
PolderCast: Fast, Robust, and Scalable
Architecture for P2P Topic-Based Pub/Sub

Vinay Setty1, Maarten van Steen2, Roman Vitenberg1, and Spyros Voulgaris2

1 Department of Informatics, University of Oslo, Norway
{vinay,romanvi}@ifi.uio.no

2 Department of Computer Science, VU University, Amsterdam, The Netherlands
{steen,spyros}@cs.vu.nl

Abstract. We propose PolderCast, a P2P topic-based Pub/Sub sys-
tem that is (a) fault-tolerant and robust, (b) scalable w.r.t the number
of nodes interested in a topic and number of topics that nodes are in-
terested in, and (c) fast in terms of dissemination latency while (d) at-
taining a low communication overhead. This combination of properties
is provided by an implementation that blends deterministic propagation
over maintained rings with probabilistic dissemination following a limited
number of random shortcuts. The rings are constructed and maintained
using gossiping techniques. The random shortcuts are provided by two
distinct peer-sampling services: Cyclon generates purely random links
while Vicinity produces interest-induced random links.

We analyze PolderCast and survey it in the context of existing
approaches. We evaluate PolderCast experimentally using real-world
workloads from Twitter and Facebook traces. We use widely renowned
Scribe [5] as a baseline in a number of experiments. Robustness with
respect to node churn is evaluated through traces from the Skype super-
peer network. We show that the experimental results corroborate all of
the above properties in settings of up to 10K nodes, 10K topics, and 5K
topics per-node.

Keywords: Publish/Subscribe, Peer-to-Peer, Gossiping.

1 Introduction

Publish/subscribe (pub/sub) has become a popular communication paradigm
that provides a loosely coupled form of interaction among many publishing data
sources and many subscribing data sinks[8]. Many applications report benefits
from using this form of interaction, such as application integration [20], finan-
cial data dissemination [2], RSS feed distribution and filtering [15], and business
process management [14]. As a result, many industry standards have adopted
pub/sub as part of their interfaces. Examples of such standards included WS No-
tifications, WS Eventing, OMG’s Real-time Data Dissemination Service, and the
Active Message Queuing Protocol.

In pub/sub, subscribers convey their interests in receiving messages and pub-
lishers disseminate publication messages. The language and data model to

P. Narasimhan and P. Triantafillou (Eds.): Middleware 2012, LNCS 7662, pp. 271–291, 2012.
c© IFIP International Federation for Information Processing 2012

272 V. Setty et al.

subscribe and publish vary among systems. In this paper, we focus on the
topic-based pub/sub model. In a topic-based system, publication messages are
associated with topics and subscribers register their interests in receiving all
messages published to topics of interest. While traditional pub/sub implemen-
tations are either centralized or based on a federated organization of coopera-
tively managed servers, an increasingly higher number of pub/sub applications
are being deployed in P2P environments [22]. Following this trend, a number
of decentralized topic-based pub/sub systems have been proposed over the last
decade [3, 5, 7, 9, 16, 19, 27, 28]. These systems build a decentralized infrastruc-
ture in which the nodes are first dynamically organized into an application-level
overlay network, and the resulting network is subsequently used for event rout-
ing.

The designers of these systems are facing an uphill struggle because of the
distinctively high number of desirable characteristics that a large-scale P2P
pub/sub system has to possess all at once in order to be a viable practical
solution. In particular, the list includes: (1) Correct delivery of all publications,
i.e., absence of false negatives or deterministic 100% hit-ratio guarantee in a
failure-free run, (2) High hit-ratio under realistic node churn, (3) Fast recovery
at the end of a churn period and mending of the overlay so as to achieve 100%
hit-ratio, (4) Low degree of overlay nodes, (5) Relay-free routing (also called
topic-connectivity), which means that only subscribers interested in a topic are
involved in routing events for that topic, (6) Scalability with the number of
nodes, topics, number of nodes interested in a topic, and number of topics a
node is interested in, (7) Effective dissemination: fast, with as little duplicate
delivery as possible, and fair distribution of load due to routing and processing,
and (8) Low overhead of overlay maintenance. The design challenge is amplified
due to a number of trade-offs: low node degree and relay-free routing, robust-
ness under churn and lack of duplicate delivery, scalability and precise delivery
with few false negatives and false positives are fundamentally at odds with each
other. Furthermore, each of the principal solution approaches provides a bun-
dle of desirable and undesirable properties at the same time: dissemination over
multicast trees is fast and without duplication but it is fragile, whereas gossiping
is robust but lacking deterministic delivery guarantees.

In this paper, we present PolderCast1, a P2P architecture for topic-based
pub/sub. To the best of our knowledge, PolderCast is the first solution that
takes all of the above factors into account and harmonizes them. In order to
substantiate this claim, we present a survey of existing approaches and analyze
their performance with respect to most of the above characteristics.

This combination of desirable properties is provided by an implementation
that blends deterministic propagation over maintained rings with probabilistic
dissemination following a limited number of carefully selected random shortcuts.
Per-topic rings allow for relay-free routing and 100% hit-ratio in absence of node
churn, yet they are constructed in such a fashion so as to reuse the same links

1 The term is inspired by the Dutch polder model, in which diverse societal groups
collaboratively negotiate to obtain broadly supported solutions.

PolderCast: Fast, Robust, and Scalable Architecture 273

for multiple rings thereby minimizing the average node degree. Although at a
conceptual level this overlay structure encompasses a separate Hybrid Dissemi-
nation [25] overlay per-topic, our design leverages interest locality to produce a
single composite overlay with substantially fewer links and hence, lower node de-
grees. Our implementation is based on a new efficient epidemic-based algorithm
for creating and maintaining the proposed overlay in a self-organizing way.

We evaluate and validate the properties of our system using extensive sim-
ulations in large-scale settings of up to 10K nodes, 10K topics, and 5K topics
per-node. We use real-world traces from Twitter and Facebook social networks to
model subscriptions. Robustness with respect to node churn is evaluated through
traces from the Skype super-peer network. We empirically show that our system
(1) converges fast, (2) provides 100% hit-ratio in the absence of node churn and
reasonably good hit-ratio in the presence of node churn, (3) has logarithmic dis-
semination speed in terms of number of hops and (4) has constant factor traffic
overhead. We use Scribe [5] as a baseline in a number of our experiments.

