
Gossip-Based Self-Management of a Recursive
Area Hierarchy for Large Wireless SensorNets

Konrad Iwanicki, Student Member, IEEE, and Maarten van Steen, Senior Member, IEEE

Abstract—A recursive multihop area hierarchy has a number of applications in wireless sensor networks, the most common being

scalable point-to-point routing, so-called hierarchical routing. In this paper, we consider the problem of maintaining a recursive multihop

area hierarchy in large sensor networks. We present a gossip-based protocol, dubbed PL-GOSSIP, in which nodes, by using local-only

operations and by periodically gossiping with their neighbors, collaboratively maintain such a hierarchy. Since the hierarchy is a

complex distributed structure, PL-GOSSIP introduces special mechanisms for internode coordination and consistency enforcement.

Yet, these mechanisms are seamlessly integrated within the basic gossiping framework. Through simulations and experiments with an

actual embedded protocol implementation, we demonstrate that PL-GOSSIP maintains the hierarchy in a manner that addresses all the

peculiarities of sensor networks. More specifically, it offers excellent opportunities for aggressive energy saving and facilitates

provisioning energy harvesting infrastructure. In addition, it bootstraps and recovers the hierarchy after failures relatively fast while also

being robust to message loss. Finally, it can seamlessly operate on real sensor node hardware in realistic deployment scenarios and

can outperform existing state-of-the-art hierarchy maintenance protocols.

Index Terms—Hierarchical routing, area hierarchy, gossiping, gossip-based algorithms, self-organization, wireless sensor networks.

Ç

1 INTRODUCTION

NUMEROUS application proposals of wireless sensor
networks (WSNs) assume large numbers of sensor

nodes that collaboratively collect and process data from
vast geographic regions. Sensor nodes are often severely
constrained in terms of resources. It is therefore crucial to
organize them in a way that enables scalable addressing
and routing, two key features necessary for scalable data
collection and querying. Constructing and maintaining this
scalable organization should preferably require only mini-
mal human intervention.

A compelling example of such an organization is a
recursive area hierarchy [1], [2], [3], [4], [5], [6], [7]. A
recursive area hierarchy constitutes a multilevel overlay on
the physical network topology in which at subsequent
levels nodes are grouped into exponentially larger areas: at
level 0, nodes form their own singletons; at level 1,
connected singletons are grouped into areas; at level 2, the
areas are grouped into superareas, and so forth. Such
hierarchical grouping enables addressing and routing that
necessitate only polylogarithmic node state, and hence, are
highly scalable. Furthermore, the addressing and routing
can be employed to build more advanced services such as
distributed hash tables [4], [6] or multiresolution in-network
aggregation and querying [5], [8], [7]. Finally, the hierarchy
can be constructed and maintained autonomously by the
nodes, without human intervention, thereby minimizing
the deployment and upkeep costs of the network. Because

of these merits, a recursive area hierarchy can be a
foundation of a plethora of applications proposed for
WSNs. Examples of such applications include object
tracking [4], [9] for asset management, reactive tasking
[10] for “smart” buildings and disaster containment,
scalable network monitoring [11], [12] for problem diag-
nosis, and multiresolution in-network storage [7], [13], [14]
for monitoring buildings, microclimate, and crops, to name
a few. All in all, a recursive area hierarchy is an important
network organization for large WSNs.

For these reasons, the maintenance of an area hierarchy
is a fundamental problem. It is challenging due to the
following properties of WSNs and the fact that many of
them put conflicting requirements on hierarchy mainte-
nance protocols:

. Tight energy budget. Since sensor nodes operate on
batteries or by harvesting ambient energy, their
energy budgets are typically extremely tight. Conse-
quently, a hierarchy maintenance protocol must offer
opportunities for aggressive energy saving in order to
reduce the network upkeep costs. In addition, in an
energy harvesting network, the design of the protocol
should facilitate provisioning the energy harvesting
infrastructure (e.g., choosing the size of solar cells).
This implies that the protocol should not create bursts
of energy consumption that could overrun the energy
budget for a given time period. Instead, the energy
consumption of the protocol should be more or less
even and relatively easy to estimate [15].

. Failures and connectivity changes. Due to their em-
bedded nature and energy constraints, WSNs ex-
perience node failures and connectivity changes. The
hierarchy maintenance protocol should provide fast
recovery after such events as well as reasonable
hierarchy bootstrap times. This is crucial to minimize

562 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

. The authors are with the Department of Computer Science, Vrije
Universiteit Amsterdam, De Boelelaan 1081A, 1081 HV Amsterdam,
The Netherlands. E-mail: {iwanicki, steen}@few.vu.nl.

Manuscript received 26 June 2008; revised 24 Mar. 2009; accepted 22 May
2009; published online 28 May 2009.
Recommended for acceptance by M. Oulk-Khaoua.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-06-0244.
Digital Object Identifier no. 10.1109/TPDS.2009.89.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

the disruption of the application using the hierarchy
in the presence of such events. However, fast
recovery typically implies higher energy consump-
tion and vice versa.

. Message loss. Low-power wireless communication
employed by sensor nodes is subject to (sometimes
high) message loss, both anticipated, resulting from
signal fading with distance, and varying, due to
transmission collisions and noise. Consequently, the
protocol must inherently assume unreliable commu-
nication in its design rather than relying on nearly
perfect communication.

. Severe resource constraints. To minimize energy
consumption and costs, sensor nodes are extremely
constrained in terms of memory, bandwidth, and
processing power. Therefore, the hierarchy main-
tenance protocol must be practical, that is, it must
run on the real hardware.

In this paper, we attack the problem of maintaining a
recursive multihop area hierarchy taking all these peculia-
rities of large WSNs into account. We propose a novel
hierarchy maintenance protocol, dubbed PL-GOSSIP,1

which is based on asynchronous neighborhood gossiping
[17], [18]. In essence, each node, in an endless process,
periodically broadcasts its local protocol state to its
neighbors (i.e., the nodes within its radio range). Likewise,
it periodically receives the state of every neighbor, which it
merges with its own local state. The merged state is
broadcast in the node’s messages in subsequent periods,
which allows for propagating information throughout the
network. This primitive operation pattern is sufficient for
nodes running PL-GOSSIP to self-organize into, and
collaboratively maintain such a complex distributed data
structure as a recursive area hierarchy. More importantly,
however, the protocol addresses all the aforementioned
issues. Its well-defined periodic operation pattern and local-
only traffic offer excellent opportunities for aggressive
energy saving and, in addition, facilitate provisioning an
energy harvesting infrastructure. The protocol provides fast
failure recovery and hierarchy bootstrap that can be
configured for a desired energy consumption. In addition,
it is robust to message loss and works on real hardware. We
substantiate these claims with simulations and experiments
with actual embedded implementations.

