GoSCAN. Each metric

is defined with respect to a given peer and a given real cluster. To show aggregate
results, we first compute the per cluster value by averaging across all peers that host
data points of that cluster, and then we average across all real clusters to obtain a global
accuracy value.

123

772 H. Mashayekhi et al.

Core point accuracy This metric expresses the similarity between a real cluster and
its projection on a peer, with respect to the core points discovered by the peer. More
specifically, it is defined as the Jaccard similarity coefficient between the set of core
points in a real cluster Ci and its projection Ĉi

p on a peer p:

CorePointAccuracy(Ci , p) = |Ci ∩ Ĉi
p|

|Ci ∪ Ĉi
p|

(2)

Edge accuracy Let us assign an imaginary edge between any two core points of
the same cluster that are within ε range from each other. This metric expresses the
fraction of edges of a real cluster that have been discovered by peer p. If E(C)

denotes the set of edges of cluster C , the edge accuracy metric with respect to real
cluster Ci and a peer p that has kp computed clusters is defined as:

EdgeAccuracy(Ci , p) =

∑

1≤ j≤kp

∣
∣
∣E(Ci) ∩ E(C p

j)

∣
∣
∣

|E(Ci)| (3)

Note that we consider edges from all computed clusters of peer p, not only from
the projections of real clusters on p.

Core point accuracy favors peers who have correctly discovered the complete clus-
ter, thus it demands completion of both the DETECT as well as the MERGE task.
On the other hand, edge accuracy scrutinizes only the discovery of links between
nearby core points. Thus, for this metric each peer should complete DETECT and
only a rather small part of MERGE; it does not force peers to gather all core points
of a cluster. If each peer discovers its own core points and the core points located in
ε region of its internal data, a dedicated application like a crawler can explore this
information and build clusters by visiting each peer once. The important point is that
in this case the crawler is only responsible of connecting core points, not having to
decide which data object are cores (as this is already identified by the peer). So, edge
accuracy measures the ability of the algorithm to detect the local structure of clusters
in each peer.

6.3 Simulation results

We start by presenting the simulation results for the basic distributed clustering algo-
rithm. We then assess the algorithm improvements, and subsequently analyze the
behavior of the algorithm in a dynamic network.

Basic protocol

Figure 5 shows the convergence rate of the basic GoSCAN algorithm, for the synthetic
and SEQUOIA data sets. We vary the network size from 128 to 1,024 peers, and use
both data assignment strategies. In the basic algorithm peers gossip with random other

123

GoSCAN: decentralized scalable data clustering 773

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

n=128 random DA
n=256 random DA
n=512 random DA

n=1024 random DA
n=128 dense DA
n=256 dense DA
n=512 dense DA

n=1024 dense DA
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

n=128 random DA
n=256 random DA
n=512 random DA

n=1024 random DA
n=128 dense DA
n=256 dense DA
n=512 dense DA

n=1024 dense DA

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

n=128 random DA
n=256 random DA
n=512 random DA

n=1024 random DA
n=128 dense DA
n=256 dense DA
n=512 dense DA

n=1024 dense DA
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

n=128 random DA
n=256 random DA
n=512 random DA

n=1024 random DA
n=128 dense DA
n=256 dense DA
n=512 dense DA

n=1024 dense DA

(b)

Fig. 5 Convergence rate of the algorithm versus network size, for random gossip in a static setting. The
set of dense lines on the left hand side of all graphs pertain to random DA. a synthetic data (rounds 0–120).
b SEQUOIA data (rounds 0–30)

peers, obtained through the Cyclon layer. With random data assignment, nearly 100 %
accuracy is achieved in the first 30 rounds for all network sizes, which shows the
scalability of the algorithm. The convergence rate is hardly affected when the network
size increases; The set of dense lines on the left hand side of all graphs in Fig. 5 pertain
to random data assignment. Under the same data assignment strategy, the algorithm
offers good approximations of the final clustering model: in less than 20 rounds the
accuracy rises to more than 90 %, which has shown to be adequate in many practical
situations.