2 Preliminaries

The system consists of a set V of nodes. Each node in the system has a unique
identifier (e.g., a hash of its IP address), assigned to it when joining the system.
Node identifiers are assumed to be sortable and to occupy a circular value space.
We assume that the underlying communication network is fully connected, in the
sense that any node can send a message to any other node, provided it knows
its IP address.

The topic-based publish/subscribe communication system is organized around
a set T of topics. Each node can play the role of a subscriber or publisher or
both. A subscriber v expresses its interest in a set of topics Tv ⊆ T . We call
|Tv| the subscription size of node v. A publisher posts an event on exactly one
topic t. The published event should be delivered to all |Vt| (Vt ⊆ V) subscribers
interested in t (no false negatives) and only to them (no false positives).

Both publishers and subscribers are allowed to join and leave at any moment,
without any prior notice. Node crashes are, therefore, inherently dealt with as
ungraceful leaves. In fact, there is no way to distinguish between the two. We
assume that a node that leaves and rejoins after a while can remember its prior
state.

3 Survey of Related Approaches

In practice, a pub/sub system should satisfy a wide spectrum of desirable prop-
erties in the context of high robustness, low dissemination latency, low com-
munication overhead, and high scalability. Many of those properties exhibit an
inherent trade-off with each other so that striking the right balance is a central
challenge in a pub/sub system design and a guiding objective for our approach.

Table 1 compares the characteristics of PolderCast with principally differ-
ent approaches for P2P topic-based pub/sub systems.

274 V. Setty et al.

Table 1. Comparison of State of the Art with PolderCast

Property\System Scribe[5] Vitis[19] SpiderCast[7] StAN[16] daMulticast[3] Polder-
Cast

Central nodes∗ RV RV&GW WB None None None

High hit-ratio
under churn?

✗, see
Sec. 6.6 � N/A N/A � �

100% hit-ratio in
absence of churn?

� � N/A N/A ✗ �

TCO? ✗ ✗ Prob. Prob. Det. Det.
Degree of node v O(log |V|) O(1) O(|Tv |) O(|Tv|) Θ(|Tv|) O(|Tv|)
Incl. dissemination? � � ✗ ✗ � �
Average
Duplication Factor

None Scoped
flooding N/A N/A Gossiping ≤ Fanout(f)

Average Delay O(log |V|) O(log2 |V|) N/A N/A O(log |Vt|) Typically
O(log |Vt|)#

∗ RV: Rendezvous. GW: Gateway. WB: Weak bridge.
For more details refer to Sec. 6.4 and the discussion below in this section.

With respect to robustness, a pub/sub system should ideally guarantee both
100% hit-ratio without node churn and high hit-ratio in presence of node churn.
Consider that existing approaches to P2P pub/sub either utilize epidemic dissem-
ination (daMulticast [3]), or build specialized dissemination overlays. It is well-
known that while robust under churn, epidemic dissemination does not provide
full reliability, even in a completely static system. On the other hand, most existing
dissemination overlays for topic-based pub/sub are fragile (such as dissemination
trees in Scribe [5], Magnet [9], or Bayeux [28]) or at least they rely on designated
nodes whose existence is critical for correct operation of distributed matching. For
example, Scribe and Vitis [19] have a dedicated rendezvous node for each topic. Ad-
ditionally, Vitis builds subclusters for each topic and the communication between
subclusters is handled by gateway nodes. While these systems provide a number
of churn-handling mechanisms, fragility of dissemination overlays or reliance on
central nodes conceptually limit the potential for high hit-ratio under churn, as we
further explore in our evaluation in Sec. 6.6. SpiderCast [7] builds an unstructured
overlay that strives to maximize clustering of nodes according to their interest in
topics. As observed in [16], this approach may yield an overlay in which highly-
connected clusters are interconnected by few links, which we call weak bridges. Ex-
istence of such weakbridges also impacts the robustness of the system under churn.

PolderCast combines deterministic dissemination over a ring with prob-
abilistic dissemination similar to gossiping. The former mechanism guarantees
100% hit-ratio in a static system while the latter provides a high hit-ratio under
churn. This is further corroborated by the experimental evaluation in Sec. 6.6.

Consider the characteristics of the overlay built in various existing approaches:
A low number of relay nodes is instrumental in reducing the communication and
processing cost of dissemination as well as propagation latency expressed by path
lengths. Furthermore, guaranteed absence of relays, a.k.a. topic-connectivity [6],
simplifies message routing mechanisms. On the other hand, fanout is a com-
mon minimization parameter in overlay design, which strongly affects system
scalability.

PolderCast: Fast, Robust, and Scalable Architecture 275

Unfortunately, the desirable characteristics of having a low node degree and
relay-free routing exhibit a fundamental trade-off [6]. At one extreme is having
a fixed node degree independent of the number of topics a node is interested in.
Such an approach is proposed in Vitis. This results in a relatively high number
of subclusters that need to be connected by additional means, such as gateways,
rendezvous nodes, and relays. Scribe builds dissemination structures on top of
an underlying DHT whose node degree might be either constant or logarithmic
with the total number of nodes in the system. In these systems, a pair of nodes
interested in the same topic might be connected by a chain of Θ(log |V|) relays.

At the other extreme of the trade-off are systems that build and maintain a
separate overlay for each topic independently, such as Tera [4] and systems that
employ gossiping on a per-topic basis, such as daMulticast. These approaches
guarantee topic-connectivity during stable periods without churn. However, the
degree of node v in these systems is in the order of the number of subscriptions:
Θ(|Tv |).

SpiderCast and StAN strive to maintain a topic-connected overlay by building
random links between the nodes while exploiting the correlation between node
interests in order to minimize the degree. Since correlations are typically present
in pub/sub workloads, this results in a lower degree compared to Tera or daMul-
ticast. After the system becomes stable, these systems will eventually produce
a topic-connected overlay with high probability. Yet, the guarantee of relay-free
routing is only probabilistic, which yields low overhead and latencies, but re-
quires additional mechanisms to route messages across potentially disconnected
clusters.

The PolderCast approach we propose in this paper provides a deterministic
guarantee of relay-free routing similar to Tera or daMulticast. At the same time,
the degree is similar to that of SpiderCast or StAN due to exploiting correlations.
As shown in Table 1, SpiderCast and StAN focus on overlay construction and
maintenance and do not propose any specific routing algorithm, thereby render-
ing the discussion about message dissemination properties as well as hit-ratio
nonapplicable to these systems.

