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Abstract—We consider a large wireless network constituting a
radio telescope. Each of the anticipated 3000 nodes is triggered
to collect data for further analysis at a rate of more than 200 Hz,
mostly caused by noisy environmental sources. However, relevant
cosmic rays occur only a few times a day. As every trigger
has an associated 12.5KB of data, and considering the size of
the telescope in number of nodes and covered area, centralized
processing is not an option.

We propose a fully decentralized event detection algorithm
based on collaborative local data analysis, effectively filtering out
only those triggers that need further (centralized) processing. As
we show through performance evaluations, the crux in the design
is finding the right balance between accuracy and efficient use of
resources such as the communication bandwidth in the unreliable
communication environment.

Index Terms—distributed event detection, large-scale dis-
tributed systems, in-network data processing

I. INTRODUCTION

In a geospatial sensor network, a node is responsible for
gathering location-sensitive data. In many cases, as these
networks grow in diameter (measured in meters), as well as
in their number of members, we often see that communication
paths can be mainly realized only through wireless channels. A
typical example that we consider in this paper is a large-scale
radio telescope consisting of a few thousand nodes spread over
an area of around 3000 km?. An important consequence of
this growth is that the processing of data needs to be localized,
as realizing communication paths to centralized, specialized
nodes becomes more difficult.

In this paper we consider a specific sensor network that
we believe is characteristic for many other wireless sensor
networks. First, each node is responsible for detecting specific,
often rare, events, in our case detecting cosmic rays. Event
detection requires sampling data. However, a node may be
operating in an extremely noisy environment meaning that
there can be many false detections leading to an explosion
of sampled data of which most will turn out to be useless. It
is crucial that such data is kept local and preferably not sent
to any other node, let alone a centralized base station or the
equivalent thereof.

Second, to distinguish between relevant and false events, a
node requires information from its immediate (geographical)
neighbors: an event is relevant only if some of the neighbors
have detected it as well. This means that data from multiple

nodes will need to be combined before coming to conclusions
on relevancy of an event. In some sensor networks, the base
station simply gathered the data from all nodes, but as we
argued, this approach must be abandoned when networks grow.

We concentrate on the problem of distributed event detection
in a large wireless sensor network (WSN) in which neigh-
boring nodes collaborate to filter out relevant events before
communicating associated data to one or several central nodes.
Each node has not only a limited energy budget, but also
other resources are scarce such as memory and processing
capacity. In addition, as we are dealing with wireless networks;
communication links are unreliable.

For our specific application, cosmic-ray detection, relevant
events are so rare that we essentially cannot afford to lose
any of them. In other words, much effort should be put into
keeping the fraction of false negatives close to zero. On the
other hand, false positives should also be minimized, but for a
different reason, namely that of minimizing resource consump-
tion and thus maximizing efficiency. However, optimizing for
efficiency becomes more relevant when realizing that events
occur at a rate of approximately 200 Hz, yet that less than 1%
is actually relevant. In other words, a huge data-processing
effort is required for successfully detecting cosmic rays.

We make the following contributions. First, we present a
distributed, in-network event detection algorithm based on
collaborative local data analysis that reduces resource con-
sumption in large-scale geospatial sensor networks. Second,
we investigate the application-level resource usage such as the
communication bandwidth for a certain level of performance
in the unreliable communication environment. This is the first
paper to our knowledge to explore the possibility of apply-
ing collaborative local data analysis in large-scale geospatial
wireless sensor networks to detect ultra-high energy cosmic
rays.

The rest of this paper is organized as follows. In Sec. II, we
give an overview of the related work in the field of the mon-
itoring applications. Sec. III describes our distributed event
detection algorithm designed for large-scale sensor networks.
In Sec. IV, we evaluate the performance of our proposed
algorithm in the presence of communication failures. Finally,
Sec. V concludes the paper.



II. RELATED WORK

The common model for event detection in a WSN is that
each node simply relays all of its locally generated data
to the base station without local processing. The data is
processed for event detection only at the base station [1]. This
model works well for small-scale networks, a small amount
of data per event, and lower frequencies of events per node.
It is unacceptably inefficient for large-scale networks, as it
may involve considerable bandwidth consumption as multiple
communication hops need to be taken.