The rest of the paper is organized as follows: We begin
by surveying existing protocols for hierarchy maintenance
in WSNs in Section 2. Then, in Section 3, we discuss the
basic idea behind PL-GOSSIP and explain how it addresses
the issues involved in those protocols. We go on to give the
details of our protocol in Section 4 and evaluate it using
simulations and an implementation in Section 5. Finally, we
come to conclusions in Section 6. All necessary proofs and
code listings are attached as supplemental material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2009.89.

2 BACKGROUND AND PRIOR WORK

2.1 Basic Terms and Definitions

Area hierarchy [2] is a recursive multilevel logical overlay; at
level 0, nodes form singletons; at level 1, connected
singletons are merged into groups; at level 2, the groups
are organized into supergroups, and so on at higher levels
(see Fig. 1a). Every node belongs to exactly one group at
each level, with level-0 singleton groups that correspond to
individual nodes and one top-level group that contains all
nodes. The groups at subsequent levels cover exponentially
growing network areas, which implies that the number of
levels (i.e., the height of the hierarchy) can be polyloga-
rithmic with respect to the number of nodes. In addition,
recursiveness entails that each nontop level-i group is
completely nested in exactly one level-iþ1 group, that is, all
members of the same level-i group are also members of the
same level-iþ1 group.

Each group has a special head node that is typically used
for identifying the group and for maintaining the member-
ship of the group in the hierarchy. Since each node has a
unique identifier, a group is unambiguously identified by its
level and the identifier of its head node. In the remainder of
this paper, we write Gi

X to denote a level-i group with head
node X. In the example from Fig. 1a, node P (marked with a
double circle) is a level-2 head, as it is the head of groups
G0
P ;G

1
P , andG2

P . NodeE (black circle) is a level-1 head as it is
the head of groups G0

E and G1
E . Finally, since node D (empty

circle) is only the head of group G0
D, it is a level-0 head.

The group hierarchy is reflected in the labels of the nodes.
A node’s label is a concatenation of the group head
identifiers for all the groups the node is member of, starting
from level 0 (see Fig. 1b). For instance, the label of node D

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 563

Fig. 1. An example of a group hierarchy. (a) Group hierarchy: the singleton level-0 groups are omitted for clarity. (b) Node labels presented as a tree:
a node’s label is obtained by concatenating group head identifiers from the leaf representing the node to the root of the tree. (c) Routing table of node
D: the routing table contains entries for the node’s own groups and for the sibling groups at all hierarchy levels.

1. The “PL” in “PL-GOSSIP” now stands for “Polish” [16] as K. Iwanicki is
Polish. Originally, it had a different meaning, though.

from Fig. 1, which is a level-0 group head, is LðDÞ ¼ D:E:P
as node D belongs to groups G0

D;G
1
E , and G2

P . The label of
node E, a level-1 group head, is LðEÞ ¼ E:E:P because E
belongs to G0

E;G
1
E , and G2

P . Finally, the label of node P , a
level-2 group head, is LðP Þ ¼ P:P:P as P belongs to
G0
P ;G

1
P , and G2

P . The label of a node constitutes the routing
address of the node.

Based on their labels, the nodes also keep hierarchical

routing tables, which are used for maintaining the hierarchy

and implementing routing for applications.2 The entries at the

ith level of a node’s routing table denote the siblings of the

node’s level-igroup in the hierarchy (see Fig. 1c). For instance,

at level0, therouting tableof nodeD fromFig.1,apart from the

node’s own group,G0
D, contains entries for groupsG0

E andG0
R,

which are the siblings ofG0
D within the higher-level groupG1

E .

Likewise, at level 1,D’s routing table contains an entry forG1
E ,

which is D’s level-1 group, and for groups G1
F ;G

1
P , and G1

Q,

which are the siblings ofG1
E in the higher-level groupG2

P . An

entry for a level-igroup contains the identifier of the next-hop

neighbor on the shortest path to the head of this group, the

number of hops to reach the head, and some other main-

tenance data such as counters specifying when the entry

expires if not refreshed. The organization of routing tables

allows the size of a node’s routing table to also be polyloga-

rithmic with respect to the number of nodes in the network [2].

This combinedwith the fact that a single routing entry is only a

few bytes guarantees that the state maintained by a node is

very small and scales gracefully with the network size.

2.2 Protocols for Hierarchy Maintenance

The problem of maintaining a recursive multihop area
hierarchy has been studied for some time albeit mostly for
networks with properties different from the aforementioned
properties of large WSNs, such as wired networks and
mobile ad hoc networks. Although PL-GOSSIP builds upon
some theoretical results of those studies, because of the
different properties of the target environment, it empha-
sizes different issues.

In his PhD dissertation on the early Internet architecture
proposals [2], Hagouel proved that constructing an optimal
area hierarchy that minimizes node state is NP complete. In
other words, in practice, only heuristic solutions can be
employed. Numerous hierarchy construction heuristics
have been developed for partitioning data sets in data
mining [19]. These algorithms, however, can hardly be
applied to large networks of wireless autonomous devices
because they require central control and would generate
heavy traffic when propagating hierarchy data between
nodes. Consequently, distributed hierarchy maintenance
protocols have been introduced.

Depending on the assumptions on the internode con-
nectivity, distributed hierarchy maintenance protocols for
wireless networks are divided into two families: one-hop
protocols and multihop protocols. One-hop protocols [20],
[21], [22] have been designed for small and dense WSNs

with a remote sink, in which the prime objective is
minimizing the energy cost of data collection at the sink.
The motivation behind such protocols is that a long-
distance direct data transmission to the sink drains lots of
energy. Hence, to reduce energy consumption, the nodes
should avoid such transmissions. To this end, the nodes
organize themselves into an area hierarchy, and each node
transmits data only to its parent head node in the hierarchy
(inexpensive, short-range transmission). The head node
performs some compression of the received data and
forwards them to its superhead, and so on such that in
the end only the top-level head transmits the compressed
data from all nodes to the sink. As a result, the total energy
cost of data collection is significantly reduced. While such
protocols for maintaining the hierarchy consider the
aforementioned characteristics of WSNs, their design
inherently assumes that the network is one-hop, that is,
by dynamically increasing its transmission power, each
node can directly communicate with any other node in the
network. Although this assumption may hold in small,
densely placed WSNs, for practical reasons, it does not hold
in large WSNs operating in many real-world situations.
One-hop protocols, however, cannot efficiently maintain an
area hierarchy in multihop networks.