With dense data assignment, the accuracy increases more deliberately compared
to random data assignment. This is expected as it takes longer for a peer to locate
other peers holding relevant data. Later on, we will show that applying Vicinity can
significantly improve the convergence rate of the algorithm when data is assigned
densely. The SEQUOIA dataset is rather dense, and this explains the almost similar
performance of GoSCAN under both data-assignment strategies for this dataset. When
data is dense, many peers hold data objects in ε region of each other, which facilitates
locating target peers to accomplish algorithm tasks.

Figure 5 also shows that, with random data assignment, the algorithm indeed
requires less effort to reach high edge accuracy in comparison to reaching high core
point accuracy. However, with dense data assignment, when using synthetic data, less

123

774 H. Mashayekhi et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

Nint=20-random DA
Nint=40-random DA
Nint=60-random DA
Nint=80-random DA

Nint=100-random DA
Nint=20-dense DA
Nint=40-dense DA
Nint=60-dense DA
Nint=80-dense DA

Nint=100-dense DA
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

Nint=20-random DA
Nint=40-random DA
Nint=60-random DA
Nint=80-random DA

Nint=100-random DA
Nint=20-dense DA
Nint=40-dense DA
Nint=60-dense DA
Nint=80-dense DA

Nint=100-dense DA

Fig. 6 Convergence rate of the algorithm versus size of internal data, for random gossip in a static setting.
The set of dense lines on the left hand side of the two graphs pertain to random DA

distinction can be made between the two accuracy metrics. Nevertheless, it is demon-
strated that DETECT and MERGE can be effectively executed in parallel. For both
accuracy metrics, the algorithm offers complete accuracy in detecting noise (which is
omitted in the figure). As also described before, this is a result of carefully designing
the tasks of the algorithm, so that it cannot mistakenly merge inappropriate clusters
or noise.

Figure 6 compares the convergence rates of GoSCAN when the number of internal
data objects for each peer (Nint) varies. As observed, changing Nint has a minor
effect on the algorithm convergence rate. It mainly affects the size of messages and
the amount of resource consumption in peers, while having no significant impact on
the ability of the algorithm to locate and collect necessary information.

Trading clustering error for bandwidth

As mentioned in Sect. 5, peers can reduce the amount of information stored, processed,
and exchanged per cluster by tolerating some error in cluster representation. Figure 7
shows the fraction of communication with respect to zero clustering error, for clustering
error up to 1. We see a reduction in communication by about 80 % when the clustering
error is allowed to be as high as 0.5, after which we do not achieve any further reduction.
As the clustering error increases, less and more sparse core points are stored per cluster.
Hence, gathering enough information to merge clusters requires more information
exchange. However this communication incurs less data, and the improvement in
overall data transfer approaches a constant value. Quite remarkable is that tolerating
a mere 20 % error in clustering, can save more than 60 % in communication costs.

Targetted gossiping

Let us now consider the effect of deploying the Vicinity protocol. Figures 8 and 9
compare the basic protocol with the improved algorithm for two different network
sizes, employing synthetic and SEQUOIA datasets. Two data assignment strategies
are applied. As observed, the improved algorithm has minor preference when data is
assigned randomly. This is anticipated as the basic algorithm functions suitably with

123

GoSCAN: decentralized scalable data clustering 775

Fig. 7 Reduction in
communication for reaching
90 % accuracy, while varying
the clustering error (N = 512)

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1
C

om
m

un
ic

at
io

n
ra

tio
 (

%
)

Tolerated clustering error

synthetic data
SEQUOIA data

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

RGossip-random DA
RGossip-dense DA
Vicinity-random DA

Vicinity-dense DA
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

RGossip-randomDA
RGossip-denseDA
Vicinity-randomDA

Vicinity-denseDA

(a)

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

RGossip-random DA
RGossip-dense DA
Vicinity-random DA

Vicinity-dense DA
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

RGossip-randomDA
RGossip-denseDA
Vicinity-randomDA

Vicinity-denseDA

(b)

Fig. 8 Comparing convergence rate for basic and improved algorithm (synthetic data, rounds 0–70). a n =
512. b n = 1024

randomly dispersed data. Thus, improving the algorithm has minimum effect on the
convergence rate. With the dense data assignment strategy, however, the improved
algorithm demonstrates much higher efficiency with synthetic data. This observation
confirms the effectiveness of the employed criteria for guiding peers in locating suitable
gossip partners. When employing SEQUOIA data, although the difference of accuracy
values for different strategies is much less, the prevalence of Vicinity for dense data
assignment strategy is still detectable.