Another model for event detection involves in-network
processing. To this end, processing is done by the nodes to
compute events of interest against a criteria known to the
node. This may significantly reduce the amount of communi-
cation and, hence, the energy consumed. The most commonly
used techniques for in-network processing in WSNs are: (i)
processing along a routing path to the base station [2]; (ii)
processing at regional head nodes [3], [4]; (iii) initiating in-
network consensus [5]; and (iv) deciding locally at a node
based on information from its neighbours [6].

However, all the proposed schemes have different shortcom-
ings for our application: (i) there is no acknowledgement of
the event detection by a node in [2]; (ii) the scheme in [3]
produces false negatives in case an event occurs on the border
of two or more cells; (iii) a low event frequency is assumed
in [6]; (iv) the schemes in [4] and [5] assume network-wide
events, and thus, are not scalable for large geographical areas.

There are two classes of work done on cosmic-ray detection.
A direct cosmic-ray detection method [7], [8], [9] needs a
high-altitude balloon or a satellite/space mission, and detects
only low-energy particles. To detect the much rarer highest
energy particles, an indirect cosmic-ray detection method is
needed, such as [10], [11], [12]. However, these systems use a
wired backbone (fibre optic) for communication and, therefore,
suffer seriously from geographical scalability issues.

III. DISTRIBUTED EVENT DETECTION
A. Assumptions

In the context of cosmic-ray detection, we consider a large
field covered by a large collection of stations, each equipped
with a wireless sensor. They sense radio signals and communi-
cate with neighboring stations in the field through a low-power
wireless medium. Each station has limited processing capabil-
ities, energy budget and a storage capacity in the order of a
few hundred megabytes. The clocks of stations are globally
synchronized via integrated GPS receivers. (The accuracy is
within 1 to 2 nanoseconds through special devices [13].) Each
station relays its data to a base station called the Central Radio
Station (CRS) for further analysis.

The stations are stationary and location-aware. We assume
direct communication only between stations within a certain
distance (geographical neighbors). Each station captures radio
signals with a certain strength into a so-called LI trigger,
which may indicate the occurrence of a cosmic-ray. Each
trigger is timestamped at nanosecond accuracy. The timestamp

is a pair of seconds (date and time into the UNIX epoch,
in UTC) and nanoseconds. For each trigger, in addition to
the timestamp, a digitized portion of the signal of 12.5 kilo
bytes is also buffered at the station. This data along with the
timestamp is sent to the CRS upon positive decision through
a data analysis procedure; otherwise both the timestamp and
buffered data are ignored.

The triggers of two geographically neighboring stations
coincide if their timestamp difference AT is less than T, the
light-travel time in a straight line from one station to the other
station. An L1 trigger is promoted to an L2 trigger if it is
coincident with an L1 trigger of a geographical neighbor. An
L1 trigger at a station is promoted to an L3 trigger in two
cases: (1) the L1 trigger at a station is coincident with L1
triggers of at least two other geographical neighbors; (2) the
L1 trigger at a station is coincident with an L3 trigger of any
of its geographical neighbors. Note that we also call an L3
trigger an event of interest.

Ideally, if an L1 trigger at a station is not promoted to
an L3 trigger, it is considered to be noise and must be
discarded by the station. However, there is always a chance to
discard an L1 or L2 trigger that is actually an L3 trigger, but
due to communication failures could not be promoted to L3.
This situation will result in false negatives. Moreover, a false
positive is produced when a trigger that is not an L3 trigger
is chosen to be reported to the CRS.

