
Robust overlays for privacy-preserving data dissemination over a social graph

Abhishek Singh, Guido Urdaneta

University of Oslo, Norway
{abhi,guidoau}@ifi.uio.no

Maarten van Steen

VU University Amsterdam, The Netherlands
The Network Institute and Department of Informatics

steen@cs.vu.nl

Roman Vitenberg

University of Oslo, Norway
romanvi@ifi.uio.no

Abstract—A number of recently proposed systems provide
secure and privacy-preserving data dissemination by leveraging
pre-existing social trust relations and effectively mapping
them into communication links. However, as we show in this
paper, the underlying trust graph may not be optimal as a
communication overlay. It has relatively long path lengths
and it can be easily partitioned in scenarios where users are
unavailable for a fraction of time.

Following this observation, we present a method for improv-
ing the robustness of trust-based overlays. Essentially, we start
with an overlay derived from the trust graph and evolve it
in a privacy-preserving fashion into one that lends itself to
data dissemination. The experimental evaluation shows that
our approach leads to overlays that are significantly more
robust under churn, and exhibit lower path lengths than the
underlying trust graph.

Keywords-privacy; online social networks; peer-to-peer.

I. INTRODUCTION

The Internet is being revolutionized by the interest-based

data exchange within social communities. Millions of users

in free online social networks (OSNs) are producing stagger-

ing volumes of data: Facebook receives more than 30 billion

shared items every month while Twitter receives more than

55 million tweets each day.

However, numerous incidents indicate that free centralized

services cannot be trusted to safeguard sensitive OSN data.

As observed in [1], concentrating the personal data of

hundreds of millions of users under a single administra-

tive domain leaves users vulnerable to large-scale privacy

violations via inadvertent disclosures and malicious attacks.

Furthermore, OSN terms of service often give the provider

the right to reuse users’ data in any way the provider sees

fit.

Consider a worldwide community of patients with the

same chronic illness trying to support each other with

information, job seekers in a particular professional area or

geographical region mutually sharing advices, or a group of

dissidents in a country that limits freedom of expression

attempting to reach out to a broader audience. It is of

utmost importance for users in such groups to be able

to exchange data in a privacy-preserving fashion, that is,

without disclosing their identity, personal details of their

profile, or social friendship relations between the users.

Unfortunately, existing free OSNs or generally speaking,

architectures with central entities that can be compromised

do not endow such groups with a viable solution.

Decentralized friend-to-friend (F2F) networks such as

Freenet [2] pose a strong potential for catering to the needs

of such groups. These networks leverage the existence of

the underlying social friendship relations between the users

and effectively map them into communication links. While

direct data exchange occurs between friends only, a user

A may relay messages between her friends B and C that

are not friends of each other. Since in many cases, the

social graph corresponding to a large community of users

is connected, this mechanism allows for dissemination in

large groups. Social relations provide additional incentives

for the nodes to contribute their resources and participate

in the dissemination. Unlike other kinds of private P2P

networks, users in a F2F network cannot find out who else

is participating beyond their own circle of friends, so that

F2F networks can grow in size without compromising their

users’ anonymity. This also mitigates the harm to privacy

if one of the user nodes is hijacked or willingly relaying

information to a third party.

However, dissemination over a communication graph that

simply mimics the social one is not very effective, as we

show in this work. Although the social graph is connected,

its connectivity is much weaker compared to random graphs

with the same number of nodes and edges. Even moderate

churn typical in online P2P networks results in degraded

connectivity and significant graph partitioning, not to men-

tion the effect of further decreased node availability if some

of the users are using mobile devices. Moreover, existing

social graphs exhibit a higher diameter than random graphs

of the same size, which leads to slower data propagation.

The gist of our approach in this work is to bootstrap the

communication overlay using the social graph but augment it

with additional links between pairs of nodes that correspond

to the users not related by social ties, as shown in Figure 1.

These additional links should provide an abstraction of

privacy-preserving routing between pairs of untrusted nodes

that cannot trust each other when it comes to anonymity

or even learn of each other’s identity. They are maintained

in presence of churn in such a way that (a) sending data

over these links does not violate privacy of the nodes, (b)

our mechanism for establishing these links is itself privacy

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.57

234

Trusted overlay links

 Extra overlay links
Trusted edges

Figure 1: Example of a trust graph and derived communica-

tion overlay. Note that the overlay has links that correspond

to edges in the trust graph, and extra links that help make

the overlay more robust.

preserving and it does not impose significant overhead,

and (c) the resulting overlay becomes robust under churn

as well as having a low diameter. This way, we retain

the above mentioned advantages of F2F networks while

enhancing robustness of the overlay. For example, it is

possible to leverage such an overlay towards an efficient and

scalable implementation of reliable and privacy-preserving

message broadcast by using controlled flooding, epidemic

dissemination, or an additional routing layer. In essence,

this will present a highly sought solution for the scenarios

of privacy-preserving data exchange within communities, as

presented above.

To this end, we propose a service for overlay maintenance

and privacy-preserving routing between pairs of untrusted

nodes. The service utilizes the idea of node pseudonyms,

which serve the role of an anonymous address for the node.

A major building block in our design is a pseudonym-

based routing facility that is responsible for generating

pseudonyms. When the pseudonym of node A reaches a

node B not trusted by A, the facility allows B to commu-

nicate with A in a privacy-preserving fashion.

Our overlay maintenance service distributes pseudonyms

using a privacy-preserving gossiping protocol. Each node

only uses a carefully selected small subset of all received

pseudonyms so that the overlay has a limited fan-out and the

distribution of links approximates that of a random graph.

Finally, our service periodically renews pseudonyms in order

to further enhance privacy. This is implemented by a TTL-

style mechanism with expiration values carefully chosen so

as to provide better privacy without hurting the robustness

of the overlay under a typical churn.

We analyze the privacy protection that our service pro-

vides under a variety of threat scenarios. In particular, system

nodes may play the role of internal observers while providers

of a communication infrastructure (e.g., an ISP) may act as

external observers. Both types of observers may spy upon

the nodes in the system. Furthermore, internal observers may

collude in an attempt to collectively gain knowledge about

the identities and relations beyond the sum of knowledge that

is available to each of them. We conclude that our service

is not vulnerable to obvious attacks and is able to satisfy

our privacy requirements under several reasonable threat

models. Furthermore, using the service does not worsen

privacy protection compared to existing F2F systems that

only utilize links between trusted nodes.