123

776 H. Mashayekhi et al.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

RGossip-random DA
RGossip-dense DA
Vicinity-random DA

Vicinity-dense DA
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

RGossip-randomDA
RGossip-denseDA
Vicinity-randomDA

Vicinity-denseDA

(a)

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

RGossip-random DA
RGossip-dense DA
Vicinity-random DA

Vicinity-dense DA
 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

RGossip-randomDA
RGossip-denseDA
Vicinity-randomDA

Vicinity-denseDA

(b)

Fig. 9 Comparing convergence rate for basic and improved algorithm (SEQUOIA data, rounds 0–30).
a n = 512. b n = 1024

The improved algorithm shows minor performance difference when assessing
against projection and local accuracies. Both accuracy values quickly approach to
100 %, which clarifies that both algorithm tasks proceed closely when using Vicin-
ity. Detection and connection of core points, along with global cluster formation, are
accelerated with the improved algorithm.

Dynamic data

To assess GoSCAN’s behavior in dynamic settings, in each round we replace 1 % of
the data points by new ones, chosen by random and cluster-aware assignment policies.
It is clear that in this scenario there is no notion of final convergence. Instead, nodes
engage in a continuous convergence process, trying to detect and represent clusters as
accurately as possible.

Figure 10 shows the evolution of our two evaluation metrics in the dynamic data
experiment, for different age threshold (MaxAge) values. The MaxAge values are
selected such that extreme cases of algorithm behavior are exposed. The optimal
results in the long run, for core point accuracy using random churn, are achieved for
an age threshold of 40 rounds. Lower age thresholds (e.g., of 20 rounds, as shown here)
lead to significantly suboptimal cluster detection, as data points are removed too soon
and peers do not manage to acquire a good representation of the clusters. With higher

123

GoSCAN: decentralized scalable data clustering 777

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

MaxAge 10
MaxAge 20
MaxAge 40
MaxAge 60

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds
(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

(b)

Fig. 10 Comparing convergence rate for different values of MaxAge computed clusters compared to
real clusters of the same round. The selected MaxAge values reveal extreme cases of algorithm behavior.
a random churn. b Cluster-aware churn

age thresholds (e.g., of 60 rounds), despite an initially fast cluster detection, accuracy
gradually degrades. This is expected, as removed data points are remembered too long,
blurring a view on the actual dataset. Note that the edge accuracy scores higher in all
configurations. This is expected, as this metric only considers the local structure of
core points.

With cluster-aware data churn, more harsh changes in accuracy is observed. The
behavior can be explained considering the fact that existing clusters gradually fade out
and new clusters appear. This transition of clusters, quickly out dates the previously
data collected by peers, as new data points are eventually located outside the ε region
of collected data. In the random data assignment, in contrast, added data objects are
probably located near some existing data point.

Comparing the clusters as perceived by peers to the real clusters corresponding
to the data points at a given moment, entails an inherent error due to the expected
propagation delay. When data changes dynamically, the clusters perceived by peers at
any given moment constitute an approximation of an older version of the dataset. To
compensate for this, in Fig. 11 we plot the accuracy metrics again, this time consider-
ing the real clusters 10 rounds before the current round. Indeed, this results in higher
accuracy values, confirming our reasoning that clusters detected by peers reflect the
real state of a few rounds earlier. The argument holds for both data assignment strate-

123

778 H. Mashayekhi et al.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

MaxAge 10
MaxAge 20
MaxAge 40
MaxAge 60

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

(a)

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
or

e
P

oi
nt

 A
cc

ur
ac

y
(%

)

Simulation rounds

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

E
dg

e
A

cc
ur

ac
y

(%
)

Simulation rounds

(b)

Fig. 11 Comparing convergence rate for different values of max Age, computed clusters compared to real
clusters of 10 rounds before. The selected MaxAge values reveal extreme cases of algorithm behavior.
a Random churn. b Cluster-aware churn

gies; Nevertheless, cluster-aware data assignment again produces sharper changes in
accuracy values.