In contrast, the second family of hierarchy maintenance
protocols is meant specifically for multihop wireless net-
works [4], [5], [23], [24], [25]. Those multihop protocols
work by flooding beacon messages at all hierarchy levels,
where the flooding radius of a node depends exponentially
on the node’s level as group head. More specifically, each
group head periodically or after a change in the network
broadcasts a beacon message that is received by the nodes
within its radio range (i.e., its neighbors). The neighbors
refresh their routing entries corresponding to the head’s
group and apply any label updates performed by the head
if they belong to the head’s group. Afterward, they
rebroadcast the message so that their neighbors can update
their state, and so on up to a certain radius depending on
the level of the head in the hierarchy. Such a simple and
elegant scheme allows wireless nodes to collaboratively
maintain an area hierarchy. However, although the proto-
cols assume that the nodes are wireless, they do not take all
the peculiarities of wireless sensor networks into account,
especially tight energy budgets and lossy connectivity.

It has been shown that flooding, in general, and multilevel
flooding, in particular, is highly inefficient with respect to
energy consumption [26], [27], [28]. First, every node
forwards beacon messages for all group heads that have the
node within their advertisement radius. Since a head may
issue a beacon essentially at any moment, the node cannot
arbitrarily sleep as it may miss a beacon message from some
head. Moreover, once it receives a beacon, it has to
immediately rebroadcast it in order to guarantee that an
instance of the beacon that has traveled i hops is always
received before an instance that has traveled j hops for all
j > i. Otherwise, the routing tables could be invalid. Conse-
quently, there is little room for a node to save energy. Even if
an energy conserving MAC layer is employed, the fact that
every node forwards myriads of short beacons results in large
energy overhead on the exchanged useful protocol data. In

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

2. Since routing is not used by PL-GOSSIP but only by applications
on top of PL-GOSSIP, we have decided to move the routing algorithm
to Appendix G of the supplemental material, which can be found on
the Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2009.89.

effect, the lack of support in the protocols for energy saving
severely impairs their energy efficiency, as we demonstrate in
Section 5.4.

The applicability of the proposed multihop hierarchy
maintenance protocols to energy harvesting WSNs is also
limited. As mentioned above, those protocols are reactive: a
group head can issue a beacon message at any moment in
reaction to a change in the network, for instance, after it has
detected that some other head has died. However, the
traffic pattern, and thereby, the energy consumption of a
reactive protocol is not even over time but exhibits bursts
corresponding to events occurring in the network. The
duration and magnitude of the bursts can be large if the
events affect many nodes (e.g., massive failures and
network partitions) or if they cause other events leading
to a domino effect. Accurately estimating energy consump-
tion of a protocol that exhibits such bursts is virtually
impossible before the actual deployment, especially con-
sidering the embedded nature of WSNs and their interac-
tions with the surrounding environment. As a result,
provisioning the energy harvesting infrastructure (e.g.,
selecting the size of solar cells) for the proposed hierarchy
maintenance protocols may be very difficult [15]. When the
energy harvesting infrastructure is underprovisioned, a
burst in energy consumption may render parts of the
network inoperable. Overprovisioning, in turn, increases
the form factor and the cost of sensor devices, which may
render them unusable for a given application.

Finally, for simplicity, the existing protocols for hier-
archy maintenance assume a lack of message loss. In
contrast, due to the low-power wireless communication
they employ, WSNs exhibit considerable message loss, both
anticipated, resulting from signal fading with distance, and
varying, due to transmission collisions and noise. Hier-
archical beaconing, however, is not resilient to message loss.
A lost beacon message may disrupt the routing paths or
may even lead to changes in the hierarchy, for example,
when a lost beacon increases the length of a routing path
beyond the limit acceptable for a group at a given level [29].
Although it is possible to alleviate the impact of message
loss, for instance, by broadcasting beacons multiple times,
such solutions typically further increase the already high
energy consumption of hierarchical beaconing and can be
difficult to implement correctly.

Due to these and other drawbacks of existing proto-
cols, PL-GOSSIP may be an attractive alternative. As we
explain in the next section, it enables self-management of
an area hierarchy in a way that addresses all the
peculiarities of WSNs.

3 PROTOCOL OVERVIEW

Self-management of a recursive multihop area hierarchy
corresponds to nodes autonomously bootstrapping the
hierarchy and maintaining it during the whole network
lifetime. Hierarchy bootstrap involves nodes autonomously
synthesizing their labels and filling in their routing tables.
Maintenance, in turn, encompasses detecting node failures
and changes in the internode connectivity and repairing the
hierarchy after such changes by updating routing tables and
modifying labels. To fill in and update node routing tables,

group heads advertise their groups among other nodes so
that the nodes learn about any existing groups. Based on
this knowledge, nodes synthesize and maintain their labels.
Label synthesis is typically done in a bottom-up fashion as
an alternative top-down method [30] cannot easily deal
with variations in node densities [4]. More specifically,
some nodes promote themselves to higher-level group
heads, effectively spawning higher-level groups, and other
nodes join such higher-level groups. Label repair after the
death of a group head, in turn, is achieved by having
another node promote itself to group head.

In PL-GOSSIP, all these activities are performed using a
combination of local-only operations and asynchronous
neighborhood gossiping. The nodes operate in rounds, each
lasting T time units. In every round, in a single gossip
message, each node broadcasts its protocol state, that is, its
label and routing table. The message is received only by the
node’s neighbors (i.e., the nodes within the radio range of
the broadcasting node). The neighbors subsequently merge
the received state with their own local state. Likewise, they
broadcast their state once per round. In this way, the
hierarchy information can propagate throughout the net-
work over multiple hops. In particular, nodes learn about
hierarchy groups and group heads in their vicinity.

Based on this knowledge, the nodes construct and
maintain the hierarchy. Hierarchy construction is per-
formed in a bottom-up fashion. Nodes probabilistically
promote themselves to higher-level group heads by locally
modifying their labels, effectively spawning higher-level
groups. When they broadcast gossip messages in subse-
quent rounds, their neighbors, the neighbors’ neighbors,
and so on learn about the newly created groups, and can
join those groups also by modifying their labels locally. In
this way, the nodes gradually bootstrap the group hier-
archy. Hierarchy repair after detecting a failure of a node or
a connectivity change, if necessary, is performed using the
same mechanisms. Detecting a node failure is relatively
easy as the failed node does not broadcast any new gossip
message. The same applies for a change in the internode
connectivity. Therefore, to sum up, local-only label opera-
tions in combination with asynchronous neighborhood
gossiping are sufficient for nodes running PL-GOSSIP to
collaboratively construct and maintain such a complex
distributed structure as a multihop recursive area hierarchy.