For the rest of the approaches, we consider two salient factors that determine
the efficiency of message dissemination:

(a) Average Message Duplication Factor per node: the number of times
(excluding the first) that the same published message is received by a node
on average. When the routing is relay-free, average message duplication factor
directly translates into the communication cost of message dissemination.

In Scribe, Magnet, and Bayeux, a routing tree is used to disseminate pub-
lications, which eliminates any duplication of messages. In the hybrid overlay
approach of Vitis, the node floods a published message to those of its neigh-
bours that are interested in the message topic. Even though Vitis has a fixed
total degree per node, this fanout may be high enough so as to lead to a high
number of duplicate deliveries for the same published message. In daMulticast,
the configurable fanout of the epidemic dissemination used for propagating pub-
lished messages governs the duplication factor. In PolderCast there is a fixed

276 V. Setty et al.

maximum dissemination fanout f (typically f= 2) for each topic. Each node
interested in the topic forwards a message only once (the first time the node
receives the message) along at most f links, which gives a bound of f on the
duplication factor.

(b) Average Path-Length: the average number of hops required for a mes-
sage to reach a node interested in that message. As shown in Table 1, all of the
structured and hybrid overlay approaches have an expected path length that
is logarithmic or square logarithmic with the total number of nodes |V| in the
system. Yet, the inclusion of relays nodes (both at the DHT level and pub/sub
implementation level) into the dissemination path causes path lengths for some
nodes being significantly longer than O(log |V|), as we show in Sec. 6.4. DaMul-
ticast performs gossiping on a per-topic basis so that the expected path length
is logarithmic with the number of nodes O(log |Vt|) interested in the topic.

In our approach, we also strive to achieve expected path lengths that are
logarithmic with O(log |Vt|) due to the random shortcuts links used for dissem-
ination. From the results in [25], it can be derived that if there is a sufficient
number (f -1) of random shortcut links between the nodes interested in a partic-
ular topic, PolderCast guarantees average dissemination path lengths for that
topic to be asymptotically logarithmic. However, our dissemination mechanism
uses a fixed number of random links independently of the number of topics a
node is interested in. This may potentially render the dissemination mechanism
ineffective for a node that is interested in many topics, in which case the average
path length may become linear with |Vt| due to the use of ring links only. For-
tunately, this scenario does not manifest itself for typical pub/sub workloads, as
confirmed by the empirical results in Sec. 6. Note that the dissemination fanout f
determines the base of the logarithm and as such, governs the trade-off between
the dissemination speed and duplication factor.

Based on the analysis in this section, we conclude that the solution for topic-
based pub/sub we propose is (a) free from rendezvous and relay nodes (b) robust
and resistant to churn, and (c) it facilitates efficient message dissemination.

4 PolderCast: Disseminating Events

We present PolderCast in a top-down approach. In this section we describe the
structure of the target overlay and we explain how dissemination is performed
once this overlay is in place. Then, in Sec. 5, we dive into the mechanisms in
charge of building and maintaining such an overlay.

4.1 The Dissemination Overlay

At a conceptual level we maintain a separate ring per topic augmented by random
links shared across the topics. Each ring connects all subscribers of the corre-
sponding topic and only them. Individual topic rings altogether form a single,
connected, and navigable overlay. Ensuring connectivity among all subscribers
of a topic, a property known as topic connectivity, allows for relay-free routing

PolderCast: Fast, Robust, and Scalable Architecture 277

r

{t3}

{t2,t3}

{t1,t2,t3}

{t1,t2,t3}

{t1}
t1

{t1,t2}

Random Link

Ring Link

pq

r

s

u

s
{t3}

{t2,t3}

{t1,t2,t3}

{t1,t2,t3}

{t1}

t2

{t1,t2}

pq

r

t

u

{t3}

{t2,t3}

{t1,t2,t3}

{t1,t2,t3}

{t1}

t3

{t1,t2}

pq

r

s
t

u

{t1,t3} {t1,t3}
{t1,t3}

t

v v v

Fig. 1. Topology for three topics {t1, t2, t3}, showing the ring neighbor links and ran-
dom neighbor links originating from the node p. Note that q serves as successor of p
for all three topics, and v serves as predecessor of p for topics t1, t2 illustrating link
sharing.

among them. It is the reason why PolderCast achieves 100% hit-ratio in the
absence of node churn: When an event for a certain topic reaches any subscriber
of that topic, it is guaranteed to reach all remaining subscribers by being propa-
gated along that topic’s ring. While this distribution mechanism alone might be
adequate for topics with a moderate number of subscribers, its linear dissemina-
tion speed does not scale with the popularity of topics. This is the reason why we
introduce random links serving as dissemination shortcuts. Propagating events
across (some of the) random links to arbitrary other subscribers of the same
topic, accelerates dissemination to exponential speed. It additionally provides a
controlled degree of redundancy that increases robustness and hit-ratio under
node churn.

In this work, we request that a publisher on topic t subscribes to t prior to
publishing events, thus becoming a part of the dissemination ring. This overhead
for publishers is considered acceptable by most applications and in many existing
pub/sub systems.

The rings for each topic are bidirectional and nodes are placed into rings in the
order of their node ids. That is, a node p maintains, with respect to each topic t
in its subscription, two links: one to its t-successor and one to its t-predecessor.
The t-successor of node p is defined as the node with the closest higher than p’s
id (in modulo arithmetic), among all subscribers of topic t. The t-predecessor is
defined likewise for the closest lower id. Fig. 1 gives a sample topology of three
topics, and the respective intermingling rings.

It should be observed that while the use of rings in hybrid dissemination struc-
tures has appeared in the past [25], their application to topic-based pub/sub is
new. The main challenges of using ring in pub/sub lies in combining such struc-
tures, one per topic, into a single manageable overlay. In practice, maintaining a
separate ring per topic is very expensive, notably for nodes subscribed to many
topics. However, it has been observed that subscriptions tend to be strongly
correlated [15]. Our approach exploits this correlation in order to substantially
lower the number of links maintained: A single link can serve as a ring link for
multiple topics.