B. The Algorithm

Whenever an L1 trigger occurs at a station, the station stores
the L1 trigger locally and informs all of its neighbors by
sending them the timestamp of its L1 trigger. Furthermore,
when a station receives L1 triggers from its neighbors, it looks
for a coincidence of the received triggers with its local ones. A
station promotes its L1 trigger to an L3 trigger if its L1 trigger
has coincidence with L1 triggers of at least two neighbors. To
cover stations on the boundary of an event region with only
one geographical neighbor in the event region, a station not
only requires to broadcast its L1 triggers, but also to advertise
its L3 triggers. This message helps a station promote its L1
trigger to an L3 trigger if its L1 trigger coincides with an
L3 trigger contained in the advertisement message. To reduce
bandwidth consumption, the algorithm uses periodic broadcast
messages, which we call an LI bundle, by simply grouping
together the L1 triggers. Similar to the L1 bundle formation,
the local L3 triggers are bundled as an advertisement bundle.

Figure 1 shows the pseudocode of our algorithm. When
an L1 trigger occurs at a station p, it adds the trigger to
its local cache. The trigger is also added to a local L1
bundle that will be broadcast to geographical neighbors of
the station. The algorithm executes two threads: an active and
a passive one. The active thread is executed periodically. It
broadcasts L1 bundles and advertisement bundles of a station
to the geographical neighbors of the station. The passive thread
listens to incoming messages. Upon receipt of an L1 bundle
or an advertisement bundle from a geographical neighbor,
the thread looks for a coincidence of each trigger in the



/* Passive thread */
receive < L1Bundle(q), g >

OR

receive < advertBundle(q), q >

/* On Local L1 Trigger =/
localCache.add (L1(p)))
LiBundle.add (L1(p)) )

/* Active thread */
// Runs rery T seco for all e € Bundle do
coincide = localCache.coincide (e)
if coincide then
Li(p) — L3(p)
process(L3(p))
if e € L1Bundle then
AdvertBundle.add (e)
localCache.remove (L1(p))

forall q € Neigh, do

send < L1Bundle(p), q >
forall ¢ € Neigh, do

send < AdvertBundle(p), q >

Fig. 1: Pseudocode for our algorithm.

bundle with the local L1 triggers. Whenever an L1 trigger
is promoted to an L3 trigger (see, L1(p) — L3(p) in Fig. 1),
the station will execute the operation process(L3(p)) if further
processing of the trigger is required (e.g. applying any domain
specific filter to the L3 trigger).

If a coincidence has been found between the local L1
trigger and L1 triggers of the geographical neighbors, then
these L1 triggers are added to the advertisement bundle. On
the other hand, if station p promotes its L1 trigger to an L3
trigger because of coincidence with an L3 trigger of any of
its geographical neighbors, the promoted L3 trigger is not
broadcast to the neighbors. The reason for this is that station p
has only one neighbor in the event region which had already
promoted its corresponding L1 trigger to L3. For station p,
broadcasting the advertisement in this case is useless.

The local triggers are stored in a buffer with limited capac-
ity. Depending on local processing capabilities and available
memory, we need to take into account that the buffer may
become full. As a consequence, a cache eviction strategy is
required. For example, our algorithm can employ a simple
strategy that discards newly arriving triggers while old triggers
have not yet been removed. Alternatively, we could also
decide to remove the oldest trigger, or choose one randomly.
These strategies are rather straightforward, and are application
oblivious. A more optimal cache eviction strategy may require
further insight into the semantics of triggers. In this paper we
take a simple approach and remove the oldest triggers when
the buffer becomes full, except the ones that are currently
being examined.

IV. PERFORMANCE ANALYSIS
A. Experimental Setup

To evaluate the performance of our event detection algo-
rithm, we have conducted a set of experiments using the
OMNET++ simulation environment [14]. In this subsection
we explain the methodology used in the evaluation.

1) Network Specification: In the simulated network, the
stations are set a few hundred meters apart from each other.
To simulate the behaviour of a wireless ad-hoc network, we
make a distinction between the so-called application layer and
the system layer. The application layer consists of our basic
algorithm with configuration parameters. The system layer is
an application-independent wireless network. We are interested

in obtaining insight in the resource requirements imposed by
our application. In essence, our solution consists of two sets of
algorithms. The first contains the core of our solution and its
algorithms essentially assume that the system layer operates
flawlessly and with infinite resources. The second set contains
algorithms that compensate the shortcomings of the system
layer: lossy links, faulty nodes, and limited resources. The core
algorithms will always need to be executed; the compensation
algorithms are executed only because the system layer is far
from being perfect.