More importantly, however, the combination of local-
only operations for updating the hierarchy and asynchro-
nous neighborhood gossiping for propagating the hierarchy
information addresses all the peculiarities of WSNs, listed
in Section 1. First, it offers excellent opportunities for
aggressive node energy saving. In contrast to reactive
protocols, which generate irregular traffic, the operation
and the resulting traffic pattern of PL-GOSSIP are very
regular and well defined: a node transmits only a single
gossip message per round and expects to receive a similar
message from every neighbor. As a result, nodes can
synchronize their rounds, such that they are active only
during a short period at the beginning of each round to
analyze their local state and to exchange gossip messages,
while being asleep for most of the round. This allows the
nodes to operate on extremely tight energy budgets. For

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 565

example, for the current generation of node hardware, a
round length of 60 seconds already enables months of
operation with battery-based power supply. Moreover,
such a regular operation pattern simplifies estimating
energy consumption of a network prior to an actual
deployment. This, in turn, in contrast to reactive protocols,
facilitates provisioning the energy harvesting infrastructure.

Second, the self-management properties of PL-GOSSIP

make the protocol robust against node failures and
connectivity changes. Whenever a node fails or a new node
is introduced to the network, the change in the node
population is detected by other nodes, so that the nodes can
collaboratively repair the hierarchy to account for the
change. Likewise, when connectivity between nodes
changes, for example, due to a communication obstacle
emerging or disappearing, the changes are accounted for in
the node routing tables and possibly also labels. There are
only a few possible failures that affect many nodes, such as
the failure of the top-level group head, and the great
majority of node failures and connectivity changes affect
very few nodes and, thus, require local-only repair
activities. This makes PL-GOSSIP robust as we demonstrate
in our experiments. Moreover, by varying the round length
T , one can explore the trade-off between the latency of
reacting to changes in the network and the energy
consumption. Applications that require ultralow energy
consumption would likely use large values of T , whereas
applications that require fast recovery after failures would
rather prefer smaller T .

Third, due to the periodic nature of gossiping, PL-
GOSSIP is robust against message loss. Since, in each round,
a node broadcasts its whole protocol state, there is some
redundancy in the data transmitted in consecutive rounds.
Therefore, even if some neighbor misses some of the node’s
messages, it will likely receive the data in one of the
subsequent rounds. This feature enables configuring PL-
GOSSIP to operate in networks with high message loss rates,
as we demonstrate in our experiments, and facilitates
porting the protocol from the simulation environment to
the real world.

Finally, the simplicity of the concepts employed by PL-
GOSSIP and its small resource requirements enable im-
plementing the protocol for real sensor node hardware. In
contrast, we are not aware of any implementations of
existing hierarchy maintenance protocol. Since implement-
ing protocols for severely constrained sensor devices is
challenging and usually demonstrates a large divergence
between practice and theory, the fact that PL-GOSSIP can
seamlessly operate in the real world constitutes another
important feature.

4 PROTOCOL DETAILS

We formalize the above sketch of PL-GOSSIP below. First, we
give sample properties that we assume for the hierarchy in
the remainder of the paper. Then, we describe how using
local-only operations and asynchronous neighborhood
gossiping PL-GOSSIP constructs and maintains the hierarchy
with those properties. While in the paper we give a textual
explanation of PL-GOSSIP, the code listings of the algorithm
core can be found in Appendix F of the supplemental

material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2009.89.

4.1 Sample Hierarchy Model

The nodes communicate wirelessly: each message is broad-
cast and the nodes able to hear the broadcast receive the
message. We say that there exists a link between two nodes
if they are able to receive each other’s messages. Because
wireless low-power communication employed by sensor
nodes is often unreliable and asymmetric, PL-GOSSIP

ensures that the links it chooses are symmetric and are of
high quality (see Section 4.4.2). We say that two nodes are
neighbors if and only if (abbreviated as iff) there exists a
bidirectional high-quality link between them.

Nodes group themselves into sets based on their
connectivity. The groups correspond to network areas and
form a recursive multihop multilevel hierarchy. We say that
two groups are adjacent iff they contain two nodes (one in
each group) that are neighbors. For example, in Fig. 1a,
group G0

F is adjacent to groups G0
D;G

0
E;G

0
B, and G0

R. Group
G1
E , in turn, is adjacent to G1

P and G1
M , but not to G1

Q.
For the remainder of this paper, we assume the following

sample properties of the group hierarchy:

Property 1. Level-0 groups correspond to individual nodes.

Property 2. There exists a single, level-H group that contains all

nodes. We call this group the top-level group.

Property 3. Level-iþ1 groups (where 0 � i < H) are composed
out of level-i groups, such that each level-i group is nested in

exactly one level-iþ1 group. A level-iþ1 group is the
supergroup for its level-i groups, and likewise, these level-i

groups are the subgroups of their level-iþ1 group.

Property 4. Each level iþ 1 group (where 0 � i < H) contains

a central subgroup that is adjacent to all other subgroups of
this group.

We define the head node of a level-i group recursively:
1) if i ¼ 0, then the head of the group is the sole node
constituting the group; 2) if i > 0, then the head of the group
is equal to the head of the central subgroup. A node is thus a
level-i head iff it is the head of groups at levels from 0 to i, but
not the head of a level-iþ1 group. For example, in Fig. 1a,
group G1

P is the central subgroup of group G2
P . Similarly,

group G0
Q is the central subgroup of group G1

Q.
To show that our group hierarchy model has the

potential to provide polylogarithmic labels and routing
tables, based on Properties 1-4, we have derived tight
bounds on the internode distances, as formalized by the
lemmas below. The proofs of these lemmas (by induction)
are given in Appendices A-C of the supplemental material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2009.89. The exponentially growing bound on group
diameter at subsequent hierarchy levels is a basic require-
ment for polylogarithmic labels and routing tables, as
discussed in Section 2.1.

Lemma 1. A node from a level-i group can reach a node in any

adjacent level-i group in at most 3i hops.

566 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

Lemma 2. The distance between the head nodes of two adjacent
level-i groups is at most 3i hops.

Lemma 3. The distance between any two members of a level-i
group is at most 3i � 1 hops.

Note that the above properties have been chosen as an
example to illustrate the basic idea behind gossip-based
self-management of a recursive multihop area hierarchy.
For instance, there is no property that would guarantee that
a group contains more than one subgroup, which as we
show is not strictly necessary from the perspective of point-
to-point routing that we take in this paper. Using the ideas
behind PL-GOSSIP, however, one can maintain a different
set of hierarchy properties, as we demonstrate in Section 5.4.