We see that even in dynamic settings, peers are able to discover the local structure of
the clusters they have data points in. Strictly speaking, the major problem raised when
churn is in place, is discovering the overall structure of the cluster and connection
between subclusters by all interested peers. In other words, the timely dissemination
of core points is the bottleneck of the algorithm.

We also conclude that the age threshold is an important factor with respect to
handling dynamism. The overall results show that our algorithm has an acceptable
behavior when data churn is in place, and also that our solution more accurately
represents a past model of clustering than the current model.

Figure 12 presents aggregate results for the accuracy of GoSCAN with both data
assignment strategies, and for data churn rate from 1 to 5 % per round. Each point
corresponds to the average accuracy value for the last 50 rounds of each experiment.
When compared against current real clusters, accuracy values gradually decrease as
higher churn rates are applied. Considering real clusters of 10 rounds ago, however,
moderates the decreasing rate of core point accuracy values, while posing a steady
value for edge accuracy. This result emphasizes the ability of peers to discover local
structure of clusters, albeit being exposed to higher churn rates.

123

GoSCAN: decentralized scalable data clustering 779

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

A
ve

ra
ge

 a
cc

ur
ac

y
(%

)

Churn ratio (%)

Core Points (offset 0)
Core Points (offset 10)

Edges (offset 0)
Edges (offset 10)

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

A
ve

ra
ge

 a
cc

ur
ac

y
(%

)

Churn ratio (%)

Core Points (offset 0)
Core Points (offset 10)

Edges (offset 0)
Edges (offset 10)

(b)(a)

Fig. 12 Average accuracy of the improved algorithm for different data churn ratios, using a random data
assignment, b dense data assignment (N = 512, ageTh = 40). Both the Core Points and Edges accuracies
are shown with respect to the real cluster in the current round (“offset 0”) and the real clusters 10 rounds
earlier (“offset 10”)

Communication overhead

Distributed algorithms are required to maintain low communication overhead in order
to be scalable. In this subsection, the average transmission overhead per each peer,
in each gossip round, is presented with different configurations. Transmission costs
for the static setting, are measured from first round of gossip to the round where core
point accuracy reaches 90 %. Figure 13 shows the transmission overhead of the basic
algorithm for two data assignment strategies, with SEQUOIA data. Random data
assignment increases the data transmission overhead when network size increases.
Larger number of peers share more data in the network, while forcing the algorithm to
run longer to locate required information. These two conditions pose more overhead
when collecting data.

With the dense data assignment, however, a more constant communication overhead
is observed. The delicate point which causes this behavior, is the fact that each peer
owns several close points which facilitates locating the required data by others. Thus,
tasks DETECT and MERGE can converge faster causing less amount of data to be
conveyed in the system.

Changing the number of internal data points shared by each peer increases the data
in the system, causing the algorithm to transfer larger messages. Figure 14 reveals
the effect of changing number of internal data points on the communication load of
each peer. As anticipated, an increasing trend is observed in communication overhead
as Nint gets larger. Compatible with Fig. 13, dense data assignment produces less
messages in the system. An interesting observation is that applying Vicinity increases
communication overhead in comparison to random gossip. This is first due to more
information inserted in the messages to satisfy the protocol requirements, and sec-
ond due to transmission of data in fewer gossip communication rounds. Recalling
previously expressed results, expressing higher convergence rates of Vicinity, a trade-
off is detected between rate of algorithm convergence and the communication overhead
imposed on peers.

123

780 H. Mashayekhi et al.

Fig. 13 Average
communication cost per node for
random gossip in a static setting
(SEQUOIA data)

 0

 40

 80

 120

 160

 200

 240

128 256 512
C

om
m

un
ic

at
io

n
ov

er
he

ad
 (

K
B

)
N

random DA
dense DA

Fig. 14 Average
communication cost per node
when number of internal data
varies

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

20 40 60 80 100

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (
K

B
)

Nint

RGossip-random DA
RGossip-dense DA
Vicinity-random DA

Vicinity-dense DA

Finally, Fig. 15 assesses communication overhead in a dynamic network, when
max Age varies, for 300 rounds of algorithm execution. Longer existence of data
objects in the system increases communication overhead as predicted. However, the
increase rate is low, considering that it takes longer for the data collected by peers
to be out dated, causing less requests for fresh data in the same amount of time.
According to the fact that in random assignment strategy, new data points are located
close to previously available points, this strategy makes better use of available data in
peers for accomplishing DETECT and MERGE. Therefore, it has less communication
overhead, compared to the cluster-aware assignment method.

