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Abstract. Robotic swarms offer flexibility, robustness, and scalability. For suc-
cessful operation they need appropriate communication strategies that should be
dynamically adaptable to possibly changing environmental requirements. In this
paper we try to achieve this through evolving communication on-the-fly. As a
test case we use a scenario where robots need to cooperate to gather energy
and the necessity to cooperate is scalable. We implement an evolutionary al-
gorithm that works during the actual operation of the robots (on-line), where
evolutionary operators are performed by the robots themselves (on-board) and
robots exchange genomes with other robots for reproduction (distributed). We
perform experiments with different cooperation pressures and observe that com-
munication strategies can be successfully adapted to the particular demands of the
environment.
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1 Introduction

Swarm robotics has emerged in recent years as an important field of research. Drawing
inspiration from the behavior of social insects, the main idea behind swarm robotics is
that a group of simple robots, by means of cooperation, are able to perform tasks beyond
the capabilities of a single individual. The motivations for this approach are increased
robustness, flexibility, and scalability [5].

For robotic swarms to be successful, a key component is the development of appro-
priate communication strategies, particularly due to the requirement that robots operate
in a decentralized manner. Furthermore, robotic swarms are expected to operate in dy-
namic environments for which a high degree of flexibility and adaptation is required.
Thus, instead of using fixed communication policies, it is better to equip robots with the
ability to adapt their communication strategies to environmental requirements.

A promising way to achieve this is through the use of an evolutionary robotics (ER)
approach, i.e., using evolutionary algorithms to evolve the robots’ controllers [12]. ER
techniques have been applied to diverse problems such as gait control for legged robots
[16], and navigation for aerial vehicles [2]. The taxonomy offered by Eiben et al. clas-
sifies ER techniques according to when evolution happens (off-line vs. on-line), where
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it takes place (on-board vs. off-board), and how it happens (encapsulated/centralized,
distributed, or a hybrid of these two) [7]. The huge majority of work in ER is based on
off-line, off-board evolution, assuming the presence of an omniscient master.

In this work we study the evolution of communication in robotic swarms using on-
line, on-board, and distributed evolutionary algorithms. This means that evolution takes
place during the actual operation of the robots (on-line), evolutionary operators are per-
formed exclusively inside each robot (on-board), and robots exchange genomes with
other robots instead of maintaining purely local pools of genomes (distributed). In par-
ticular, the evolutionary algorithm (EA) used in this work, Hybrid EvAg, is a hybrid
between a purely distributed evolutionary algorithm and a purely local one [10]. In Hy-
brid EvAg, each robot maintains both a local pool of genomes and a cache of robot
neighbors for periodical exchange of genomes.

We study a group of robots that require cooperation to gather energy sources ran-
domly distributed in a rectangular arena. Our experiments draw ideas from the work of
Buzing et al. [4], the main one being that communication arises as a means to facilitate
cooperation, and thus no fitness is explicitly given to robots for communicating. We
study the effect of different cooperation pressures in the communication preferences
evolved and, as in [4], we draw a distinction between talking and listening behaviors.

2 Related Work

Many authors have used computer simulations to study the environmental and evolu-
tionary conditions conducive to communication. According to Perfors [14], work in
this area can be divided in two categories: the evolution of syntax [3,17,15] and the
evolution of communication and coordination [13,4,9].

One key difference between this and other existing work is that we do not intend to
establish conclusions about the emergence of communication as an evolutionary con-
struct. Our question is more practical: can we use on-line, on-board, distributed EAs as
a tool to allow robotic swarms to develop appropriate communication strategies on their
own? While several previous works have studied solutions to the problem of evolving
appropriate communication strategies for swarms of robots (e.g., [1,9,11,6]), to the best
of our knowledge, no on-line, on-board solutions have been proposed. Nevertheless, the
work of Buzing et al. [4] and Floreano et al. [9] are particularly relevant to our research.
Our experimental setting, as well as the idea of varying degrees of environmental pres-
sure, is directly based on [4]. On the other hand, our neural network-based controllers
are similar to those used in [9]. A comparison between the present work, [4], and [9] is
shown in Table 1, and a more detailed description of their work is discussed next.