4.2 Route Information Maintenance

Self-management of the hierarchy essentially boils down to
ensuring that the above properties hold. This requires
maintaining the labels and routing tables appropriately.
Since the label maintenance is performed depending on the
state of node routing tables, we focus on the routing table
maintenance first.

As described in Section 2.1, the routing table of a node
contains one entry for each sibling group at every level of
the hierarchy. A routing entry for a level-i group consists of
the group’s level i, the identifier of the group’s head, a
sequence number generated by the head, a bit indicating
whether the group is adjacent to the node’s level-i group,
the identifier of the next-hop neighbor on the shortest path
to the group’s head, and the number of hops on this path.

Nodes maintain their routing entries with a straightfor-
ward hierarchical distance-vector algorithm. A routing
entry for a group originates at the head of the group, which
generates a new sequence number for the entry, zeroes the
hop count of the entry, and sets the adjacency bit of the
entry. A new sequence number for the entry is generated at
the end of each gossiping round. Such a refreshed entry,
together with all other routing entries maintained by the
group head, is embedded in the next gossip message of the
head. In this way, when the head broadcasts the message,
its neighbors can refresh (or create) their routing entries
corresponding to the head’s group. When they broadcast
their gossip messages, their neighbors can also refresh their
entries for the group, and so on.

Merging a node’s local routing table with a neighbor’s
routing table received in a gossip message is performed like
in a standard distance-vector algorithm, but with the
exception that the node considers only a subset of the
received routing entries. More specifically, node A upon
receiving a gossip message from node B, by comparing its
label with B’s label from the message, determines the
minimal level of a group it shares with B. If the minimal
level is i; A can update its routing table with those entries
from B’s routing table that are in rows no lower than i� 1.
In contrast, if there is no common group for A and B
(Property 2 is violated), A opportunistically updates its
routing table by adding entries for those groups of which B
is member and that are at level lA � 1 and above (where lA is
the length of A’s label). This latter case allows A to
propagate information about the hierarchy property viola-
tion among the members of its group, which is necessary

when constructing the hierarchy and recovering from
failures. Like in a distance-vector algorithm, when updating
its routing entries, an objective of a node is to choose the
freshest entries (i.e., those with the freshest sequence
numbers) that minimize the number of hops and ensure
that the group adjacency information is propagated cor-
rectly. In this way, the algorithm guarantees freshness of the
route information and short routes to the group heads.

If a node has not refreshed a routing entry for a certain
number of rounds, derived from Lemma 3, it concludes that
the group represented by the entry can no longer be reached,
for instance, because the group head has died or all the links
to the group have been broken. Similarly, a feedback from the
application may be used to detect an unreachable routing
entry. Such an entry should be removed from the node’s
routing table. To prevent routing cycles when node failures
and connectivity changes occur, PL-GOSSIP uses route
poisoning: before removing an entry a node marks it as
unreachable. Such an entry is broadcast in the node’s gossip
messages for several rounds, which allows other nodes to
detect the failure as well. To sum up, entries referring to
nonexisting or unreachable groups are always evicted.

4.3 Basic Label Operations and Update Vectors:
Ensuring Property 3

Based on their routing tables, the nodes maintain their
labels, such that the hierarchy reflected in the labels satisfies
Properties 1-4. Property 1 always holds. Properties 2-4, in
turn, must be enforced using local-only operations and
gossip-based information propagation. In addition, the only
means of internode coordination is the round-based
communication pattern. In the remainder of this section,
we discuss how using these simple concepts PL-GOSSIP

maintains the formal properties of the hierarchy.
We start with Property 3, which expresses the recursive-

ness of the hierarchy. It states that two members of the same
level-i group also belong to the same level-j group, for all
j > i. Maintaining Property 3 thus requires that, for any
level-i group, any modifications to node labels at levels
above i must be performed in a consistent way by all
members of the group.

To this end, for label updates, we adopted the single-
master model on a per-group basis. The dynamically
designated head node of a group makes all the label
updates regarding the membership of this group in the
hierarchy, as formalized by the rule below.

Responsibility rule. The iþ1-st element of a node’s label is
updated only by the head of the level-i group the node is
member of (denoted by the ith element of the node’s label).

Intuitively, the rule states that the head of a group is
responsible for moving the whole subbranch of that group
between branches corresponding to different supergroups
in the label tree (cf., Fig. 1b). Other group members simply
adopt the label updates by such a node.

4.3.1 Update Vectors

In asynchronous neighborhood gossiping, however, it is not
trivial to ensure that all group members adopt label updates
in a consistent way. For example, without additional

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 567

information, a node with label A:H:G:U:X, receiving from
its neighbors gossip messages with labels B:H:G:V :Y :Z and
C:I:G:W , cannot determine whether its label should
become A:H:G:V :Y :Z or A:H:G:W , or whether it should
stay unmodified.

As a solution to this problem, we introduce update

vectors. A node’s update vector corresponds to the node’s
label and unambiguously specifies the updates applied to
the label. The ith element of the vector denotes the sequence
number of the last known label update made at level iþ 1

by the node’s level-i group head. For instance, in Fig. 2,
node A knows that:

1. the last label update performed by A at level 1 has
number 2 and wrote H at position 1 of its label;

2. the last update performed by H at level 2 has
number 4 and wrote G at position 2 of its label;

3. the last update performed by G at level 3 has
number 3 and wrote U at position 3 of its label;

4. the last update performed by U at level 4 has
number 7 and wrote X at position 4 of its label; and

5. X acting as the top-level head has not yet made any
updates at level 5 (UðAÞ½4� ¼ 0).

A node’s update vector is broadcast with the node’s label in
the node’s gossip messages and is essential to propagating
label updates, as we explain shortly.

4.3.2 Label Operations and Update Propagation

In PL-GOSSIP, nodes modify their labels with only two basic
operations: label extension and label cut. Label extension (see
Fig. 3a) is executed locally by a top-level group headX, when
constructing or recovering the hierarchy. By extending its
label, X joins its group Gi

X, to a higher-level group Giþ1
Y (if it

extends its label with Y), or spawns a new higher-level group
Giþ1
X (if it extends its label with X). Label cut (see Fig. 3b), in

turn, is executed locally by a nontop-level head X, when X

has detected that its groupGi
X, can no longer be a subgroup of

a higher-level groupGiþ1
Z . This operation removes groupGi

X

from supergroupGiþ1
Z . Label cut can also be used to dissolve a

group in order to balance group sizes or rotate group heads.
However, in our experiments and subsequent research
activities [29], we have noticed that from the point-to-point
routing perspective we take in this paper, such functionality
is not necessary. Therefore, to avoid significantly complicat-
ing the algorithm, we omit the description of how to use label
cut to balance group sizes.