7 Related work

Distributed Data Mining (DDM) is a dynamically growing area. Generally, many DDM
algorithms are based on algorithms which were originally developed for centralized
or parallel data mining. Different proposals have focused on distributed and parallel
clustering of data objects. A discussion and comparison of several distributed centroid
based partitional clustering algorithms is provided in [28].

123

GoSCAN: decentralized scalable data clustering 781

Fig. 15 Average
communication cost per node
when mas Age varies

 0

 50

 100

10 20 30 40 50 60
C

om
m

un
ic

at
io

n
ov

er
he

ad
 (

K
B

)
AgeTh

RGossip-random churn
RGossip-cluster-aware churn

References [6,10] propose parallel K-means clustering, by first distributing data to
multiple processors. In each synchronized algorithm round, every processor broadcasts
its currently obtained centroids, and updates the centroids based on the information
received from all other processors. Note that the two mentioned approaches start by
partitioning and distributing data, which is essentially different from GoScan in which
data is inherently distributed.

Many existing distributed algorithms in the literature, require a central site to coor-
dinate algorithm execution rounds and/or merge local models into a global clustering
result. Requiring global communication rounds, or including multiple rounds of mes-
sage flooding conflicts the scalability requirement of distributed algorithms. Eisenhardt
et al. [7] propose a distributed k-means algorithm to cluster documents in a peer-to-peer
network. The algorithm is initiated by one peer, and each round consists of collecting
information from all peers in the network, in a recursive manner. Tasoulis et al. [27]
propose a distributed algorithm to compute the K-window clustering algorithm in a
distributed setting. Their design transfers local models to a central site to be merged
into a global model. Merugu et al. [23] build probabilistic models of the data at each
local site, and transmit parameters to a central location, for cluster computation.Their
algorithm extracts samples from models and fits a global model to these samples.

RACHET [25] is a hierarchical clustering algorithm. Each site executes the clus-
tering algorithm locally, and transmits a set of statistics to a central site. The central
site builds a global model based on the local statistics. A method of partition based
clustering for clustering distributed high dimensional feature vectors is presented in
[18], which uses a central site to build the global model. SDBDC [14] is a distributed
density based clustering algorithm which introduces various representations for sum-
marizing local statistics. These statistics are collected from local sites and merged into
a global model. In [20] an extension of SDBDC is introduced which better suits high
dimensional data.

In [17] local models or prototypes are detected using Expectation Maximiza-
tion(EM) in a distributed environment, and later merged by computing mutual sup-
port among the Gaussian models. Aouad et al. [1] propose a lightweight distributed
clustering technique based on merging of independent local sub clusters according to
an increasing variance constraint. This algorithm chooses a relatively high number of

123

782 H. Mashayekhi et al.

clusters locally, or employs an approximation technique to find an optimal number of
local clusters.

Building clustering algorithms based on existing network overlays, can facilitate
execution of the algorithms, while binding the algorithm design to special structures.
A hierarchical clustering method based on K-means for P2P networks is suggested
in [12]. At the lowest level of the hierarchy a synchronized partitional clustering
algorithm is executed. Summary representations are then transferred up the hierar-
chy and merged to obtain k global clusters. PENS [19] offers a distributed density
based clustering based on DBSCAN. This proposal is built upon CAN [24] as the
infrastructure, and uses a virtual tree, implicitly defined using the zone splitting mech-
anism of CAN, to merge partial clusters. Lodi et al. [21] introduce a distributed density
based clustering which again uses a semantic overlay as the infrastructure. It utilizes
either a gradient-based criterion, to define center-based clusters, or a mean density
criterion.