We experimentally evaluate a number of aspects of our

service: (a) the characteristics of the resulting overlay, (b)

the overhead of overlay maintenance, and (c) the speed of

convergence towards a robust overlay. We also conduct a

sensitivity analysis wrt a number of settings affecting the

execution of different protocols within our service. The

evaluation is carried out using a number of different social

graphs sampled from the Facebook’s social graph. The

results show that our service efficiently generates robust

overlays while incurring acceptable overhead.

II. DEFINITIONS AND GOALS

Our main goal is to produce an overlay protocol that

facilitates robust privacy-preserving data dissemination for

a group of users that have trust relationships among them.

Our idea is that this overlay can serve as a substrate on top

of which high-level social applications such as micro-news,

mailing lists and group chat can be built. In this section we

attempt to present in precise terms what this problem entails.

A. System model

The system consists of a set U of nodes, each node

being managed by a unique user. We do not consider

direct communication channels between the nodes because

in order to allow for privacy-preserving data exchange, a

viable solution may have the nodes communicating through

available third-party services. Instead, we say that the nodes

are connected to the Internet, possibly intermittently as

detailed in Section II-D. Nondisclosure of the nodes in U
is one of the central privacy-preservation requirements, as

specified in Section II-C.

B. Trust graph

A group of users participating in a privacy-preserving

data-dissemination application can be modeled as a graph

where each vertex represents a node, and each edge repre-

sents a trust relationship (e.g., friendship) between a pair

of users. In the context of the problem we consider, trust

between two users a and b refers to the fact that a and b can

rely on each other not to violate the privacy of their mutual

identities or communication as detailed in Section II-C. In

practice, such a trust graph may correspond to existing large-

scale social graphs of users in a particular social network

such as Facebook, or community, such as the community of

patients with the same chronic disease.

235

Trust relationships in our system are symmetric, but not

transitive. That is, if a is b’s friend, then b is a’s friend; but

if a and b trust each other and b and c trust each other, that

does not imply that a and c trust each other. For simplicity,

we assume that the trust graph is connected. If it is not,

then the problem of privacy preserving dissemination would

apply to each of the connected subgraphs separately.

In practice, the trust graph may evolve over time due to

addition of new nodes as well as addition or removal of

trust relations. While addition of nodes or edges does not

raise privacy concerns, it is challenging to define meaningful

privacy requirements when trust is revoked and edges are

removed from the trust graph. In this paper we only consider

trust graphs that do not change over time, and leave the study

of mutable trust graphs as future work.

In the rest of the paper, we refer to a pair of nodes

controlled by users with a trust edge between them as trusted
nodes. For succinctness, we also say that such nodes trust

each other, or that they are trusted peers of each other.

C. Privacy

Our most important privacy requirement is to prevent the

disclosure of the list U of participating nodes and their

corresponding users. We assume that, initially, each node is

configured with the list of its trusted peers, and that the only

knowledge each node has about U is that its trusted peers

are part of U . Furthermore, we assume that no node will

intentionally disclose the participation of any of its trusted

peers in the system to any third party. We also assume that

no other entity has any knowledge about U when the system

starts.

The second privacy requirement is to guarantee nondis-

closure of the edges of the trust graph, which correspond

to relations between the users controlling the nodes. For

example, if a trusts b and c, a should not be able to establish

whether b and c trust each other.

Another important privacy requirement refers to the secu-

rity of the data disseminated within the overlay. For example,

disseminated data should be readable only by the members

of U . Since we focus on overlay maintenance in this work,

application-specific protocols for disseminating application

data are beyond the scope of this paper.

D. Failure model

We assume that the nodes can leave (e.g., voluntarily or

by crashing) and rejoin the system at any time. Nodes can

also get temporarily disconnected from the rest of the system

(e.g., due to a failed Internet connection).

When a node comes online for the first time, the only

information it possesses is the set of its adjacent nodes in

the trust graph. (This information is initially obtained by

the node through means of communication external to the

system.) When a node rejoins the system, it retains the state

data that it had prior to the failure or disconnection.

We assume that all the nodes follow the proposed com-

munication protocols correctly due to the shared incentive of

achieving privacy-preserving data dissemination. In particu-

lar, they do not actively try to disrupt the robustness of the

system. However, system nodes may play the role of internal

observers while providers of a communication infrastructure

(e.g., an ISP) may act as external observers. Both external

and internal observers may apply passive techniques such as

traffic analysis [3] with the purpose of gaining knowledge

about U . Furthermore, internal observers may collude in an

attempt to collectively gain knowledge about U beyond what

is available to both of them. We assume that the application

disseminating the data using overlay links encrypts the mes-

sages so that external observers cannot read their content.

E. Problem statement

The problem we need to solve is as follows: Given a set U
of nodes, and a trust graph that represents trust relationships

among the users controlling such nodes, find a protocol for

building and maintaining an overlay network that satisfies

three main properties:

• Privacy preserving overlay links: The links created

by the protocol should be privacy-preserving so that the

application disseminating the data over these links would

not be disclosing node identities or relations as defined in

Section II-C.

• Privacy preserving overlay maintenance: The protocol

for overlay maintenance should not be disclosing node

identities or relations as defined in Section II-C.

• Robustness: The overlay remains connected and has rel-

atively short path lengths in presence of realistic node churn.

More precisely, our main goal with regard to robustness is

to minimize the probability that the overlay gets partitioned

due to offline nodes. If partitioning does occur, we want to

minimize the number of online nodes that get disconnected

from the largest connected component of the overlay.

Observe that we cannot use a centralized node directory

service in our solution because the latter can be compro-

mised (consider data leaks from Facebook or other social

networking sites). The role of the trust graph in the problem

definition is that the mutual knowledge of the neighbors in

the trust graph is an appealing way of bootstrapping overlay

links between the nodes that would otherwise be unable to

learn of each other.

The immediate impediment on the way to solving the

problem is that a direct communication channel between

any pair of trusted nodes might be monitored by a passive

external observer (e.g., an ISP). A naive data exchange over

these channels may reveal both the identities of the nodes

and the fact that there is a trust relation between them. There-

fore, it is necessary to create an indirect communication

link that prevents observers from learning that the trusted

nodes are exchanging data in the context of our application.