278 V. Setty et al.

It is possible to build an overlay with link consolidation across the topics as
the central optimization metric in mind. This approach minimizes node degree
but may result in a per-topic ring being partitioned into multiple sub-rings.
In order to avoid this risk, PolderCast takes a more balanced approach and
builds a guaranteed ring for each topic separately but in such a way that links
have a higher chance of being reused in multiple topics. Specifically, rings are
constructed based on node ids instead of their subscriptions. Assume nodes p
and q are both subscribed to t1 and t2, and they are ring neighbors for t1. This
means that they are both on the ring for t2 and their ids are numerically close,
thereby increasing the chance that they will be ring neighbors for t2 as well. We
further investigate the effect of link consolidation in our experiments in Sec. 6.

With respect to random links, their choice and quantity may have a profound
impact on the performance, as discussed in Sec. 3. PolderCast combines a
configurable number of random links of two types: interest-induced links formed
between subscribers with similar subscriptions shorten average dissemination
path lengths. At the same time, uniform random links help overcome partitions
under node churn and improve load balancing by diverting incoming links from
nodes that subscribe to many topics, which become a likely target for interest-
induced links. We describe the algorithm for random link formation in Sec. 5
and consider the importance of the links of each type in Sec. 6.

4.2 Event Dissemination

Our event dissemination protocol is inspired by that of RingCast [25] (the proto-
col is parameterized by a dissemination fanout, f): A node receiving an event for
topic t for the first time, propagates it f times. Specifically, if the event has been
received through the node’s t-successor (or t-predecessor), it is propagated to its
t-predecessor (or t-successor) and f -1 arbitrary subscribers of t. If the event was
received through some third node, or if it originated at the node in question,
it is propagated to both the t-successor and the t-predecessor, as well as to f -2
other subscribers of t. Finally, if a copy of this event has already been received
in the past, it is simply ignored.

Event
source

Successor / Predecessor

Random link

Fig. 2. Dissemination example for a par-
ticular topic, in a partitioned ring

Fig. 3. Three-layered architecture. Each
layer gossips with the respective layer in
other nodes.

PolderCast: Fast, Robust, and Scalable Architecture 279

From the results in [25], it can be derived that if there is a sufficient number
(f -1) of random shortcut links between the nodes interested in a particular topic,
PolderCast guarantees average dissemination path lengths for that topic to
be asymptotically logarithmic. Even under node churn PolderCast tries to
achieve complete dissemination as shown experimentally in Sec. 6.6. Fig. 2 gives
an intuitive illustration of dissemination in a partitioned ring.

Since we apply this dissemination protocol for multi-topic pub/sub, however,
analyzing its performance in PolderCast is significantly more difficult because
the random links are shared across multiple topics and the number of utilizable
random links varies for each and every node. Furthermore, some of the random
links are skewed towards peers with multiple overlapping topics. This may inter-
fere with the nice property of exponential dissemination speed that is inherent
to many gossiping protocols. It may also cause a node whose subscription is
similar to those of many other peers to become a hotspot due to a high number
of incoming random links. We evaluate these aspects experimentally in Sec. 6.

5 PolderCast: Building the Overlay

PolderCast’s overlay management mechanism is built around three modules:
Rings, Vicinity, and Cyclon, as shown in Fig. 3. Each module maintains its
own view, managed by a separate gossiping protocol, which gossips periodically,
asynchronously, and independently from the other two modules. In table below
we list the parameters controlling the number of neighbors maintained (view
size), and the maximum number of neighbors included in a gossip message (gos-
sip size), per module.

module name view size gossip size
Rings �ring (per subscribed topic) gring

Vicinity �vic (in total) gvic

Cyclon �cyc (in total) gcyc

Considering a node p with topics Tp, the three modules operate as follows.
With respect to each topic t ∈ Tp, the Rings module on p is responsible for
discovering p’s t-successor and t-predecessor. It achieves this by considering a few
links to arbitrary subscribers of t as a starting point, and periodically gossiping
with them to trade them for other subscribers of t of gradually closer ids.

The Vicinity module is responsible for feeding the Rings module with a few
neighbors for each topic t ∈ Tp, of arbitrary ids. It is based on Vicinity [23],
a topology management protocol that strives at discovering for each node the
closest other nodes based on some proximity function. Per the proximity function
introduced in the context of PolderCast, the more topics two nodes share the
closer they are ranked. Moreover, as detailed in Sec. 5.2, our proximity function
dynamically adapts to favor topics currently under-represented in the Rings
module.

Finally, the Cyclon module [24], is a lightweight peer sampling service [12],
providing each node with a continuous stream of neighbors chosen uniformly

280 V. Setty et al.

at random from the whole network. As detailed in Sec. 5.3, this is essential for
keeping the whole overlay connected, and enabling flexible overlay maintenance
in the face of failures and node churn.

For any of the three modules, node q being a neighbor of node p means that p
has a copy of q’s profile in the respective module’s view. A node’s profile contains
(i) its IP address and port number, (ii) its (unique) node id, and (iii) the ids
of topics the node is subscribed to, each annotated with a priority that node
assigns to finding neighbors of that topic. The priority of a topic is determined
by the number of neighbors it has in the Rings module: topics with fewer Rings
neighbors are assigned higher priority. Clearly, two or more copies of a node’s
profile may be different, notably when the node updates its subscriptions, or
reports different priorities for its topics. When gossiping to a neighbor, a node
sends a fresh copy of its profile, reflecting its current state.

Note that the three gossiping protocols comprising PolderCast are executed
continuously. In a network characterized by dynamicity, due to nodes departing
or joining at any time, crashing, or merely changing their subscriptions, there is
no notion of final convergence. Instead, nodes engage in a constant convergence
process.

5.1 The Rings Module

The Rings module manages the ring links. That is, it aims at discovering a
node’s successor and predecessor for each topic in its subscription, and at quickly
adapting to new successors/predecessors in dynamic networks.

In that respect, each node maintains �ring neighbors for each topic in its
subscription: �ring/2 with lower and �ring/2 with higher id. It periodically picks
a node from its Rings view, and the two nodes exchange up to gring neighbors
to help each other improve their Rings views.

Assume p selects its neighbor q for gossiping. First, p collects all subscribers
of topics which p and q have in common, considering the union of views of all
three modules. Second, it sorts them by id, and for each topic in common with q
it selects the �ring/2 ones with just lower and the �ring/2 ones with just higher id
than q’s id. If more than gring nodes have been selected, it randomly picks gring

of them. Finally, it sends the selected nodes (i.e., the respective node profiles)
to q. Node q does the same in return.