Some solutions considering pure unstructured networks, require state-aware oper-
ation of nodes, work in static settings, or are aimed at computing basic functions like
average and sum. Datta et al. [4] propose a distributed K-means clustering algorithm
for P2P networks, in which nodes communicate with their immediate neighbours.
Each node is required to store history of cluster centroids per each K-mean iteration.
Eyal et al. [9] provide a generic algorithm for clustering in a static network. They
instantiate the algorithm to the K-means clustering method. A generic local algorithm
for computing functions of average of data in a distributed system, is proposed by [31].
This method is then used as a feedback loop for the monitoring K-means clustering.
Kowalczyk et al. [16] propose a solution for executing EM based on distributedly
computing a set of average values. Employing the newscast model, their algorithm
proceeds in a series of gossip-based computation rounds.

The major drawback of majority of existing approaches, is lack of efficient solu-
tions for adaptability in dynamic settings, which introduces significant challenges for
applying the algorithms in large scale real world networks.

8 Conclusions

In this paper we first identified the necessity of an effective and efficient distributed
clustering algorithm. Due to the high transmission, storage and processing costs, it is
impractical to collect all data from distributed sources, in a central server, where the
data can be analysed by means of clustering. As discussed, dynamic nature of data,
demands a continuously running algorithm which can update the clustering model
efficiently, and at a reasonable pace. We introduced GoSCAN: a fully decentralized
density-based clustering algorithm. GoSCAN consists of two major tasks: identifying
core points and cluster formation. Design of gossip-based communication methods,
permitted parallel execution of the two tasks, which gradually increased the algo-
rithm accuracy. The algorithm enabled each peer to discover an arbitrary subset of
clusters.

GoSCAN allowed each peer to find an individual trade-off between quality of dis-
covered clusters and transmission costs. Also, employing Vicinity, it enabled peers in

123

GoSCAN: decentralized scalable data clustering 783

quickly locating suitable communication partners, which improved convergence rate
of the algorithm. Adaptability to dynamics of the dataset was made possible by intro-
ducing an age factor per each ordinary and core data object. This parameter assisted in
detecting dataset changes, and enabled updating the clustering model. The incremen-
tal nature of GoSCAN avoids re-execution of the algorithm when dataset changes,
and promotes the algorithm robustness and scalability. Our experimental evaluation
showed that GoSCAN allows effective clustering with efficient transmission costs.
In our future work, we plan to develop hierarchical distributed clustering algorithms,
which better satisfy specific requirements of distributed systems.

References

1. Aouad LM, Le-Khac NA, Kechadi TM (2007) Lightweight clustering technique for distributed data
mining applications. In: 7th international conference on data mining. Springer, Berlin, pp 120–134

2. Bentley JL, Friedman JH (1979) Data structures for range searching. ACM Comput Surv 11(4):397–
409

3. Datta S, Bhaduri K, Giannella C, Wolff R, Kargupta H (2006) Distributed data mining in peer-to-peer
networks. IEEE Internet Comput 10(4):18–26

4. Datta S, Giannella CR, Kargupta H (2009) Approximate distributed K-means clustering over a peer-
to-peer network. IEEE Trans Knowl Data Eng 21(10):1372–1388

5. Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker S, Sturgis H, Swinehart D, Terry D
(1987) Epidemic algorithms for replicated database maintenance. In: 6th symposium on principles of
distributed computing. ACM, pp 1–12

6. Dhillon IS, Modha DS (2000) A data-clustering algorithm on distributed memory multiprocessors.
In: Large-scale parallel data mining. Springer, Berlin, Lecture Notes in Computer Science, vol 1759,
pp 245–260

7. Eisenhardt M, Muller W, Henrich A (2003) Classifying documents by distributed P2P clustering.
In: Inform. pp 286–291

8. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large
spatial databases with noise. In: 2nd international conference knowledge discovery and data mining.
ACM Press, New York, pp 226–231

9. Eyal I, Keidar I, Rom R (2011) Distributed data clustering in sensor networks. Distrib Comput
24(5):207–222

10. Forman G, Zhang B (2000) Distributed data clustering can be efficient and exact. SIGKDD Explor
Newsl 2:34–38

11. Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In:
SIGMOD international conference on management Of data. ACM Press, New York, SIGMOD’98,
pp 73–84