236

Anonymity service Pseudonym service
Privacy-preserving link layer

Overlay-link
maintenance

Pseudonym creation
and removal

Pseudonym distribution
and sampling

Overlay layer

Application-specific data-dissemination protocols
Application layer

Figure 2: Architecture for privacy-preserving data dissemination

Fortunately, this particular challenge can be resolved by

existing anonymity systems [4].

However, establishing overlay links between trusted nodes

is not enough to make the overlay robust. As we show in our

experimental evaluation in Section V, in typical trust graphs,

a significant fraction of the online participating nodes may

get disconnected from the largest connected component of

the overlay even for moderate node churn. Furthermore,

we also show that path lengths in existing trust graphs are

substantially longer compared to random graphs of the same

size and average fan-out.

Hence, we also have to create overlay links between

untrusted nodes (i.e., not connected by an edge in the trust

graph). In this case, the link must not only protect against

external observers, but it must also prevent both nodes from

learning each other’s IDs. Creation and maintenance of such

links is the main focus of our work.

III. SOLUTION

A. Overview

Our solution for privacy-preserving data dissemination

leverages trust relationships among users and aims to im-

prove the robustness of a trust-based overlay by augmenting

it with additional links, such that the augmented graph has

properties more similar to those of random graphs. Random

graphs are known to exhibit good failure resilience and short

path lengths.

Figure 2 shows the general architecture of our approach.

The lowest-level layer of our architecture is a privacy-
preserving link layer consisting of an anonymity service and

a pseudonym service.

The anonymity service allows any node to create privacy-

preserving links to any destination whose ID is known.

Privacy-preserving links allow nodes to exchange mes-

sages such that external observers monitoring communi-

cation channels are unable to discover that either node

participates in the system. Application using our service

and sending messages through privacy-preserving links must

employ end-to-end encryption in order to prevent potential

observers from reading message content. The main use for

the anonymity service in our proposed solution is to establish

links between trusted nodes, which know each other’s IDs.

Each node n uses this service to establish links with its

adjacent nodes in the trust graph when n comes online.

Henceforward, we refer to the set of privacy-preserving links

built in this way as the trusted links of n.

Alongside the anonymity service, we also employ a

pseudonym service, which allows any node to create

pseudonyms and to establish privacy-preserving links to any

destination for which a pseudonym is known. We define a

pseudonym P (n) of a node n as an address that any other

node m can use in conjunction with the pseudonym service

to build a link to n such that n’s ID is not disclosed to m
and vice versa, and that the participation of both m and n
in the system remains undisclosed to external observers. We

use the pseudonym service in our solution to establish links

between nodes that do not trust each other and hence must

not be able to learn each other’s IDs. For any node n, we

refer to the set of privacy-preserving links established by n
using the pseudonym service as the pseudonym links of n.

The set of overlay links of a node n (denoted n.links)

is the union of its trusted links and pseudonym links. Note

that when a node rejoins the system after becoming offline

temporarily, it re-establishes the overlay links it had before

becoming offline. Similarly, overlay links to nodes that go

offline are not removed. Such links become operational

again when the corresponding nodes rejoin the system. In

essence, individual links in our system do not provide strong

reliability guarantees; it is the redundant connectivity due to

the collection of the links that makes the overlay robust.

The anonymity and pseudonym services can be deployed

on either participating nodes or a third-party infrastructure

with a higher availability. In Sections III-B we discuss how

these services can be realized.

The next layer in our architecture, which we call the over-
lay layer, is responsible for the creation and maintenance of

overlay links and for providing upper layers with methods to

use those links to implement data-dissemination protocols.

Maintaining trusted links is a straightforward operation.

Initially, every node knows the IDs of its neighbors in the

trust graph and can therefore use the anonymity service to

establish trusted links. On the other hand, nodes initially

have no knowledge about pseudonyms, and thus cannot

readily create pseudonym links. To solve this problem, the

overlay layer executes a maintenance protocol that takes care

of the creation and removal of pseudonyms, the distribution

of pseudonyms across the overlay, and the addition and

removal of pseudonym links such that the resulting overlay

resembles a random graph.

For pseudonym creation and removal we use a scheme

based on giving pseudonyms a limited lifetime. We describe

the scheme in Section III-C. We distribute pseudonyms

across the overlay using a gossiping algorithm. Each node

applies a sampling mechanism over the pseudonyms that are

distributed to the node in order to decide which pseudonym

links the node should have. We describe our protocol for

pseudonym distribution and sampling in Section III-D. In

Section III-E we discuss how our overlay maintenance

protocol preserves privacy under various threat models.

237

B. Anonymity and pseudonym services

The anonymity service can be realized using existing

solutions based on the concept of mix networks [5]. Mix

networks allow the implementation of privacy-preserving

links between two nodes by employing a set of relay nodes.

The sender node applies multiple layers of encryption to

the message and sends it to the first relay in the mix, each

relay removes one encryption layer and passes the message

to the next relay until it finally reaches the destination.

Alternatively, each relay may add an encryption layer, and

the destination can apply all the decryption operations. The

latter scheme is commonly used to send responses back to

the original sender in a data exchange.

In a mix network, no node knows its position in the chain,

so they cannot know if the previous node is the sender

or another relay, or if the next node is the destination or

another relay. It is also difficult for an external observer who

can monitor communication channels to associate the sender

with the receiver. A recent survey [4] describes in great detail

the state of the art in mix-based anonymity systems.

In practice, higher-level application requirements will

dictate the type of anonymity service to use, with a trade-

off between latency requirements and threat models for

external observers being a decisive factor. Some anonymity

services specialize in low-latency [6], [7] applications such

as chat or web browsing, at the cost of supporting weaker

threat models; while systems supporting stronger threat

models [8], are practical only for noninteractive higher-

latency applications such as email. The reason is that timing

analysis techniques [9] can be much more effective when

a message needs to move quickly through a mix network

in order to achieve low latency. High-latency systems, on

the other hand, can apply additional mechanisms to defend

against such techniques, such as introducing random delays.

Pseudonym services can generally be realized with the

help of an anonymity service. A few deployed anonymity

services have a stub for this extra functionality built in.