Buzing et al. [4] studied the evolution of communication within what they named
the VUSCAPE model. This model, based on SUGARSCAPE [8], consists of a discrete
landscape in which sugar seeds are periodically redistributed and agents need to collect
them in order to survive. In addition, pressure towards cooperation is introduced in
the form of a limit to the amount of sugar agents can collect on their own. In order to
facilitate cooperation, agents have a hard-wired ability to communicate (using messages
with fixed syntax and semantics), but their attitude towards using communication is not
fixed and evolves over time. The authors used this model to study how communication
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Table 1. Comparison between Buzing et al.[4] , Floreano et al.[9], and the present work

Buzing et al. [4] Floreano et al. [9] This work
Dynamic Environment YES (energy redis-

tributed)
NO YES (energy redis-

tributed)
Hard-wired semantics YES NO YES
Varying cooperation
pressure

YES NO YES

Means of communica-
tion

Message board. Mes-
sages only travel paral-
lel to the axes

Emitting blue light Broadcasting within a
certain circular range

2 agents on 1 location YES NO NO
Agents die YES NO NO
Controller Rule set Neural network Neural network
Actions 2 behavior macros: go

to largest sugar seed
or random move. Talk
/ Listen with a certain
probability

Spin left/right wheel.
Turn on/off blue light

3 behavior macros: ran-
dom move, avoid ob-
stacle, go to largest en-
ergy source. Talk / Lis-
ten with a probability

Fitness function Environmental fitness
based on energy

Number of cycles step-
ping on the energy
source minus number
of cycles stepping on
the poison source

Energy gained

On-line YES NO YES
On-board YES NO YES
Distributed YES NO YES
Selection No parent selection.

Agents mate when at
the same location. En-
vironmental survivor
selection (agents that
run out of sugar die)

Individual and colony-
level

Global parent selec-
tion, local survivor se-
lection

evolves under different levels of cooperation pressure, and concluded that higher levels
of cooperation pressure translate into increased attitudes towards communication.

On the other hand, Floreano et al. [9] studied the evolutionary conditions that fa-
cilitate the emergence of communication. Their setting investigated colonies of robots
that could forage in an environment with food and poison sources (one of each), and
in which robots could use a blue light to (possibly) signal about the location of the
food/poison sources. In contrast to Buzing et al., the semantics of the messages were
not hard-wired into the system, and they found that different communication strategies
evolved depending on the kin structure and selection level of the population (individual-
versus colony-level).
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3 Problem Description

The test scenario proposed is directly based on the VUSCAPE model developed by
Buzing et al. [4]. Our scenario consists of a number of robots set in a rectangular arena
in which several energy sources (corresponding to sugar in VUSCAPE) are randomly
distributed (according to a uniform distribution). Each robot’s fitness is determined by
how much energy it is able to collect over a certain period of time. However, collecting
energy is made difficult by the following factors:

– Robots constantly lose energy over time. Whenever a robot’s energy counter reaches
zero, the robot is immediately switched off for the rest of an evaluation period, thus
receiving minimal fitness.

– The environment requires that robots cooperate in order to successfully collect en-
ergy. In order to study different levels of cooperation pressure, we add an experi-
mental parameter, the cooperation threshold (CT), specifying how much energy a
robot can collect from a single source on its own. Specifically, a source carrying an
amount of energy higher than the CT must be collected by two or more robots, in
which case the energy is distributed equally among the collecting robots.

– The only way for a robot to gather knowledge (on its own) about the location of an
energy source is through a fixed set of sensors of limited range.