Executing the core algorithms will demand a certain ca-
pacity from the system layer in terms of bandwidth usage,
memory usage, energy consumption, etc. Because of failures in
the system layer, our compensation algorithms will also need
to be executed, requiring further capacity. We are interested to
know how much capacity the application layer requires from
the system layer in the presence of faulty links and nodes.

To this end, we take a simple approach by initially assuming
that only links can fail, in particular with a probability p. We
furthermore consider only the use of bandwidth, as this is
most likely our scarcest resource. We vary p to see to what
extent additional bandwidth is needed for the compensation
algorithms. In this way, we aim at obtaining an upperbound for
the bandwidth capacity that the system layer should provide.
By refining the distribution of p, for example, by considering
specific locations in the network, a more precise requirements
specification can be obtained.

2) L1 Triggers Traces: We used traces of L1 triggers
collected from a small-scale real testbed for cosmic-ray de-
tection deployed by the Pierre Auger Observatory [11]. The
testbed consists of 18 stations and uses a wired infrastructure
for communication between stations and the central radio
station (CRS). The data analysis procedure in the testbed is
centralized: every station sends its L1 triggers to the CRS
for noise filtering and further analysis. It is important to
emphasize that the occurrence of L1 triggers is independent
of the data analysis procedure itself. Thus, the L1 triggers
generated in the aforementioned testbed can be used for our
proposed algorithm based on collaborative local data analysis,
and executed through the wireless system infrastructure.

3) Performance Metrics and Input Parameters: To study
the performance of our algorithm in the presence of commu-
nication failures we consider two input parameters: broadcast
Jfrequency and link loss probability p. For simplicity, we
assume that the broadcast frequency is 1H z, i.e. each station
broadcasts once per second. We measure the performance in
terms of number of false negatives, false positives, and the
amount of bandwidth imposed by the algorithm on the system
layer.

B. Results

We first validate our collaborative local data analysis ap-
proach. To that end, we executed our algorithm in an envi-
ronment with perfect communication medium. Each station
indeed observed the same L3 triggers as the ones obtained



Triggers Type | # Triggers
L1 583,455

L2 323,099

L3 218,202

DR(L3) 93,932

Fig. 2: Filtering capability of the algorithm.
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Fig. 3: A temporal view of the bandwidth production by the
algorithm.

through the existing centralized approach, described earlier.
This means that our algorithm behaves correctly.

We evaluate the performance of our distributed algorithm
with respect to the number of false negatives, false positives,
and the amount of bandwidth imposed by the algorithm on the
system layer. The aim is to reduce both false negatives and
false positives. At the same time, for a certain level of false
negatives and false positives, we want to anlyze the maximum
bandwidth requirement of the algorithm.

First we analyse the performance of the algorithm assuming
perfect communication among the stations. The assumption
is made for two reasons. First, to demonstrate the potential
of local data analysis to filter out relevant data. Second, the
obtained performance will be used as reference for compari-
son. Figure 2 depicts the filtering capability of the algorithm.
Considering the whole network of stations as a single entity,
we see that the network observes a huge number of L1
triggers. Note that these L1 triggers have been observed over a
period of 100 seconds. The algorithm processes these triggers
in-network. As a result, only one third of the triggers are
promoted to L3 triggers. By definition, an L3 trigger is called
an event of interest. Therefore, the L1 triggers at a station that
were not promoted to L3 triggers are discarded locally. Each
station furthermore applies a so-called direction reconstruction
(DR) filter ! [11] to its L3 triggers. The filter discards those L3
triggers whose corresponding directions point to the horizon.
The zenith angle in the range 90 + 5 is considered as horizon.
We see that the number of relevant triggers to be sent to the
CRS are further reduced by applying the DR filter. So, under
the assumption of perfect communication, the algorithm is able
to discard approximately 83% of the triggers locally.