Examples are I2P’s “eepsites” [7] and Tor’s “hidden ser-

vices” [6], in which a node n wishing to be contacted

establishes a mix network, with the address of the last relay

acting as a pseudonym. A node wishing to contact n can

send a request to the last relay (i.e., the pseudonym) and

negotiate a separate mix for further communication.

Another possible way to realize a pseudonym service is

to use the anonymity service together with a third-party

distributed storage service (e.g., email or a DHT). In this

case, pseudonyms would be storage-service addresses (e.g.,

email addresses or DHT IDs). Under this approach, a sender

node m can send a message to a receiver node n by storing

data at the appropriate pseudonym address, and the receiver

n can obtain new messages by regularly polling the storage

service. Both n and m need to access the storage system

through the anonymity service in order to protect their IDs.

Existing anonymity services are known to provide high

availability [6]. When considering the overlay robustness,

we assume that a link established by these services always

remains operational provided that both nodes are online.

C. Pseudonym creation and lifetime

Every node creates a pseudonym to represent itself when

it starts. Pseudonyms always have a limited lifetime, so

that whenever a pseudonym expires all pseudonym links

involving the expired pseudonym are removed from the

overlay. Therefore, every node must periodically create a

new pseudonym.

The pseudonym service guarantees that the pseudonym

of a node remains valid even if the node goes offline and

comes back, provided that the pseudonym has not expired.

We believe that having ephemeral pseudonyms can help

improve the privacy of our system against certain types of

external observers. Intuitively, an observer who can monitor

traffic corresponding to a single pseudonym link will gather

only a limited amount of data for traffic analysis. In order

to gather data corresponding to a specific node for a long

time, the observer will need to be able to monitor many more

communication channels. Moreover, even if the observer is

powerful enough to monitor all required channels, its traffic-

analysis problems might be more difficult to solve, as it will

be necessary to detect that messages flowing through various

pseudonym links at various points in time correspond to the

same node.

Ephemeral pseudonyms can also make it easier to defend

against replay attacks, where the same message is sent

repeatedly to a pseudonym in order to, for example, discover

repetition patterns at the end of the mix network used for

implementing the link. A common technique that mix relays

can apply to prevent replay attacks is to remember hashes

of all messages that have been relayed to each pseudonym,

and drop repeated messages. If pseudonyms expire, then the

space requirements for the effective implementation of this

defense become bounded for each pseudonym.

Ephemeral pseudonyms can also improve the quality of

the overlay in the case when a node goes offline permanently

or for a long time. In this case, all pseudonym links involving

the offline node will eventually be removed after the corre-

sponding pseudonyms expire. In our experimental evaluation

in Section V, we analyze the effect of the pseudonym

lifetime on the quality of the overlay.

Pseudonym lifetime is an important system parameter and

it must be set such that it is longer than the time nodes

are expected to be offline before rejoining the system. For

example, in an application where nodes are expected to be

offline for 8 hours before rejoining the overlay, it would be

reasonable to have pseudonym lifetimes of, for example, 24

hours. The reason is that when a node rejoins the system,

it is important that it has some valid pseudonym links in

addition to its trusted links. If all the pseudonym links of a

238

node have expired by the time it rejoins the system, its only

valid links will be the trusted links. Hence, the overlay will

behave more like the trust graph than like a random graph.

Note that the time a node remains online, while important

for the general quality of the overlay, is not important for

determining the appropriate value for pseudonym lifetime.

In our experimental evaluation in Section IV we study

the effect of the ratio between pseudonym lifetime and

the average time nodes spend offline before rejoining the

system. The higher this ratio the more the overlay resembles

a random graph. This ratio also introduces a trade-off be-

tween good data-dissemination properties and better privacy

properties under certain threat models.

In this paper we consider pseudonym lifetime a global

system parameter with the same value for all nodes. How-

ever, it might be better to let each node adapt the lifetime

of its pseudonyms based on the availability characteristics

of the other participating nodes.

D. Pseudonym distribution and sampling

Our protocol for pseudonym distribution and sampling

is based on gossiping algorithms, using ideas from shuf-

fling [10], [11] and membership-sampling [12] proto-

cols. The basic idea is that nodes periodically exchange

pseudonyms through their overlay links, and apply a sam-

pling mechanism to the pseudonyms they receive in gossip

exchanges in order to select candidates for pseudonym-link

creation.

1) Shuffling protocol: Each node n maintains a

pseudonym cache of a configurable size. The cache is empty

when the system starts.

Periodically, n selects a link from n.links uniformly at

random and executes a shuffling protocol with the node m
at the other end of the link. Each of the two nodes sends an

encrypted message containing a set of up to � pseudonyms

to the other, � being also configurable. The set includes one

node’s own pseudonym and up to �−1 pseudonyms from the

node’s cache. Upon receiving a set over the link, the node

updates its own cache to include all entries in the received set

(with the exception of its own pseudonym, if present). The

cache replacement policy is similar to that employed in [11].

Additionally, all pseudonyms in the received set, whether

already in the cache or not, are sampled as we describe

next.

2) Pseudonym sampling: A node does not need to have

an overlay link to all of the pseudonyms in its cache. In

our solution, each node establishes pseudonym links with a

carefully selected sample of the pseudonyms received by

the shuffling protocol. The maximum allowed number S
of per-node pseudonym links governs the balance between

potentially higher overhead and better overlay robustness. In

our solution, S varies across the nodes so that all nodes will

have a similar number of overlays links including trusted

links. In particular, nodes that are very well connected in

the trust graph (i.e., hubs) do not need the extra random

links to ensure connectivity under churn.

The goal is to select a pseudonym sample in such a

way that the resulting overlay is similar to a random graph.

Our sampling protocol satisfies this requirement under the

assumption that each pseudonym is a random p-bit sequence.

In practice, if pseudonyms cannot be represented as ran-

dom bit sequences, a similar effect can be achieved by

adding some random bits to the original representation of

a pseudonym and then applying a cryptographically strong

hash function.