– Energy sources are relocated once they are collected, thus increasing the need
for robots to have an exploratory behavior. Whenever a robot collects an energy
source, this source is instantly relocated to a randomly drawn position (uniform
distribution).

In order to surmount these difficulties, robots are able to facilitate cooperation and ex-
ploration through a hardwired ability to communicate. In particular, robots can use (with
a certain probability) information given by other robots about the location and size of
energy sources (i.e., listening), and multicast (with a certain probability) the size and
location of energy sources they are not able to collect on their own (i.e., talking). No-
tice that while robots possess an innate ability to communicate, the extent to which they
are willing to do so is not fixed; we deliberately leave it subject to adaptation through
evolution.

Note that the problem described is not dynamic from the evolutionary algorithm’s per-
spective (once the proper behavior is learned it remains valid throughout a robot’s opera-
tion). Nevertheless, the problem is dynamic from the point of view of the robots, since the
environment is constantly changing in a way that is unpredictable to them. Furthermore,
from the evolutionary algorithm’s perspective, the fitness function is stochastic.

3.1 Controller

Each robot is controlled through a neural network that decides between different pre-
programmed control policies. The twelve (12) inputs of the neural network are: mea-
surements from eight (8) distance sensors that detect obstacles and other robots in the
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vicinity, angle to the largest energy source the robot has knowledge of, distance to the
largest energy source the robot has knowledge of, current energy level, and bias node.

The five (5) outputs of the neural network are: three (3) outputs corresponding to
different actions (the highest valued output determines the next action of the robot), talk
preference, (i.e., the probability that the robot multicasts information about an energy
source when it needs to cooperate), and listen preference, (i.e., the probability that the
robot incorporates knowledge about energy sources seen by other robots).

The robots’ actions are implemented as follows:

Random Walk. The robot chooses a random direction and moves as far as it can in a
straight line in the chosen direction.

Avoid Obstacles. The robot moves straight in the direction it is currently facing until
its sensors detect an obstacle. It then rotates away from the obstacle and moves in
a straight line again.

Go to Largest Energy Source. The robot rotates so that it faces the largest energy
source it is aware of and moves towards this source as fast as it can.

3.2 Evolutionary Algorithm

The controllers in our experiments (i.e., neural networks) were adapted using Hybrid
EvAg, a variant of the on-line, on-board, distributed evolutionary algorithm for robotics
described in [10]. In Hybrid EvAg, in addition to a local cache of neighbors (other
robots) for genome exchange, each robot maintains a local pool of μ+1 genomes (μ
stored in the internal population plus one active controller). Parental selection is per-
formed by selecting two neighbors from the cache (i.e., the external population) and
using their current genomes (active controllers) as parents. If, after evaluation, the new
genome turns out to be better than the worst one in the local pool of μ genomes, the
worst one is replaced by the new. This local pool of genomes is used to randomly
choose genomes for reevaluation. Thus, in Hybrid EvAg survival selection is local while
parental selection is (approximately) global.

The cache of neighbors in Hybrid EvAg is maintained using the Newscast gossiping
protocol as explained in [10]. We compared the performance of the Newscast-based
Hybrid EvAg with that of a panmictic variant in which each agent has access to the
local pools of all the other agents for parent selection. This allows us to study the effect
that the lack of information about the true global genome pool has on gossiping-based
distributed evolutionary algorithms.

The genome representation of the neural network was a real-valued vector consisting
of the neural network’s weights and a mutation step size for every weight. Mutation was
performed using Gaussian perturbation, and the recombination operator was standard
two-parent arithmetic crossover. Binary tournament was used for parent selection. The
following evolutionary parameters were used in our experiments:μ=10 (size of the local
pool of genomes), σ=1 (initial mutation step size), crossover rate = 0.5, re-evaluation
rate = 0.2, mutation rate = 1, and Newscast cache size = 20.
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4 Experiments