Although the dissemination protocol requires just two ring links per topic,
namely the topic successor and predecessor, Rings maintains up to �ring links
per topic. This provides stand-by successors and predecessors to be used in case
of failures or node churn. Additionally, it helps nodes navigate to their direct
ring neighbors faster, once they have reached the proximity of their ids.

Finally, in order to increase the diversity of neighbors contacted for gossiping,
the Rings module employs a Least Recently Used (LRU) selection policy. This
prevents contacting the same neighbor twice in a short interval, when it probably
has no new useful information, at the expense of not contacting some other
neighbor for a much longer duration. The LRU policy also plays an important

PolderCast: Fast, Robust, and Scalable Architecture 281

role in churn handling by PolderCast, thus its implementation details are
deferred to Sec. 5.4.

5.2 The Vicinity Module

The Vicinity module is responsible for maintaining interest-induced random
links, that is, randomly chosen links between nodes that share one or more
topics. Such links serve as input to the Rings module, as detailed in Sec. 5.1.
Additionally, they are used by the dissemination protocol to propagate events
to arbitrary subscribers of a topic, as explained in Sec. 4.2.

Interest-induced random links are handled by Vicinity [23], a generic proto-
col for topology construction and management that lets nodes find their closest
neighbors out of the whole network, based on some proximity function. In short,
each node maintains a view of �vic neighbors and periodically gossips with them
to discover nodes of even closer proximity, in which case it retains them in place
of the least proximal neighbors.

Let p choose q for gossiping. Node p merges its views from all three modules.
Then, it selects the gvic nodes closest to q by applying the proximity function
on its behalf, and ships them over to q. Upon reception, q merges the received
neighbors with the union of all its views, and updates its Vicinity view to the
�vic closest neighbors. Finally, q responds by selecting and shipping back its gvic

closest to p nodes.
Clearly, the proximity function plays a crucial role in Vicinity. In the con-

text of PolderCast, the proximity function is designed to ensure that the
Rings module is supplied with (arbitrary) neighbors for all its topics. In that
respect, candidates subscribed to topics annotated with higher priority by the
target node are ranked closer compared to candidates of lower priority topics.
Among candidate nodes that rank equally in terms of topic priorities, proximity
is determined by the number of topics shared with the target node: the more
shared topics, the closer their ranking.

5.3 The Cyclon Module

Uniform random links are handled by the Cyclon peer sampling service [24].
This module’s purpose is twofold. First, it keeps the whole set of subscribers
connected in a single partition, even in the presence of churn, large scale failures,
or subscription changes. Connectivity is crucial to let new subscribers find their
way to their appropriate neighborhood sets, irrespectively of where they initially
joined the network. Second, it constitutes a source of links selected uniformly at
random from the whole network. Such a source of random links is fundamental
to the operation of the other two modules. Further details about the Cyclon
protocol can be found in [24].

5.4 Churn Handling

It is a key design goal of PolderCast to provide a high hit-ratio and reasonably
low delivery latency under node churn, while keeping the number of duplicate

282 V. Setty et al.

messages controllably small. To that end, PolderCast should adapt promptly
to two types of changes. First, information updates, such as newly joining nodes,
new subscriptions, etc. should be propagated fast. Second, the system should
quickly detect the disconnection (graceful or due to failures) of nodes, and discard
related information from the network.

With respect to propagating new information fast, PolderCast relies on
its fast convergence properties. When a node joins the network, for example,
its Vicinity module will quickly find some neighbors for each topic. Once a
neighbor has been found for some topic, the Rings module can quickly locate the
appropriate successor and predecessor in an already largely connected topic ring.
When a node’s subscription changes, Vicinity will adjust its topic priorities to
boost under-represented (new) topics. We further explore the convergence speed
of PolderCast experimentally in Sec. 6.2.

With respect to ridding the system from outdated links, PolderCast em-
ploys a proactive mechanism for removing dead neighbors from node views.
Whenever a node p gossips with a neighbor q, it temporarily removes q from the
respective module’s view, anticipating that q will respond and will be inserted
anew in p’s view. This way, dead neighbors are silently discarded, while alive
ones are refreshed. To prevent dead neighbors from remaining indefinitely in a
view, a node always selects to gossip with its least recently refreshed neighbor.

Freshness of a neighbor is approximated by an age field, associated with every
view entry. Once per cycle, a node increments the ages of all its neighbors by one.
A neighbor’s age is zeroed when a gossip message (or response) is received from
that neighbor. A neighbor’s age is retained also when that neighbor is handed
from one node to another. This way, a dead node’s links will have increasingly
higher chance to be selected for gossiping (and consequently discarded), even if
they are copied among third nodes.

Although the age mechanism provides only an approximation of a link’s fresh-
ness, it turns out to work sufficiently well for fast removal of dead links. We
investigate the impact of node churn on the performance of PolderCast in
Sec. 6.6.

6 Experimental Evaluation

We evaluate PolderCast by simulation based on real-world traces. We focus
on the overlay properties (such as the node degree), efficiency of dissemination
(delays and duplicate delivery), communication overhead of overlay maintenance,
and performance under node churn (hit-ratio for message delivery and speed
of convergence for overlay construction). We also compare the performance of
PolderCast with Scribe[5] as a baseline.

We implement both PolderCast and Scribe using the widely adopted Peer-
Sim simulator [17]. Scribe is implemented as an application atop Pastry DHT[21].
We use the implementation of Pastry for PeerSim, publicly available at [1]. We
evaluate both PolderCast and Scribe at a scale of up to 10K nodes. Experi-
ments of similar scale are common in this area [18, 19].

PolderCast: Fast, Robust, and Scalable Architecture 283

Unless otherwise mentioned, the view sizes of Cyclon and Vicinity (�cyc

and �vic, respectively) were set to 20 entries each, and the gossip lengths in all
three protocols (gcyc, gvic, and gring) were set to 10 entries. The configuration
parameters for Scribe are b = 4 which defines the base 2b = 16 for the log
structure of Pastry DHT and l = 32 for the leaves of the DHT routing table.

6.1 Experimental Settings

Subscription Workload: Our subscription workloads come from massively
deployed social networks, namely Twitter and Facebook.