The algorithm demands a certain capacity from the system
layer to process the triggers occurred at stations. The most

IThe station reconstructs direction of the signal that caused the L3 trigger.
The direction is expressed as a tuple of zenith and azimuth angles.

crucial is the bandwidth required by the algorithm. To that
end, we measure the bandwidth (imposed by each station
on the system layer) in consecutive time windows each of
length T'w. We compute the maximum, minimum, and average
bandwidth required per station during T'w. For simplicity, we
assume T'w=1 second. Figure 3 shows the temporal dynamics
of these metrics. We see that the maximum is far away
from the corresponding average. In general, there are two
possibilities for the large gap between maximum and average.
First, there may be a specific station continuously triggering
with high rate and generating relatively higher amount of data.
Consequently, each time the maximum for 7w is contributed
by this particular station. A second possibility is that different
stations during different T'w produce burst data that pushes
the maximum away from average. In our specific trace, we
noticed that there are a few neighboring stations that trigger
with high rate and push the maximum upward. In principle, the
system layer should be able to absorb the imposed maximum
bandwidth irrespective of the underlying cause.

Next we analyse the performance of the algorithm assuming
that communication links at the system layer may fail with
a probability p. Due to link failures a station may not be
able to receive enough information from its neighbors to
decide about its local L1 triggers. In this situation, discarding
those L1 triggers that were not promoted to L3 triggers
due to lack of information will give rise to false negatives.
Our aim is to keep the number of false negatives low. To
this end, we use our compensation algorithms that basically
produce message redundancy in the network; thus increasing
the chances of message delivery. To establish a basis for
comparison, a fixed rebroadcast is used where each message
is broadcast twice. Thereby, it is assumed that a link can lose
a message with p = 0.5. In addition to fixed rebroadcast,
adaptive rebroadcast is used where each station maintains a
Link Quality Estimator (LQE) [15]. A message is rebroadcast
only if the weakest link quality is above 50% and below
100%. The links with quality below 50% are considered
dead, therefore, rebroadcast is abandoned. We examine the
impact of compensation algorithms on performance. More
specifically, three different cases are considered. First, the core
algorithm is executed without any compensation algorithm; the
so-called base case. Second, the core algorithm is executed
with fixed rebroadcast. Third, the core algorithm is executed
with adaptive rebroadcast. All the three cases are repeated
with various link loss probabilities. We are interested to see
the extent to which the compensation algorithms compensate
the link failures by reducing the number of false negatives.

Figure 4 shows a comparison of the three cases for a
range of message-loss probabilities. For p = 0 all the three
cases have no false negatives because of no link failures. For
p = 1 all the three cases have 100% false negatives for the
obvious reason that all messages are lost by the system layer
and none of the stations is able to compute L3 triggers. The
cases with message redundancy produce fewer number of false
negatives than the base case. This shows the effectiveness of
the compensation mechanisms in improving the accuracy of



the core algorithm. The adaptive case performs better than
base case only when p < 0.5. This is because of the way the
adaptive rebroadcast works. For p > 0.5 the link qualities
computed through the LQE are mostly below 50%. Since
rebroadcasts are abandoned for link quality below 50%, the
adaptive case behaves similar to base case for p > 0.5. The
fixed rebroadcast is expected to produce higher redundancy
than the adaptive rebroadcast. The result is that it outperforms
the adaptive case by producing fewer false negatives.

We examine the worst-case bandwidth requirements of
our compensation algorithms by computing the maximum
bandwidth required per station per time window T'w. For
simplicity we assume T'w = 1 second. Figure 5 depicts the
effect of compensation algorithms on the worst-case band-
width requirements. For p = 0 the maximum bandwidth
requirements for the adaptive case is the same as the base
case. The reason is that due to no message loss the adaptive
case does not rebroadcast messages and produces exactly the
same maximum bandwidth as the base case. For p = 0, the
fixed case produces bandwidth that is double of the base case.
The reason is that the fixed case broadcasts every message
twice. Due to no loss of messages the produced bandwidth
is exactly double of the corresponding base case. A similar
behavior can be observed for p = 1. Every station is unable
to compute L3 triggers due to unavailability of information
from its neighbors. So a station broadcasts only its local L1

100
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Fig. 4: The effect of compensation algorithms on false nega-
tives.