It is crucial to note that both label extension and label cut
abide by the responsibility rule, that is, they are used by a
level-i head to modify the head’s label at level iþ 1.
Moreover, in both operations, when modifying its label at
level iþ 1, the head X also writes a new sequence number
at the ith position of its update vector (in Fig. 3: m X’s
next sequence number; UðXÞ½i� m). This is to indicate
that label update performed by X is the freshest one, so that
other members of Gi

X can also adopt the update using the
following algorithm.

Whenever a node A receives a gossip message from a
neighbor B, it checks if it shares a group with B. More
specifically, A looks for the minimal i such that LðAÞ½i� ¼
LðBÞ½i� (see Fig. 4). If such i does not exist, then A has just
discovered a violation of Property 2 of the group hierarchy,
which will be propagated through routing tables and
handled by the hierarchy construction algorithm of A’s
top-level head node, as we explain further in the paper.
Otherwise, A determines which of the two labels is fresher
by comparing its update vector UðAÞwith B’s update vector
UðBÞ starting from position i. If for some j � i; UðAÞ½j� 6¼
UðBÞ½j� (see Fig. 4), then one of the labels is fresher than the
other [they can differ starting from the (jþ 1)st element]. If
B’s label is fresher (UðAÞ½j� < UðBÞ½j�), then A copies B’s
label and update vector starting from position j:
LðAÞ½j . . .� LðBÞ½j . . .� and UðAÞ½j . . .� UðBÞ½j . . .�. In this
way, A’s information on the hierarchy membership be-
comes consistent with the fresher information from B, and
moreover, when A broadcasts the next gossip message, its
neighbors can also adopt the fresh information, and so forth.
As a result, any label update (extension or cut) made by a
group head is eventually adopted by all members of the
group, as formalized by the lemma below. This is even true
for a node that has rejoined the network after a long
disconnection period.

Lemma 4. Update propagation based on the responsibility rule and
update vectors guarantees eventual consistency of node labels.

The proof is given in Appendix D of the supplemental
material, which can be found on the Computer Society

568 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

Fig. 2. A sample label and update vector.

Fig. 3. Label operations. (a) Label extension. (b) Label cut.

Fig. 4. An example of update propagation. Node A determined that B
has a fresher update performed by S at level j, and thus, A adopts B’s
updates. Note that initially the lengths of the labels can differ.

Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2009.89. Essentially, the responsibility rule
designates a single group head to update each element of
a node’s label. Based on this rule, the update vectors, in
turn, guarantee that because the nodes gossip continu-
ously, any members of the same level-i group will
eventually have equal labels at all levels above i. This
ensures that Property 3 eventually holds. We can even
give stronger consistency guarantees by using Lemma 3
to bound the maximal number of rounds to propagate an
update. It is also possible to further optimize the update
adoption algorithm, but we do not present the optimiza-
tion here for simplicity.

4.4 Hierarchy Construction and Recovery:
Ensuring Properties 2 and 4

Ensuring Properties 2 and 4 is directly related to the way
nodes construct the hierarchy and recover it after failures
and changes in the internode connectivity. In fact, hierarchy
construction and recovery is performed by detecting
violations of Properties 2 and 4 in each round and by
reacting to such violations. Nodes learn about the violations
from their routing tables. They react to the detected
violations autonomously by extending or cutting their
labels. When performing such local-only label updates,
the nodes abide by the responsibility rule, which, combined
with the above update propagation algorithm, guarantees
that all hierarchy properties eventually hold.

4.4.1 Hierarchy Construction

Initially, each node is a top-level head (of its level-0
group—Property 1), that is, its label length is equal to 1.
Hierarchy construction is performed by top-level heads
detecting that they are not the sole top-level heads
(Property 2 is violated) and reacting to such violations by
extending their labels, which corresponds to spawning a
new higher-level group or joining a group to an existing
higher-level group (see Fig. 3a). Label extensions gradually
eliminate all violations of Property 2, leading to the
convergence of the hierarchy. Eventually, only a single
top-level group exists.

The headX of a top-level groupGi
X discovers a violation of

Property 2 iff its routing table contains entries for an adjacent
Gk
Y , where k � i. There are two possible scenarios: 1) if k ¼

iþ 1; X can try to make Gi
X a subgroup of Giþ1

Y or 2) X can
spawn a new supergroup Giþ1

X hoping that other adjacent
level-i groups will join this group, or that it will be possible to
makeGiþ1

X a subgroup of some level-iþ2 group. MakingGi
X a

subgroup ofGiþ1
Y corresponds toX extending its label with Y

at level-iþ1 (see Fig. 3a). Other members ofGi
X will gradually

learn about the membership update and extend their labels,
as guaranteed by our update propagation algorithm. This
algorithm also guarantees that if Giþ1

Y is itself a member of
someGiþ2

Z , all members ofGiþ1
Y (in particular, the members of

Gi
X) will also gradually extend their labels at level iþ 2 with

Z, and so forth. Likewise, spawning a new supergroup Giþ1
X

corresponds to X extending its label with X.
Making Gi

X a subgroup of an existing Giþ1
Y is always

preferred, as it reduces the number of groups at level iþ1
compared to level i. Yet, due to Property 4, it is only possible
if Gi

X is adjacent to the central subgroup of Giþ1
Y , that is, Gi

Y .

Formally, X can extend its label at level iþ1 with Y iff its
routing table contains entries for adjacent Gi

Y and Giþ1
Y .

Otherwise, X cannot immediately make Gi
X a subgroup

of any level-iþ1 group, and thus, it must potentially spawn
a new level-iþ1 group Giþ1

X . Convergence requires pre-
venting all groups from becoming supergroups in the same
round. In particular, in the beginning, each node forms a
single level-0 group, so allowing all nodes to create
singleton level-1 groups would not guarantee convergence.
To this end, X probabilistically defers spawning a super-
group for a number of rounds. Although different prob-
abilistic heuristics are possible, for the purpose of this
paper, we adopted the following simple one. Upon
discovering that it must potentially spawn a supergroup,
X first clusters rounds into S virtual slots, each lasting
r rounds, then randomly selects a slot s 2 f0 . . .S � 1g, and
subsequently, defers spawning a supergroup for r � sþ 1
rounds, hoping that in that time some adjacent group
spawns a supergroup, so that it will be possible to make Gi

X

a subgroup of this supergroup.
S ¼ 2 already ensures that the number of groups on

consecutive levels drops exponentially fast, provided that
the slot size r is long enough. Such a decrement is a direct
consequence of the following lemma, with a proof in
Appendix E of the supplemental material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2009.89:

Lemma 5. Assume that the slot size is longer than the number
of rounds it takes to propagate information between the heads
X and Y of two adjacent “top-level” groups Gi

X and Gi
Y . In

this case, with probability � 1
4 ; G

i
X will be able to join Giþ1

Y or
vice versa.