Each node n keeps its sampled pseudonyms in a list n.L
with S slots. Each slot contains a pair (P,R) where P is

either a sampled pseudonym or an empty value, and R is a

reference value. When n starts, it computes S random p-bit

sequences and assigns each sequence to be a reference value

for one of the slots in the list. The reference values are never

removed or changed afterwards. We say that a slot (P,R)
where P is empty is an empty slot. All slots are empty when

the system starts. Pseudonyms are automatically removed

from n.L when they expire, and their corresponding slots

become empty. Note that if n goes offline, the state of n.L
when n rejoins the system is the same as before n became

offline, except for any pseudonyms in n.L which might have

expired during the offline period and are therefore removed.

Whenever a node n receives a pseudonym P ′ as a result

of the execution of the shuffling protocol, n traverses n.L
and, for each entry (P,R), it replaces P with P ′ if (1) the

slot (P,R) is empty, or (2) P ′ is numerically closer to R
than P is, or (3) P ′ is numerically as close to R as P is, but

P ′’s expiration time is later than P ’s. After traversing n.L,

n updates n.links to include only pseudonyms appearing in

at least one slot of n.L.

The main advantage of this sampling method, which

is based on the Brahms protocol [12], is that the set of

pseudonym links for a node n will always be a random

sample of all the pseudonyms n has received by means

of the shuffling protocol, regardless of how frequently any

pseudonym is received.

E. Privacy preservation

In this section, we analyze the privacy protection our

protocol provides under various threat scenarios involving

both participating nodes (e.g., internal observers) and exter-

nal observers. We assume each participating node is able to

observe only the traffic arriving at it even though the nodes

can collude.

The analysis shows that our system is not vulnerable to

obvious attacks and is able to satisfy our privacy require-

ments under several reasonable threat models. Furthermore,

we believe that using our system is not worse in terms of

privacy protection than using an overlay that uses only links

between trusted nodes, and that successfully compromising

239

privacy would require a powerful adversary able to subvert

the underlying anonymity and pseudonym services.

1) Single internal observer: A single node n which is not

a cut vertex in the trust graph has very limited capability to

derive meaningful information about the trust graph with

certainty better than a random guess. In particular, n cannot

determine the ID of any participating node, as IDs are never

propagated. Similarly, n does not have enough information

to discover any nonincident edge in the trust graph, including

edges between nodes adjacent to n in the trust graph.

2) Multiple colluding internal observers: A set of col-

luding nodes that do not form a vertex cut in the trust

graph and that do not represent a large majority of the

set of participating nodes also have limited capability to

derive meaningful information about the trust graph. As in

the case of a single internal observer, these nodes cannot

determine the ID of any other participating node other than

their neighbors in the trust graph.

Such a set of nodes can use timing analysis to detect

the presence of an overlay link between any pair of their

adjacent nodes, but it would be difficult to determine if the

overlay link is a trusted link. Suppose observer nodes n and

o are adjacent to a and b, respectively. Then n can produce

a pseudonym P and send it only to a. If a gossips P to b in

the next gossip round and b gossips P to o in the next round

as well, then n and o can reasonably assume that an overlay

link exists between a and b. Such a sequence of events, while

possible, is unlikely to occur. It would be necessary that a
chooses to propagate P quickly among all the pseudonyms

in its cache, and that it chooses to propagate it to b. Then b
has to do the same. The attack becomes easier as the number

of colluding nodes connected to b (but not connected to a)

grows, since the probability that b will choose a colluding

node becomes higher. Determining whether the detected link

is trusted or not is difficult, as it would require repeated

successful execution of the attack over a long time, which

is highly unlikely to occur.

3) Set of internal observers that are a vertex cut in the
trust graph: When a set of colluding internal observers

forms a vertex cut in the trust graph, then it has the

possibility to control the flow of pseudonyms from one part

of the graph to the other. If this set maliciously deviates

from the protocol and sends only pseudonyms created by the

set, then it can detect the existence of overlay links between

adjacent nodes using the timing-analysis technique described

in the previous section. Again, it is not possible to know if

a and b have an edge in the trust graph, but they know that

the trust path between a and b includes only nodes from

their part of the graph, which may increase the likelihood

that the link is trusted. In particular, if a and b are the only

nodes in that part of the graph, then the malicious set can

know for sure that there is a trust edge between a and b.
4) Estimating the size of the overlay: If the number of

nodes in the system is small, then all nodes will eventually

see all pseudonyms in the system before they expire, which

allows nodes to estimate the number of participating nodes.

This, however, does not violate our privacy requirements.

5) External observers: A full analysis of the resistance

of our system against external observers is out of the

scope of this paper, as it depends on the specific char-

acteristics of the anonymity and pseudonym services em-

ployed. However, we can reasonably state that our protocol

does not have any particular characteristic that makes it

more vulnerable against external observers than, for ex-

ample, using an overlay with only trust links running an

application-level data-dissemination protocol. In particular,

our pseudonym distribution protocol does not depend on

very low latencies, as it is not an interactive application.

For example, for a pseudonym lifetime of a few hours,

pseudonym propagation times in the order of minutes are

more than acceptable, which gives the opportunity to apply

many effective anonymity techniques. In addition, we apply

techniques such as ephemeral pseudonyms and end-to-end

encryption, which make it harder for external observers to

successfully perpetrate certain attacks. We believe that most

constraints for the anonymity service will come from addi-

tional application-level requirements, than from our overlay

maintenance protocol.

6) External observer colluding with a participating node:
We can reasonably argue that controlling a participating

node that only acts as an internal observer gives no strong

benefit to an external observer. The reason is that, due

to the use of multiple encryption layers, it is exceedingly

difficult to associate a known message sent by a participating

(colluding) node with any message circulating over a mix

network, just by looking at the content of the message.

Unless the colluding participating node is allowed to deviate

from the protocol, timing analysis by the external observer

does not benefit from colluding with a participating node.

If the colluding node does deviate from the protocol

by producing anomalous messages or messages which are

timed anomalously, the external observer might gain some

advantage for traffic analysis, although the scheme that the

adversary should use does not look obvious. Furthermore,

it seems that any advantage an adversary gains by having

an internal colluder in our protocol is not greater than the

advantage gained by having an internal colluder with other

protocols using the same anonymity service, including an

overlay based exclusively on trust links running application-

level data dissemination protocols.

IV. EXPERIMENTAL SETTINGS

In this section, we present the settings we used for evalu-

ating our system. We implemented our protocols in a custom

event-based simulation environment. Our inputs are based on

a real-world social graph sampled from the Facebook social

networking site, and synthetic churn models.