(1) Twitter Dataset: We used a public Twitter dataset [13], containing 41.7
million distinct user profiles and 1.47 billion social followee/follower relations. In
Twitter, when a user posts a message (known as a tweet), the tweet is delivered
to all followers of that user. As such, each user is modelled as a topic and all its
followers are the respective subscribers. Similarly the set of users (followees) a
user Alice follows, form Alice’s subscription set. Note that in Twitter, relations
are unidirectional, i.e., user Alice following user Bob does not require also Bob
following Alice.

(2) Facebook Dataset: We used a public Facebook dataset [26], with over 3 mil-
lion distinct user profiles and 28.3 million social relations as a second workload
for our evaluations. Similarly to Twitter, users are modelled as topics as well
as subscribers. However, in Facebook relations are bidirectional, therefore two
friends in the Facebook social graph subscribe to each other in our model.

Our simulations were performed with workloads of 10K nodes (i.e., up to 10K
topics and 10K subscribers), extracted from the original Twitter and Facebook
social graphs in a methodology inspired from [18, 19]. More specifically, starting
with a random set of a few users as seeds, we traversed the social graph using
breadth first search, until the target number of nodes was reached, and all edges
between them were extracted to our sample.

Fig. 4 shows the complementary cumulative distribution function (CCDF) of
follower/followee counts for both the original Twitter(TW) and Facebook(FB)
datasets, as well as for our respective extracted datasets in the inner plot. The
plots indicate that the original dataset properties were retained in our extracted
sample.

Publication Workload: Due to lack of publicly available real world publication
workload we synthetically generate publications. We post one publication event
for each topic, initiated by a randomly picked subscriber of that topic. Although
in practice, event arrival rate may vary across different topics, we use a uniform
publication rate since it has no effect on the metrics we consider in this paper.

Latency and Churn Datasets: We use the King dataset [11] to model com-
munication latency between nodes. Finally, we evaluate our system under node
churn, using real world churn traces: Skype dataset. We use Skype super-peer

284 V. Setty et al.

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103 104 105 106 107

C
om

pl
em

en
ta

ry
 C

D
F

Number of followees/followers

Followers TW
Followees TW
Followers FB
Followees FB

10-510-410-310-210-1100

100 101 102 103 104

Fig. 4. Distribution of followers and followees, for the Twitter (41.7M users) and Face-
book (3M users) traces. Inner plot: trace samples used (10K users).

churn traces from [10], which tracked joining and leaving timestamps of 4000
nodes for one month, starting on September 12, 2005.

6.2 Speed of Convergence

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

TWITTER

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

P
er

ce
nt

ag
e

FACEBOOK

OVERLAY: missing links
OVERLAY: incomplete rings
OVERLAY: missing links (no vic)
OVERLAY: incompl. rings (no vic)
DISSEMINATION: miss ratio
DISSEMINATION: incompl. postings

Fig. 5. Convergence speed

We first evaluate the time it takes
to jump-start a PolderCast over-
lay from scratch. We start by
10,000 nodes that are already run-
ning Cyclon (i.e., each node has
�cyc links to random other nodes),
but whose Vicinity and Rings
views are completely empty, and
we let them gossip to self-organize
in a PolderCast overlay. Ob-
serve that fast convergence to an
optimal overlay upon the extreme
case of simultaneous bootstrapping
typically implies fast reconciliation af-
ter a period of milder churn.

Given the input, we start by an
offline construction of correct target
rings to which the systems should
converge over time. Then, we deploy
PolderCast.

At each cycle, we measure the percentage of target ring links that are not yet
in place (missing links), as well as the percentage of topics for which the ring has
not converged yet (incomplete rings). Fig. 5 shows these metrics for the Twitter
and Facebook workloads, respectively.

In order to assess the overlay’s efficiency in disseminating events, we conduct
another experiment by “freezing” the overlay at the end of each cycle, and posting
one event for each topic. We record the percentage of nodes that missed an event

PolderCast: Fast, Robust, and Scalable Architecture 285

they should have received (miss ratio), as well as the percentage of events that
did not make it to all subscribers of their topic (disconnected topics). These
measurements are also shown in Fig. 5.

The results show that the overlay converges quite fast: Within 60 cycles, 99%
of topic rings are complete. They also indicate that the PolderCast overlay is
highly efficient even with partially complete rings because it takes fewer cycles
to achieve a connected overlay (0% miss ratio) per topic. This is due to prop-
agating events across random links, provided by the combination of Vicinity
and Cyclon views.

We also show that our three-layered architecture explained in Sec. Sec. 5 is
essential to improve the speed of convergence. In Fig. 5 we compare the conver-
gence speed of PolderCast, without the Vicinity layer in the middle, and
we can see that it takes almost 3-6 times longer to converge. This is because
Vicinity provides interest-induced random links, essential for speeding up the
construction process.

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000

cy
cl

es
 to

 c
on

ve
rg

e

Number of topics per node (subscription size)

Twitter
Facebook

 0

 10

 20

 30

 40

 50

 60

 1 10 100 1000

cy
cl

es
 to

 c
on

ve
rg

e

Size of the ring (topic popularity)

Twitter
Facebook

Fig. 6. Correlation between conver-
gence speed and size of the subscrip-
tion/ring

Fig. 7. Node degree in Rings layer

Apart from the speed it is also important to make sure that the overlay con-
struction is scalable with respect to the number of nodes that participate in a
ring (topic popularity) and the number of topics a node is interested in (sub-
scription size). As shown in Fig. 6, even a node interested in over 400 topics
converges reasonably fast. This is mainly due to having a higher number neigh-
bours compared to a node interested in a few topics only, which offer it much
higher reachability for a large number of topics.

286 V. Setty et al.

6.3 Overlay Degree

In Fig. 7 we assess the effect of a node’s subscription size on its Rings view
size. Due to interest locality, a single neighbor may serve multiple of its topics.
This helps the node retain its Rings outdegree low, and effectively contributes
to higher scalability with respect to the subscription size of nodes. We do not
consider the degree due to random links here since their number is fixed and
small compared to that of ring links.

For the Twitter data, PolderCast manages to exploit correlation in the
subscriptions to a large extent. However, for Facebook data, the node degree
grows almost linearly with subscription size suggesting less subscription correla-
tion. In Scribe, the average degree of a node v in the system is bounded by the
number of nodes in the Pastry routing table that point to node v. This number
is logarithmic with the total number of nodes and independent of the number of
topics that node is subscribed to. This may be an important advantage in the
case of an extremely high number of topics a node is interested in.