Oversimplifying things, assuming S ¼ 2 and r meeting
the above assumption, we could expect that half of the
groups (the ones that chose slot 1) will be able to join the
supergroups formed by the other half (the ones that chose
slot 0), that is, the number of groups drops exponentially
with the level. This not only guarantees convergence, but also
results in a polylogarithmic height of the membership tree.

We can choose the slot size r guaranteeing the above
requirements based on the entries in the routing table. More
formally, assuming no message loss, a level-i head defer-
ring supergroup creation chooses r equal to the number of
hops to the furthest adjacent level-i head. Note that
although this value is bounded by Lemma 2, it is smaller,
on average.

4.4.2 Handling Failures and Message Loss

A benign failure of a node or a link does not require any
repair apart from removing some routing table entries. In
contrast, a disruptive failure, like a group head crash, violates
Property 4, and thus, requires repairing the group hier-
archy. The repair boils down to having a head node that
detected the failure cut its label down to the level the failure
occurred, which corresponds to removing a subgroup from
a no longer existing group (see Fig. 3b). Later, if necessary,
the above hierarchy construction algorithm will join such a
removed subgroup to a different group, restoring all the
hierarchy properties.

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 569

The head X of a group Gi
X , which is a subgroup of Giþ1

Z ,
discovers a violation of Property 4 iff its routing table does
not contain an entry for the central subgroup Gi

Z , of group
Giþ1
Z , or such an entry exists, but its adjacency flag is not set.

This implies that Gi
X should no longer be a subgroup of

Giþ1
Z . To this end, X cuts its label down to position i, which

corresponds to removing Gi
X from Giþ1

Z (see Fig. 3b). Such
an operation of restoring Property 4 may, in turn, generate a
violation of Property 2. However, this violation will be
subsequently handled by the hierarchy construction algo-
rithm. Our update propagation mechanism guarantees that
all members of Gi

X will adopt the decision of X to leave Giþ1
Z

and later possibly join some other level-iþ1 group, which
guarantees restoring all the hierarchy properties.

Message loss may also be viewed as failure. PL-GOSSIP

tries to tolerate a certain rate of message loss in three ways.
First, following a standard practice [31] and making use of
its well-defined, periodic traffic pattern, PL-GOSSIP mea-
sures the bidirectional link quality that reflects the expected
message loss. Two nodes are allowed to be neighbors iff the
bidirectional quality of their link is above a certain thresh-
old � (e.g., � ¼ 80%). This way PL-GOSSIP ensures the global
expected message loss for the neighbor links to be at most
1� �. Second, by introducing the local age field of each
entry in a node’s routing table, PL-GOSSIP allows several
consecutive gossip messages that refresh this entry to be
lost, which deals with transient variations in message loss.
Finally, while constructing the hierarchy, PL-GOSSIP adds a
custom-tolerable deviation of k � ð1� �Þ to the the slot size
(e.g., for k ¼ 2; r� dr � ð1þ 2 � ð1� �ÞÞe), which forces a
head to defer spawning a supergroup a bit longer to
compensate for the expected message loss that otherwise
might prevent timely delivery of information from another
head. Heavy repeated message loss above the tolerated
values is simply treated as a link failure, handled in a
standard way by PL-GOSSIP.

5 EVALUATION

We evaluated PL-GOSSIP on three platforms: our own
event-driven high-level simulator, TOSSIM—a bit-level
node simulator for the TinyOS sensor node operating
system, and a subset of our testbed consisting of 55 TelosB
nodes [32].

Our simulator is based on other high-level simulators for
WSNs (i.e., [27], [33]), and thus, it makes several standard
assumptions which allow for simulating very large net-
works and for repeating experiments multiple times. First,
it models nodes as having a fixed circular radio range: a
node has links to all and only those nodes that fall within its
range. Second, it ignores the capacity of and congestion in
the network. Finally, it pessimistically fixes message loss to
1� � for all links (i.e., the message loss matches the
bidirectional link quality threshold). Later experiments
with the actual embedded implementation confirmed that
these assumptions do not impair real-world operation of
PL-GOSSIP because 1) PL-GOSSIP creates the logical net-
work structure based solely on physical links and the
measured link quality, and thus, it makes no implicit
simplifying assumptions regarding connectivity or message
loss and 2) the state exchanged between nodes is small

whereas the round length is large, and therefore, the MAC
layer can efficiently schedule packet transmissions without
causing congestion.

TOSSIM and our testbed, in turn, both ran an actual,
embedded TinyOS 2.0 implementation of PL-GOSSIP, which,
to the best of our knowledge, is also the first actual
implementation of an area hierarchy maintenance algorithm
ever reported for WSNs in the literature. TOSSIM incorpo-
rates a realistic low-level wireless signal propagation and
noise model, derived from a number of real-world experi-
ments. Therefore, it allowed us to accurately validate the
protocol communication aspects in realistic settings. The
testbed evaluation, in turn, was aimed at validating the claims
about the systems aspects of PL-GOSSIP. It was performed on
TelosB nodes, which are good representatives of resource-
constrained sensors: a TelosB node has an 8-Mhz 16-bit MCU,
10 KBs of RAM, 48 KBs of flash memory for the code, and a
250-kbit/s radio with a 50-m indoor range. The overall goal of
the implementation-based experiments was thus validating
simulation results and proving that PL-GOSSIP can seam-
lessly operate in the real world on real hardware. Never-
theless, since this paper focuses on algorithmic aspects of PL-
GOSSIP, the majority of the presented experimental results
were obtained via simulations.

Finally, in addition to PL-GOSSIP, we have implemented
a sample state-of-the-art protocol based on hierarchical
beaconing [4], [5]. We use the performance results obtained
for the implementation of the protocol to illustrate some of
the benefits offered by PL-GOSSIP.