240

In our setup, we assume the existence of ideal anonymity

and pseudonym services which allow the creation of privacy-

preserving links that are reliable and have both low latency

and high bandwidth. This means that all messages sent

through an overlay link are delivered in a short time,

provided that both ends of the link are online.

In all cases we use the shuffling period as our time unit.

The reason is that all important interactions in our system

depend on this period. Note, however, that our simulations

are not based on rounds, but on events, which can occur at

any time within the duration of a single shuffling period.

A. Trust graphs

We believe that social graphs from real-world social-

networking sites such as Facebook provide a good repre-

sentation of trust among users. In our evaluation we use a

graph obtained by Wilson et al. [13] by crawling Facebook.

This graph has about 3 million nodes and 28 million edges,

and its degree distribution follows a power law.

Our system is intended for privacy-preserving applications

in which the number of users is not likely to be as large as

3 million, thus in our evaluation we use smaller trust graphs

sampled from the crawled Facebook graph.

Our sampling mechanism starts at a random node and

adds additional nodes by traversing the graph following

(some of) the contacts of each node until reaching a pre-

established number of nodes. The edges of the sampled trust

graph are all the edges among the selected nodes in the

original Facebook graph. This method mimics an invitation

model for participating in the group, which is common in

real-world applications where privacy is a concern.

Our sampling method has a parameter f , which controls

the number of neighbors in the Facebook graph to add to the

sample when visiting each node during graph traversal. More

specifically, when we visit a node n during the traversal, we

add to the sample max (1, f × |δ(n)|) random neighbors of

n which have not yet been visited. These newly added nodes

are in turn visited in a breadth-first manner. |δ(n)| is the

degree of node n. Note that using f = 1 is the same as a

full breadth-first traversal, equivalent to users persuading all

their friends to join the group; using f = 0 is equivalent

to a depth-first traversal, roughly equivalent to each node

inviting one friend; and 0 < f < 1 is a partial breadth-first

traversal, equivalent to users inviting some of their friends.

We evaluated our sampling method for several values of

f and found that, for a given value of f , it produces similar

graphs even if the graph traversal starts from different nodes.

We also found that the variation between sampled graphs is

lower for smaller values of f .

B. Churn Model

We model churn in our system using a scheme proposed

by Yao et al. in [14]. This model describes the behavior

of a node that alternates between online and offline states

Parameter Default
Number of nodes in trust graph 1000
Trust-graph sampling parameter (f) 0.5
Mean offline time in shuffling periods (Toff) 30 sp
Pseudonym lifetime 3× Toff
Size of pseudonym cache 400
Number of pseudonyms exchanged during a shuffle (�) 40
Target number of overlay links per node 50

Table I: Default values for system parameters

using a separate probability distribution for the time spent

in each state. Yao et al. consider exponential and Pareto

distributions as good candidates for individual online/offline

time distributions. In this paper, we use only exponential

distributions, which have a single parameter that represents

the distribution’s mean. Hence, in our model, each node has

two parameters: mean online time and mean offline time.
For each experiment reported in this paper we give all

nodes the same average availability by giving the same

parameters for mean online time and mean offline time

to the corresponding exponential distributions that model

individual node behavior. We define the average availability

of a node as α = Ton/ (Ton + Toff) where Ton is the mean

online time, and Toff is the mean offline time.

C. Performance metrics
We measure the robustness of our overlay by looking at

its connectivity, average path length, and degree distribu-

tion. Since all communication through overlay links can be

bidirectional, we use undirected-graph metrics.
To evaluate connectivity, we measure the fraction of nodes

that are not part of the largest connected component of the

overlay. If the overlay is connected, then this fraction is zero.

Our goal is to keep this fraction as low as possible.
We use a normalized path-length metric, which we define

as the average path length in the largest connected compo-

nent of the graph (considering only online nodes), divided by

the number of nodes in that component and multiplied by

the total number of nodes in the graph (including offline

nodes). This metric prevents the reporting of misleading

short average path lengths in heavily partitioned graphs

where the largest component may be small.
We also evaluate the degree distribution taking into ac-

count only online nodes. This metric helps understand the

topology of the graph and can reveal weaknesses of the

overlay, such as a large number of nodes with low degree.
Other performance metrics that we use are the time it

takes the system to converge to a highly connected overlay

under churn, and the overhead of the overlay over time in

terms of the number of overlay links that need to be replaced

on each shuffling period either due to pseudonym expiration

or the sampling of better pseudonyms.

D. Default system settings
In this section we discuss the default settings we used in

our simulation experiments, which we summarize in Table I.

241

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 d
is

co
nn

ec
te

d
no

de
s

Trust graph f = 1.0
Overlay

Random graph

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 d
is

co
nn

ec
te

d
no

de
s

Availability (fraction of time alive)

Trust graph f = 0.5
Overlay

Random graph

Figure 3: Connectivity for different trust
graphs

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 a
vg

. p
at

h
le

ng
th Trust graph f = 1.0

Overlay
Random graph

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 a
vg

. p
at

h
le

ng
th

Availability (fraction of time alive)

Trust graph f = 0.5
Overlay

Random graph

Figure 4: Normalized average path
length for different trust graphs

 1

 10

 100

 0 20 40 60 80 100 120 140

N
um

be
r

of
 n

od
es

Trust graph f = 1.0
Overlay

Random graph

 1

 10

 100

 0 20 40 60 80 100 120 140

N
um

be
r

of
 n

od
es

Degree

Trust graph f = 0.5
Overlay

Random graph

Figure 5: Degree distribution for differ-
ent trust graphs, α = 0.5

We used trust graphs of size 1000. We also experimented

with other sizes, but we observed that, for a given value

of the graph-sampling parameter f , graph properties do not

change significantly. We present results for trust graphs sam-

pled with different f values, but in experiments where we

study the effect of other parameters our default configuration

is to use f = 0.5.

We do not have a default churn setting, as in most of our

analyses we study multiple availability scenarios. However,

in all cases we assume a mean offline time Toff equivalent to

30 shuffling periods, and we adjust the mean online time Ton

to obtain the availability setting that we want to evaluate.