6.4 Event Dissemination

We now analyze the event dissemination protocol proposed in Sec. 4.2. We mea-
sure (1) the dissemination delay, in terms of number of hops required for a
publication to reach the subscribers and (2) the duplication factor, namely the
ratio between the number of all event messages received over the number of
distinct event messages received. The measurements were taken by injecting the
publications as described earlier and averaging the two metrics for 1000 cycles.
From this point on, we run PolderCast with only Facebook data with 10K
nodes, omitting results for Twitter data due to lack of space.

As one can see in Fig. 8(a), with the increase in dissemination fanout the
average dissemination delay significantly decreases. However, this decrease takes
place at the cost of an increase in the average number of duplicate messages
seen by nodes as shown in Fig. 8(b). To compare Scribe with PolderCast we
plot the average delay in Fig. 8(a). We can see that the average dissemination
delay in Scribe is almost 1.7 times higher than the worst-case dissemination
delay of PolderCast. This is due to the long chain of nodes induced by Scribe
dissemination trees, even though DHT gurantees log |V| hops delay. These longer
chains stem from the inclusion of relay nodes, both at the Scribe and Pastry level.

As shown in plots in Fig. 8(a,b), the choice of random shortcut links has
an interesting trade-off between dissemination delay and duplicate messages. At
one extreme, if we use the Cyclon view as a source for random shortcut links,
neither the dissemination delay decreases, nor the duplication factor increases
with the increase in fanout f . This is attributed to the fact that since the Cyclon
view is limited in size, and its view is chosen in an interest-agnostic way, the
random shortcuts for a topic the node is interested in are not useful for the
topics of interest, forcing the dissemination protocol to fall back on ring links.
On the other extreme, if we only use the Vicinity view as a source of random
links, it leads to a significant decrease in average delay, at the cost of an increase

PolderCast: Fast, Robust, and Scalable Architecture 287

 1

 10

 1 2 3 4 5 6

N
um

be
r

of
 H

op
s

Fanout (F)

(a) Average Dissemination Delay

 0

 1

 2

 3

 1 2 3 4 5 6

D
up

lic
at

io
n

F
ac

to
r

Fanout (F)

(b) Average Duplication Factor

CYC only
PolderCast(CYC + VIC)
VIC only
Scribe

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
om

pl
em

en
ta

ry
 C

D
F

Delay in Number of Hops

(c) Distribution of Dissemination Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
om

pl
em

en
ta

ry
 C

D
F

Duplication Factor

(d) Distribution of Duplication Factor

Fig. 8. Event Dissemination Analysis

in the average number of duplicates. In PolderCast we balance this trade-off
by combining the Cyclon and Vicinity views, which results in the middle
ground both for average delay and average duplication factor.

The choice of random shortcuts also has implications on the balancing of load
on the nodes. In Fig. 8(d) one can see that if only Vicinity is used for random
shortcut links, around 20% of the nodes receive messages at least 4 times. This
is due to the fact that nodes that are interested in many topics (> 100) have
a high chance to be present in the Vicinity view of many nodes. Since we use
both Vicinity and Cyclon views for random shortcuts, it reduces the number
of duplicate messages for nodes interested in many topics. It should be noticed
that Scribe does not have any duplicate messages since messages in Scribe are
disseminated using multicast trees.

In Fig. 8(c) we can see a similar pattern for dissemination delay and we again
take the middle ground between the two extremes. Fig. 8(c) also shows that there
is a significant number of messages in Scribe with a relatively high dissemination
delay, as we explained above.

6.5 Overlay Maintenance

The next experiment aims at evaluating the overhead in overlay maintenance.
We measure the number of control messages sent and received by each node to

288 V. Setty et al.

 1

 10

 100

 1000

 10000

 1 10 100 1000

#M
es

sa
ge

s/
C

yc
le

Subscription Size

Bandwidth Consumption

PolderCast #Messages
Scribe #Messages

Fig. 9. Bandwith consumption

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100

C
D

F
 (

F
ra

ct
io

n
of

 N
od

es
)

Percentage unwanted traffic

Traffic Overhead Distribution

Scribe (Twitter Data)
Scribe (Facebook Data)

Fig. 10. Traffic Overhead

maintain the overlay. Note that as shown in Fig. 9 nodes interested in many
topics (> 100) transmit a higher number of messages. This is due to the fact
that they are more frequently selected as a target for gossiping. This factor does
not play a significant role: the cycle duration can be chosen to be as high as 1
minute in real scenarios thereby rendering the bandwidth overhead negligible.
On the other hand, more intensive control communication by nodes interested
in many topics contributes to faster overlay convergence.

It is clear from Fig. 9 that Scribe incurs a higher communication overhead.
The number of control messages sent and received by a node v in Scribe is
proportional to the number of subscriptions v is interested in. Even though each
node has a limited number of children in the multicast tree to maintain, Scribe
sends regular heartbeat messages for each topic (both topics of interest and
topics for which v is a relay) to keep the trees connected.

The existence of relays and lack of topic-connectivity in Scribe additionally
causes unwanted traffic passing through the nodes. We measure the amount of
overall traffic (both control and application traffic) passing through each Scribe
node and distinguish between the traffic relevant to the subscription topics of
the node and unwanted traffic. In Fig. 10 we show the amount of unwanted
traffic at each node. We can see that over 90% of the nodes receive more than
80% of unwanted traffic. Such an overhead does not exist in PolderCast since
topic-connectivity ensures that each node receives only the traffic relevant to the
node’s subscription topics.