4.1 Experimental Details and Performance Measures

Our experiments were run using the RoboRobo simulator developed by Nicholas Bre-
deche, a fast and simple 2D robot simulator built in C++. We used a group of 20 robots
and performed 56 different simulations to account for the stochasticity in the evolution-
ary algorithms. Each simulation ran for 2,000,000 steps, with a new generation of con-
trollers being evaluated each 1,000 steps. After each evaluation period, the controller’s
fitness was calculated and the evolutionary algorithm described in Sec. 3.2 was carried
to select a new controller. Each robot’s energy counter was then reset to its initial value
and the robot was allowed to move randomly for 250 steps in order to avoid difficult
conditions inherited from the previous evaluation.

The performance of the evolutionary algorithms was evaluated in terms of the per-
formance metrics described next. Note that the values reported in Sec. 4.2 correspond
to these measures averaged over the 56 experiments.

– Fitness: the median fitness of the group of robots for each generation.
– Talk/listen preferences: the median average talk/listen preference during 250 con-

troller steps (i.e., not counting the random relocation steps).
– Frequency of controller actions: the median frequency of controller actions during

250 controller steps.

As we are interested in assessing whether robots can develop appropriate strategies for
different environmental demands, we study the effect of the cooperation threshold (CT),
and thus environmental pressure, on the evolved strategies; for this, two values of the
CT were considered (CT = 1 and CT = 5). In one case (LOWCT) the CT was set so
that robots needed cooperation to collect any of the energy points in the arena; in the
other (HIGHCT), cooperation was not required for any of the energy points. While in
our experiments the CT remained fixed throughout the simulation, these settings allow
us to evaluate how well the robots adapt to unforeseen environments of different nature.

4.2 Experimental Results

For the two CT values considered, both the Newscast-based and panmictic variants of
Hybrid EvAg were able to improve (Wilcoxon rank-sum test, p<0.00001 for both CT
values) the average fitness of the robots over time (see Figs. 1a and 1b). Interestingly,
although the mating pool for each robot was smaller in the Newscast-based variant, it
showed much quicker convergence than the panmictic variant. For the HIGHCT case
this resulted in the Newscast-based variant having a somewhat better fitness at the end
of the simulation (not statistically significant - Wilcoxon rank-sum test, p=0.064). How-
ever, the panmictic variant showed a better final performance (not statistically signifi-
cant - Wilcoxon rank-sum test, p=0.104) in the LOWCT case (see Table 2).

Evolved talking and listening preferences were very high in the LOWCT case (see
Table 2), which indicates that communication evolved as a response to the environmen-
tal pressure to cooperate (see Fig. 2a). With the panmictic variant of Hybrid EvAg, the



Evolving Communication in Robotic Swarms 535

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

Generation

F
itn

es
s

 

 

Newscast−based variant

Panmictic variant

(a) LOWCT case

0 200 400 600 800 1000 1200 1400 1600
3000

4000

5000

6000

7000

8000

9000

Generation

F
itn

es
s

 

 

Newscast−based variant

Panmictic variant

(b) HIGHCT case

Fig. 1. Fitness vs. Number of generations for CT = 1 (LOWCT implying high pressure to cooper-
ate) and CT = 5 (HIGHCT implying low pressure to cooperate). Mind the different scales on the
Fitness axes.

average talking and listening probabilities converged to close to 100% after approx-
imately 600,000 controller steps (600 generations). On the other hand, although the
Newscast-based variant quickly reached high talking/listening probabilities (approxi-
mately 90% in less than 200 generations), the final values were considerable lower
(Wilcoxon rank-sum test, p<0.0001 both for talking and listening) than those obtained
with the panmictic variant (see Table 2); in fact, talk/listen probabilities show a decreas-
ing trend over time. This partially explains why the fitness was lower for the Newscast-
based variant in the LOWCT case, as a lower preference for communication was detri-
mental to the robots’ capacity to cooperate.