The default value we use for pseudonym lifetime is 90

shuffling periods, which is equivalent to 3 times the value

we use for Toff. In our evaluation we study the sensitivity

of the system to the pseudonym lifetime. However, since

the impact of this parameter greatly depends on the mean

offline time of nodes, we prefer to use the ratio r between

pseudonym lifetime and the mean offline time.

With regards to parameters for pseudonym distribution, in

all cases we use a cache size of 400 and have nodes send

up to � = 40 pseudonyms on each shuffle exchange. With

respect to pseudonym sampling, we use a target number of

overlay links per node of 50. This means that each nodes

tries to establish overlay links with up to 50 peers. The actual

degree of any node n may be higher than 50 due to links to

n established by other peers. The degree can also be higher

than the target if n has a large number of trusted links.

V. EXPERIMENTAL RESULTS

In this section we present the results of our experimental

evaluation. We studied our system in two main scenarios

under churn: i) with different trust graphs, and ii) with

various pseudonym lifetimes. We have analyzed our system

in other scenarios, but, due to space limitations, we report

here only the most relevant results.

In all experiments we used the settings presented in

Section IV-D unless otherwise stated. Our results show the

state of the system after the reported metrics have reached

stable values. The only exception is when we report how

metrics evolve over time.

Our results show that our system is able to produce

robust overlays under many demanding churn conditions.

Robustness is achieved quickly even when the overlay needs

to be reconfigured constantly due to pseudonym expiration.

A. Behaviour with different trust graphs

Our first set of experiments evaluates how our system

behaves under different trust graphs. We sampled two 1000-

node trust graphs from the Facebook graph, using the values

1 and 0.5 for the sampling parameter f , and evaluated the

system for various values of average node availability α. For

f = 1 the sampled graph has 5649 edges, and for f = 0.5
the number of edges is 3277.

Figure 3 shows that, as average node availability de-

creases, both trust graphs start to exhibit serious connectivity

problems, whereas the overlay exhibits high connectivity for

availability values as low as 0.25. For f = 1.0, our overlay

exhibits good connectivity even for α = 0.125. In this case

the higher number of trust links with respect to the case in

which f = 0.5 helps achieve good connectivity even in such

a demanding churn scenario.

We can see in Figure 4 that the normalized average path

length of our overlay is significantly lower than that of the

trust graph, and closely matches a reference random Erdös-

Rényi graph of similar size for all availability values.

242

 1

 10

 100

 1000

 1 10 100 1000
 1

 2

 4

 8

(O
ut

-)
 d

eg
re

e

A
vg

. m
es

sa
ge

s
se

nt

 p
er

 s
hu

ffl
e

pe
rio

d

Rank

Max. out-degree in overlay
Degree in trust graph f = 1.0

Messages

 1

 10

 100

 1000

 1 10 100 1000
 1

 2

 4

 8

(O
ut

-)
 d

eg
re

e

A
vg

. m
es

sa
ge

s
se

nt

 p
er

 s
hu

ffl
e

pe
rio

d
Rank

Max. out-degree in overlay
Degree in trust graph f = 0.5

Messages

Figure 6: Average number of messages sent per shuffle period by
each node for α = 0.5 and two different values of the sampling
parameter f . Nodes are ranked according to their degree in the
trust graph. The figure also shows the maximum out-degree of the
overlay for each node.

Figure 5 shows the degree distribution for α = 0.5. The

addition of pseudonym links shifts the degree distribution of

the trust graph to the right. While it is clear that the overlay

is close to the random graph, its degree distribution is not

as concentrated around the average due to the presence of

trust links, which have a skewed distribution.

Finally, Figure 6 shows the average number of messages

sent per shuffle period by each node during the time the

node was online. The figure also shows the maximum out-

degree of each node in the overlay. Note that actual out-

degree of a node can vary over time due to expiration of its

pseudonym links. At each shuffle period, each node sends

a shuffle request to one its neighbors in the overlay and it

replies to shuffle requests that it receives from other nodes.

The average number of messages sent per shuffle period

per node across the whole overlay is 2: one message for

a shuffle request generated by each node, and one message

for the corresponding response. However, response messages

are not necessarily equally distributed across all nodes. As

the figure shows, nodes with more overlay neighbors send

more messages per shuffle period than nodes with fewer

neighbors. The reason is that such nodes have a higher

probability of receiving shuffle requests because they are

referenced by more peers in the overlay and, therefore, have

to send more responses. In the case of nodes with the same

maximum out-degree in the overlay, nodes with more trusted

peers receive, on average, a slightly higher number of shuffle

requests because they have fewer pseudonym links, which

can be removed due to pseudonym expiration.

B. Effect of pseudonym lifetime

In this set of experiments we aim to ascertain the effect

of pseudonym lifetime on the connectivity of the overlay

for various availability values. As discussed earlier, lower

pseudonym lifetimes might be better from a privacy perspec-

tive but higher pseudonym lifetimes are better for robustness.

In these experiments we vary the ratio r of pseudonym

lifetime and mean offline time. We use the values 1,3,9 and

infinite, which represents pseudonyms that do not expire.

Figure 7 shows that, as expected, higher pseudonym

lifetimes result in more robust graphs. For r = 9 or infinite,

the overlay closely resembles the random graph. For r = 3,

connectivity degrades significantly for α = 0.125, and for

r = 1, significant degradation is observed for α = 0.25.

Having r = 1 results in a graph with poor connectivity as

most pseudonym links for nodes that go offline expire before

they rejoin. This result in behavior that tends to resemble the

trust graph more than a random graph.

Figure 8 shows how the connectivity of the overlay

evolves over time for α = 0.25. It can be seen that for

r values of 3 and 9, the overlay significantly improves its

connectivity after a few shuffling periods and stabilizes at

(nearly) full connectivity after little more than 200 shuffling

periods. The trust graph, on the other hand, has a semi-

stable fraction of around 70% of disconnected nodes over

the whole experiment.

Figure 9 shows the average number of links that are

replaced per shuffling period on the set of pseudonym links

of each node. These replacements can occur either due to

pseudonym expiration or due to the sampling of pseudonyms

that improve the randomness of the overlay. The figure

shows that, if pseudonyms do not expire, nodes quickly

find the best overlay links do not need to make any further

changes. In this case, nodes could easily stop executing the

shuffling protocol after detecting the stabilization. For r = 3
we see that the frequent pseudonym expiration makes nodes

replace pseudonym links at a rate of around 9 links per

shuffling period. In the case of r = 9 we see an oscillatory

behavior during the starting phase of the experiments. This is

caused by the fact that all the nodes that are online when the

experiment starts create their pseudonyms at the same time.