triggers. There are no rebroadcasts in the adaptive case because
for p = 1 the link quality remains zero and rebroadcast
is abandoned. The maximum bandwidth requirement of the
base case is less than both the fixed case and the adaptive
case. However, the base case produces comparatively more
false negatives. On the other hand, the fixed case imposes the
highest bandwidth requirement but produces the least number
of false negatives. The adaptive case tries to reduce bandwidth
production by selectively rebroadcasting. The adaptive case
reduces bandwidth compared to the fixed case but at the cost of
producing higher number of false negatives than the fixed case.
We see that more accurate event detection requires additional
bandwidth. The system layer is required to meet the worst case
bandwidth requirement in order to keep the number of false
negatives within a certain limit.

Another approach to minimize false negatives is the way
the algorithm handles undecided triggers local to a station.
We consider a system layer with faulty communication links.
Therefore, it is likely that a station may not be able to receive
sufficient information from its neighbors. Consequently, some
of the local triggers (including L1 and L2) at the station may
remain undecided. There are three different options to handle
these undecided triggers. First, discarding all the undecided
triggers, a station may falsely discard many triggers. This will
lead to a high number of false negatives. Second, reporting
all undecided triggers as false positives will exclude the
possibility of false negatives but this will push the number of
false positives to a maximum. In fact, this option is equivalent
to reporting everything to the CRS. Third, the algorithm
reports only undecided L2 triggers to the CRS. There are
two assumptions underlying this option. First, an L2 trigger
is an L3 trigger but due to communication failures it was not
promoted to L3 trigger. In case the assumption is correct, false
negatives will reduce without an increase in false positives.
Second, it is assumed that an undecided L1 trigger is random
noise and must be discarded. Again, if the assumption is
correct then neither false positives nor false negatives will
increase. Otherwise a node may falsely discard the L1 trigger.

Figure 6 depicts the effect of reporting undecided L2
triggers on the performance of our three cases: base, fixed and
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Fig. 6: The effect of reporting undecided L2 triggers to the CRS.

adaptive for various link loss probabilities. For p = 0, all cases
have the same number of false positives. The reason is that
for p = 0, the communication is reliable and all possible L3
triggers are successfully computed. The L2 triggers reported
in this case are definitely noise. For p = 1, all cases have
no false positives. By definition, a false positive must be an
L2 trigger. Since, for p = 1, all messages are lost; no station
is able to compute an L2 trigger. Therefore, the number of
false positives drops to zero. On the other hand, we see that
the number of false negatives is maximum; all undecided L1
triggers are falsely discarded. The decline in false positives
with increase in p is due to the fact that fewer L2 triggers are
computed in more lossy environment. For that reason, we see
a sharp decline in false positives for the base case. In general,
we see that by reporting undecided L2 triggers the number
of false negatives decrease. Moreover, the rate of decrease in
false negatives is higher in cases where the core algorithm is
executed in combination with some compensation algorithm.
However, the higher decrease in false negatives is at the cost of
higher number of false positives in the corresponding cases.

V. CONCLUSION

This study has uncovered that collaborative local data
analysis using wireless communication is the only geograph-
ically scalable solution for high-energy cosmic ray detection.
However, it suffers from false negatives due to unreliable
wireless communication. Since high-energy cosmic rays are
extremely rare, false negatives are unacceptable. To reduce
false negatives, we evaluated two approaches: message redun-
dancy and reporting partially aggregated data (L2 triggers).
However, message redundancy requires additional bandwidth.
Similarly, reporting L2 triggers causes false positives which
are also resource consuming. We notice that under ideal
circumstances, the bandwidth requirements exceed what many
networks solutions (e.g. Zigbee) can currently provide. We
have not yet considered saving energy by going into duty-cycle
mode or increasing the neighborhood to increase robustness
at the cost of sharing the available bandwidth among more
neighbors. In short, we have to be careful on the selection
of system layer technology used for wireless communication.
A challenging task for further research is to evaluate our

proposed approach under real radio models with bandwidth
constraints and more detailed message-loss patterns in the
network.
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