In the HIGHCT case the talk/listen preferences were considerably lower (Wilcoxon
rank-sum test, p<0.007 both for panmictic and Newscast-based variants) than in the
LOWCT case (see Fig. 2b and Table 2). This is not surprising since cooperation was not
required in order for robots to succeed in this arena and, due to cooperation involving
a split of the resources among cooperating robots, it would have only resulted in less
fitness overall. However, one interesting observation is the different talking/listening
evolution trends obtained with the Newscast-based and the panmictic variants. The
Newscast-based variant’s evolution history was highly irregular and showed no sign
of convergence, in contrast to the typical evolution pattern observed with the panmictic
variant; the reason for these differences requires further investigation. Nevertheless, it
is worth noting that the difference in the final talking/listening probabilities between the
Newscast-based and the panmictic variants was not statistically significant (Wilcoxon
rank-sum test, p=0.27 and p=0.12 for talking and listening, respectively).

Finally, regarding the frequency of controller actions, there are significant differ-
ences between the strategies evolved using the panmictic and Newscast-based variants
of Hybrid EvAg. Both in the LOWCT and HIGHCT cases the controllers evolved using
the Newscast-based variant showed a much higher preference for the ”Avoid Obstacles”
action than those evolved using the panmictic variant (see Figs. 3 and 4). Significant dif-
ferences can also be observed in the preferences for the ”Go to Largest Energy Source”
action in the LOWCT case (see Fig. 3), with the panmictic variant converging to a
higher value than the Newscast-based variant.
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Fig. 2. Talking (upper) and Listening (lower) probabilities vs. Controller steps. Dark line:
Newscast-based variant. Light line: Panmictic variant.
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Fig. 3. Frequency of controller actions: Random (upper), Avoid Obstacles (middle), and Go to
Largest Energy Source (lower). Dark line: Newscast-based variant. Light line: Panmictic variant
(LOWCT case).
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Table 2. Performance (mean and standard deviation) of the Newscast-based (NC) and panmictic
(P) variants at the end of the simulation (LOWCT and HIGHCT cases)

LOWCT HIGHCT
NC P NC P

Fitness 786.6(740.3) 937.1(676.3) 7489.6(1858.8) 7030.5(1482.5)
Talk preference 0.81(0.32) 0.99(0.01) 0.59(0.41) 0.72(0.33)
Listen preference 0.83(0.35) 1.00(0) 0.56(0.43) 0.70(0.35)

5 Conclusions and Future Work

In this paper we presented an initial study on the applicability of on-line, on-board,
distributed evolutionary algorithms (e.g., Hybrid EvAg) for evolving communication in
robotic swarms. For this first study we assumed robots possessed the ability to commu-
nicate using messages with fixed semantics, and focused on studying the communica-
tion strategies evolved under different degrees of cooperation pressure. We also draw
a distinction between the preference for sending messages (i.e., talking) and that for
receiving messages (i.e., listening).

The results show that our on-line, on-board, distributed evolutionary mechanism en-
abled robots to develop appropriate communication attitudes: a high communication
preference when the environmental pressure to cooperate is large, and a low prefer-
ence when the environmental pressure to cooperate is low. However, we observed a
distinction between the communication preferences evolved using a distributed algo-
rithm with full information of the global genome pool (panmictic variant), versus one
in which each robot only has a local approximation of the genome pool (Newscast-
based variant). The reason for these differences require further investigation, but it is
probably related to the information loss inherent to the Newscast-based variant. Note
that in some cases (e.g, HIGHCT case) the Newscast-based variant can offer a higher
performance than the panmictic variant.

In future work we aim to study the evolution of communication on groups of robots
having a lesser degree of hard-wired abilities (such as the current fixed controller ac-
tions and semantics). Also, we are currently studying larger groups of robots (e.g., 500
robots) since the computational advantages of the Hybrid EvAg algorithm are more
relevant in such a context, and different types of communication behavior may emerge.
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