6.6 Message Dissemination under Churn

In this experiment we evaluate PolderCast and Scribe publication dissemina-
tion under the churn model described earlier. We inject publications as explained
earlier with fanout f set to 2. We maintain two successors and two predecessors
for each topic (�ring= 4). To assess the resilience of our protocol to node churn,

PolderCast: Fast, Robust, and Scalable Architecture 289

at the end of each cycle we freeze the overlay and we measure the miss-ratio,
i.e., the fraction of nodes that missed at least one publication event. It is worth
noting that we set the cycle duration to be 1 minute. As a consequence, we
introduce 60 times more node churn during each cycle than originally provided
by the churn traces. When measuring the miss-ratio, we exclude the warm-up
period of 10 seconds after the node joins the network.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50
 0

 250

 500

 750

 1000

M
is

s
ra

tio

N
et

w
or

k
S

iz
e

Hours

Miss-ratio Under Skype Churn Traces

Network Size
PolderCast Miss-ratio

Scribe Miss-ratio

Fig. 11. Message Dissemination Under Churn

As shown in Fig. 11, for the Skype churn model the miss-ratio in PolderCast
never grows beyond 0.01 except when there is a sharp drop in network size. In
that case, the miss ratio momentarily grows to 0.04, but stabilizes quickly. This
is due to (1) the use of random shortcuts, keeping the dissemination structure
connected even though the ring is partitioned, and (2) since �ring= 4, with
the failure of one successor/predecessor the ring can still stay connected. When
hundreds of nodes are joining the system (i.e., when there is a flash crowd),
PolderCast continues to maintain the miss-ratio below 0.01.

From Fig. 11 it can be seen that Scribe has almost 10 times higher miss-ratio
than PolderCast. Especially during the flash crowd at the beginning Scribe
has a significantly higher miss-ratio due to a slower construction of the multicast
trees when around 600 nodes join. Similarly we can see a spike in the miss-ratio
when a sharp drop in network size occurs after around hours 18. There is a spike
in the miss-ratio of PolderCast as well, but the relatively higher miss-ratio of
Scribe is caused by the sudden departure of several rendezvous nodes.

7 Conclusions

In this paper we presented PolderCast, a P2P architecture for topic-based
pub/sub which aims to achieve relay-free, fast and robust dissemination over
a scalable overlay with a minimal maintenance cost. PolderCast achieves a

290 V. Setty et al.

delicate balance between these conflicting but desirable properties. We evaluated
PolderCast with Scribe as baseline, using large scale simulations with publicly
available real world traces from Facebook [26] and Twitter [13].

References

1. An implementation of the Pastry protocol for PeerSim,
http://peersim.sourceforge.net/code/pastry.tar.gz

2. Tibco rendezvous, http://www.tibco.com
3. Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: DSN (2004)
4. Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci-Piergiovanni, S.: Tera:

topic-based event routing for peer-to-peer architectures. In: DEBS (2007)
5. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.T.: Scribe: a large-scale

and decentralized application-level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communications 20, 1489–1499 (2002)

6. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In: PODC (2007)

7. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Spidercast: a scalable interest-
aware overlay for topic-based pub/sub communication. In: DEBS (2007)

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)

9. Girdzijauskas, S., Chockler, G., Vigfusson, Y., Tock, Y., Melamed, R.: Magnet:
practical subscription clustering for internet-scale Pub/Sub. In: DEBS (2010)

10. Guha, S., Daswani, N., Jain, R.: An Experimental Study of the Skype Peer-to-Peer
VoIP System. In: IPTPS (2006)

11. Gummadi, K.P., Saroiu, S., Gribble, S.D.: King: estimating latency between arbi-
trary internet end hosts. In: SIGCOMM (2002)

12. Jelasity, M., Montresor, A., Babaoglu, Ö.: T-Man: Gossip-based fast overlay topol-
ogy construction. Computer Networks 53(13), 2321–2339 (2009)

13. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news
media? In: WWW (2010)

14. Li, G., Muthusamy, V., Jacobsen, H.A.: A distributed service-oriented architecture
for business process execution. ACM Trans. Web. 4, 2:1–2:33 (2010)

15. Liu, H., Ramasubramanian, V., Sirer, E.G.: Client behavior and feed characteristics
of RSS, a publish-subscribe system for web micronews. In: IMC (2005)

16. Matos, M., Nunes, A., Oliveira, R., Pereira, J.: Stan: exploiting shared interests
without disclosing them in gossip-based publish/subscribe. In: IPTPS (2010)

17. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: P2P Computing
(2009)

18. Patel, J.A., Rivière, É., Gupta, I., Kermarrec, A.M.: Rappel: Exploiting interest
and network locality to improve fairness in publish-subscribe systems. Computer
Networks 53, 2304–2320 (2009)

19. Rahimian, F., Girdzijauskas, S., Payberah, A.H., Haridi, S.: Vitis: A gossip-based
hybrid overlay for internet-scale publish/subscribe enabling rendezvous routing in
unstructured overlay networks. In: IPDPS (2011)

20. Reumann, J.: GooPS: Pub/Sub at Google. Lecture & Personal Communications
at EuroSys & CANOE Summer School (2009)

21. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

http://peersim.sourceforge.net/code/pastry.tar.gz
http://www.tibco.com

PolderCast: Fast, Robust, and Scalable Architecture 291

22. Triantafillou, P., Aekaterinidis, I.: Peer-to-peer publish-subscribe systems. In: En-
cyclopedia of Database Systems 2009, pp. 2069–2075 (2009)

23. Voulgaris, S.: Epidemic-Based Self-Organization in Peer-to-Peer Systems. Phd the-
sis, VU Universiteit Amsterdam (2006)

24. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership man-
agement for unstructured P2P overlays. Journal of Network and Systems Manage-
ment 13, 197–217 (2005)

25. Voulgaris, S., van Steen, M.: Hybrid Dissemination: Adding Determinism to Prob-
abilistic Multicasting in Large-Scale P2P Systems. In: Cerqueira, R., Campbell,
R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp. 389–409. Springer, Heidelberg
(2007)

26. Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., Zhao, B.Y.: User interactions
in social networks and their implications. In: EuroSys (2009)

27. Wong, B., Guha, S.: Quasar: a probabilistic publish-subscribe system for social
networks. In: IPTPS (2008)

28. Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H., Kubiatowicz, J.D.: Bayeux:
an architecture for scalable and fault-tolerant wide-area data dissemination. In:
NOSSDAV (2001)

	PolderCast: Fast, Robust, and Scalable Architecture for P2P Topic-Based Pub/Sub

	Introduction
	Preliminaries
	Survey of Related Approaches
	PolderCast: Disseminating Events
	The Dissemination Overlay
	Event Dissemination

	PolderCast: Building the Overlay
	The Rings Module
	The Vicinity Module
	The Cyclon Module
	Churn Handling

	Experimental Evaluation
	Experimental Settings
	Speed of Convergence
	Overlay Degree
	Event Dissemination
	Overlay Maintenance
	Message Dissemination under Churn

	Conclusions
	References