12. Hammouda KM, Kamel MS (2009) Hierarchically distributed peer-to-peer document clustering and
cluster summarization. IEEE Trans Knowl Data Eng 21:681–698

13. Holm J, de Lichtenberg C, Thorup M (1998) Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. In Proceedings of the thirtieth
annual ACM symposium on Theory of computing (STOC ’98). ACM, New York, pp 79–89

14. Januzaj E, Kriegel HP, Pfeifle M (2004) Scalable density-based distributed clustering. In: 8th european
conference on principles and practice of knowledge discovery in databases, Springer, Berlin, pp 231–
244

15. Jelasity M, Voulgaris S, Guerraoui R, Kermarrec AM, van Steen M (2007) Gossip-based peer sampling.
ACM Trans Comput Syst 25(3):8

16. Kowalczyk W, Vlassis N (2005) Newscast EM. NIPS 17:713–720
17. Kriegel HP, Kroger P, Pryakhin A, Schubert M (2005) Effective and efficient distributed model-based

clustering. In: 5th international conference on data mining. IEEE Computer Society Press, Los Alami-
tos, CA, pp 258–265

123

784 H. Mashayekhi et al.

18. Kriegel HP, Kunath P, Pfeie M, Renz M (2005) Approximated clustering of distributed high-
dimensional data. In: 9th advances in knowledge discovery and data mining. Lecture Notes in Computer
Science, vol 3518, pp 432–441

19. Li M, Lee G, Lee WC, Sivasubramaniam A (2006) PENS: an algorithm for density-based clustering
in peer-to-peer systems. In: 1st international conference on scalable information systems. ACM Press,
New York

20. Liu YB, Liu ZX (2011) Scalable local density-based distributed clustering. Expert Syst Appl
38(8):9491–9498

21. Lodi S, Moro G, Sartori C (2010) Distributed data clustering in multi-dimensional peer-to-peer net-
works. In: 21st Australasian conference on database technologies, vol 104. pp 171–178

22. Luo P, Xiong H, Lu K, Shi Z (2007) Distributed classification in peer-to-peer networks. In: 13th ACM
SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York,
pp 968–976

23. Merugu S, Ghosh J (2005) A privacy-sensitive approach to distributed clustering. Pattern Recogn Lett
26(4):399–410

24. Ratnasamy S, Francis P, Handley M, Karp R, Schenker S (2001) A scalable content-addressable
network. In: SIGCOMM. ACM, San Diego, pp 161–172

25. Samatova NF, Ostrouchov G, Geist A, Melechko AV (2002) RACHET: an efficient cover-based merging
of clustering hierarchies from distributed datasets. Distrib Parallel Datab 11:157–180

26. Stonebraker M, Frew J, Gardels K, Meredith J (1993) The sequoia 2000 storage benchmark. In Pro-
ceedings of SIGMOD, pp 2–11

27. Tasoulis DK, Vrahatis MN (2004) Unsupervised distributed clustering. In: IASTED international
conference on parallel and distributed computing and networks

28. Visalakshi N, Thangavel K (2009) Distributed data clustering: a comparative analysis. In: Abraham
A, Hassanien AE, de Leon F de Carvalho A, Snasel V (eds) Found Comput Intell 206:371–397

29. Voulgaris S, van Steen M, Iwanicki K (2007) Proactive gossip-based management of semantic overlay
networks. Concurr Comput : Pract Expert 19(17):2299–2311

30. Wolff R, Schuster A (2004) Association rule mining in peer-to-peer systems. IEEE Trans Syst Man
Cybern 34(6):242–2438

31. Wolff R, Bhaduri K, Kargupta H (2009) A generic local algorithm for mining data streams in large
distributed systems. IEEE Trans Knowl Data Eng 21:465–478

123

	GoSCAN: Decentralized scalable data clustering
	Abstract
	1 Introduction
	2 Basics
	2.1 DBScan
	2.2 System model

	3 Decentralized density-based clustering
	4 Dynamic dataset
	5 Improvements
	5.1 DETECT
	5.2 MERGE
	5.3 Convergence rate

	6 Performance evaluation
	6.1 Experimental setting
	6.2 Evaluation metrics
	6.3 Simulation results

	7 Related work
	8 Conclusions
	References