When all these pseudonyms expire, nodes need to replace all

the expired links with new links. The oscillations disappear

once nodes go offline and rejoin at random points in time.

Since pseudonym lifetime is higher than for r = 3, the

number of link replacements per shuffling cycle is lower

and stabilizes around a rate of 4 links per shuffling period.

VI. RELATED WORK

The most common approach for building decentralized

privacy-preserving communication overlays is to use F2F

networks in which the overlay includes only links between

nodes who trust each other. Some examples of this approach

are Turtle [15], and Freenet’s so-called darknet mode [2].

These systems normally focus on providing facilities for file

sharing. As we have shown, overlays built with this approach

do not provide optimal properties for data dissemination.

243

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 d
is

co
nn

ec
te

d
no

de
s

Availability (fraction of time alive)

Trust graph
r = 1
r = 3
r = 9

r = Infinite
Random graph

Figure 7: Connectivity for different
pseudonym lifetimes

 0

 0.2

 0.4

 0.6

 0.8

 0 200 400 600 800 1000

F
ra

ct
io

n
of

 d
is

co
nn

ec
te

d
no

de
s

Time (shuffle periods)

Trust graph
Overlay r = 3
Overlay r = 9

Figure 8: Connectivity over time for
α = 0.25

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 li

nk
s

re
pl

ac
ed

 p
er

 n
od

e
pe

r
sh

uf
fle

 p
er

io
d

Time (shuffle periods)

r = 3
r = 9

r = Infinite

Figure 9: Number of links replaced per
node per shuffle period for α = 0.25

Another approach for enabling privacy-preserving decen-

tralized group communication is to use social relationships

to control who is able to participate in the group, but do not

take such relationships into account for building the com-

munication overlay. One example of this is Whisper [16],

which allows building private invitation-only groups using

random overlays that have privacy-preserving links based

on mix networks. However, Whisper’s privacy model is

limited to preventing members of one group from learning

the identities of members of other groups. No attempt is

made to protect the identity of members within a single

group. Another example is Membership-Concealing Overlay

Networks (MCONs) [17]. As in Whisper, membership in a

MCON is by invitation, but their primary goal is to protect

the identity of users even from other participants. Their

approach is to organize nodes in a DHT, such that each node

is connected to a limited number of other participants. This

helps prevent “celebrity” attacks, in which compromising a

hub in the social graph allows the attacker to gain significant

information about the whole system. However, the degree

limitation in MCONs is achieved with the help of a trusted

online central authority, which might also be compromised.

Our approach of building a robust overlay is similar in

goal to the approach of building overlays that are guaranteed

to be expander graphs [18]. However, it is not clear how to

use such an approach in our privacy preserving context.

VII. CONCLUSION

In this paper we have presented a service for maintaining

an overlay for privacy-preserving data dissemination for a

group of users connected by trust-based social relationships.

Our system leverages trust relationships among users to

bootstrap a communication overlay, whose robustness is then

improved with the addition of extra privacy-preserving links

that make the overlay resemble a random graph. We evalu-

ated our system experimentally using trust graphs sampled

from Facebook’s social graph and found that our system

produces robust overlays and provides fast convergence

while incurring acceptable overhead.

VIII. ACKNOWLEDGEMENTS

The work reported in this article was supported by the

Tidal News project. Also, we thank Hein Meling for his

helpful comments concerning this article.

REFERENCES

[1] A. Shakimov, H. Lim, R. Caceres, L. Cox, K. Li, D. Liu, and
A. Varshavsky, “Vis-à-vis: Privacy-preserving online social
networking via virtual individual servers,” in COMSNETS,
2011.

[2] I. Clarke, O. Sandberg, M. Toseland, and V. Verendel, “Private
communication through a network of trusted connections: The
dark freenet.”

[3] J.-F. Raymond, “Traffic analysis: protocols, attacks, design
issues, and open problems,” in PET Workshop, 2001.

[4] G. Danezis and C. Diaz, “A survey of anonymous communi-
cation channels,” Microsoft Research, Tech. Rep., 2008.

[5] D. L. Chaum, “Untraceable electronic mail, return addresses,
and digital pseudonyms,” CACM, vol. 24, 1981.

[6] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the
second-generation onion router,” in SSYM, 2004.

[7] B. Zantout and R. Haraty, “I2p data communication system,”
in ICN, 2011.

[8] G. Danezis, R. Dingledine, D. Hopwood, and N. Mathewson,
“Mixminion: Design of a type iii anonymous remailer proto-
col,” in IEEE Symposium on Security and Privacy, 2003.

[9] V. Shmatikov and M. Wang, “Timing analysis in low-latency
mix networks: attacks and defenses,” in ESORICS, 2006.

[10] A. Stavrou, D. Rubenstein, and S. Sahu, “A lightweight,
robust p2p system to handle flash crowds,” in ICNP, 2002.

[11] S. Voulgaris, D. Gavidia, and M. Steen, “CYCLON: Inexpen-
sive membership management for unstructured P2P overlays,”
JNSM, vol. 13, no. 2, 2005.

[12] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer,
“Brahms: Byzantine resilient random membership sampling,”
Computer Networks, vol. 53, no. 13, 2009.

[13] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao,
“User interactions in social networks and their implications,”
in EuroSys, 2009.

[14] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling
heterogeneous user churn and local resilience of unstructured
p2p networks,” in ICNP, 2006.

[15] B. Popescu, B. Crispo, and A. Tanenbaum, “Safe and private
data sharing with turtle: Friends team-up and beat the system,”
in Security Protocols, ser. LNCS, 2006, vol. 3957.

[16] V. Schiavoni, E. Riviere, and P. Felber, “Whisper: Middleware
for confidential communication in large-scale networks,” in
ICDCS, 2011.

[17] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and Y. Kim,
“Membership-concealing overlay networks,” in CCS, 2009.

[18] M. Naor and U. Wieder, “Novel architectures for p2p ap-
plications: The continuous-discrete approach,” ACM Trans.
Algorithms, vol. 3, no. 3, Aug. 2007.

244