5.1 Basic Protocol Properties

We simulated PL-GOSSIP with various network sizes (grow-
ing exponentially from 1 to 4,096 nodes), densities (from
sparse �12 neighbors per node to very dense �80 neighbors
per node), and topologies (grid, uniform, random). Because
the results were consistent in all cases, for the sake of brevity,
in this paper, we present only a subset of the experiments. In
these experiments, we arranged nodes into a square grid with
unit spacing between nodes. The radio range of a node was
2 units, resulting in sparse neighborhoods of at least 5 (corner
nodes) and at most 12 (most of the nodes) neighbors per node.
Since we wanted to get insight into general properties of PL-
GOSSIP, for the experiments presented in this section, we
assumed no failure or message loss.

All nodes were booted simultaneously in round 0 and
the experiment was stopped when the hierarchy had
converged, that is, all the nodes had equal-length labels
with the same last element. Simultaneous boot is a
pessimistic scenario for a hierarchy maintenance protocol,
as there are no higher-level groups formed, and conse-
quently, all nodes must potentially spawn such groups. In
contrast, normally the deployments are incremental, that is,
nodes are added to the network one after another. Highly
unrealistic simultaneous boot, however, allows us to study
the worst-case performance of PL-GOSSIP.

When deferring spawning a supergroup, the number of
slots S used by a “top-level” head (see Section 4.4.1) varied
based on the level: at level 0, S ¼ 10; at higher levels, S ¼ 2.
The rationale behind such a choice is minimizing the
hierarchy height for dense networks. Oversimplifying
things, by having 10 slots instead of 2 at level 0, we reduce

570 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

the number of level-1 heads with respect to the number of
level-0 heads (all nodes) roughly 10 times instead of 2 times.
This generates a more shallow hierarchy. Moreover, the
convergence time does not grow drastically, as from
Lemma 2, the slot length at level 0 is equal to only one
round, that is, after at most 10 rounds each node is
guaranteed to be a member of some level-1 group.

The state maintained by a node is analyzed based on the
height of the hierarchy (i.e., the label length) and the
average size of a node’s routing table. The hierarchy
bootstrapping time is measured in the number of rounds
necessary to construct the complete hierarchy. Finally, the
quality of routes for the applications on top is measured
using a standard metric, the average hop stretch: the
average ratio of the number of hops on the route between
two nodes to the number of hops in the shortest path in the
neighborhood graph.

We conducted experiments for exponentially growing
network sizes, with 100 runs for each size. Fig. 5 presents the
results. It can be seen that both the hierarchy height (see
Fig. 5a) and the average routing table size (see Fig. 5b) grow
polylogarithmically with the network size. In particular, for
a 1,024-node network, in 95 percent of the cases, these values
are below 11 and 33, respectively. This is a direct
consequence of our hierarchy properties (and their corol-
laries, Lemmas 1-3) and, especially, the construction algo-
rithm with probabilistic group head election, supported by
Lemma 5. Short labels and small routing tables require little
memory, which is crucial as sensor devices typically have
only a few kilobytes of RAM. More importantly, however,
small local state also minimizes the bandwidth required by
the protocol. These features, combined with the simplicity of
the code (the listing of the core has only 130 lines including
comments; cf., Appendix F in the supplemental material,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.
2009.89), facilitate implementation on hardware-constrained
sensor nodes.

The convergence time depends on the diameter of the
network, and thus, it grows exponentially with the
exponentially growing network size (see Fig. 5c). However,
the absolute values indicate that the convergence is
relatively fast. For instance, for a 1,024-node network
(diameter 32), the hierarchy is formed within 38.4 rounds,
on average, and at most 70 rounds in 95 percent of the
cases. Assuming a long gossiping period, T ¼ 5 minutes,
with which a current-generation sensor node can likely last
for years on a pair of batteries, we need 3.2 hours, on

average, and at most 5.8 hours in 95 percent of the cases.
We believe that this is insignificant compared to the
expected theoretical network lifetime achievable with such
a long gossiping period.

Again, it is crucial to note that simultaneous boot is the
worst-case scenario. Normally, the network is built incre-
mentally by adding one node after another. In such scenarios,
the network converges typically in two to three rounds after
the last node has been added. This is because adding a node to
a network typically does not require spawning any new
groups as the node can typically join some already existing
level-1 group. The probability that this is not the case and that
a new level-i group has to be spawned drops exponentially
with i. Consequently, the amortized cost of adding a new
node to the network is constant, which is also important for
scalability.

Finally, from the application perspective, the average
hop stretch is relatively stable for increasing network sizes
(see Fig. 5d). Although the results reported for other route
maintenance algorithms are not directly comparable, they
indicate that the route overhead of PL-GOSSIP is small. For
instance, alternative routing techniques, such as graph
embedding [34], geographic routing [33], and compact
routing [35] report similar hop-stretch values. We thus
conjecture that PL-GOSSIP can provide acceptable routes for
the applications.

As mentioned earlier, the experiments performed with
different node densities and network topologies produced
consistent results, and thus, we do not present the plots here.
Denser networks result in shorter labels, but larger routing
tables. The hierarchy convergence time in such networks is
also shorter due to smaller network diameters which enable
faster information propagation. The growth of the routing
tables, in turn, decreases the hop stretch, thereby improving
route quality for the applications. A shift to more irregular
topologies, such as uniform or random, has minimal impact
on the average values of the considered metrics. However, it
slightly increases the variance and the 95th percentile of the
metric values. In general, the behavior of PL-GOSSIP is very
predictable for different configurations.

5.2 Robustness to Message Loss and Node Failures

Message loss, an inherent feature of WSNs, can have two
effects on PL-GOSSIP: 1) it may prevent a head node deferring
supergroup creation from learning in time about a newly
created supergroup it could join, which can increase the
hierarchy height and routing table sizes and 2) it may cause a

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 571

Fig. 5. Basic properties of PL-GOSSIP with respect to the network size. All values were obtained over 100 runs. (a) Hierarchy height. (b) Average
routing table size. (c) Rounds to converge. (d) Average hop stretch.

node to falsely determine that a link is dead, which may

possibly lead to unnecessary changes in the group hierarchy.
To study the first effect of message loss, we repeated the

experiments from Section 5.1 with message loss rates of

1 percent, 5 percent, and high 10 and 20 percent. In these

experiments, we isolated the first message loss effect from

the second one by blocking the eviction of unrefreshed

routing table entries. The results (not plotted) practically do

not differ from Fig. 5, which confirms the efficacy of the

countermeasures PL-GOSSIP employs against message loss

(Section 4.4.2).
Since the second effect of message loss is correlated with

failure detection, we combined the experiments on this

effect with the experiments on network dynamics. In both

cases, a (seeming) failure of a node or a link may turn out

disruptive and trigger hierarchy changes that can tempora-

rily lengthen or break routes between nodes, enlarge

routing tables, or change the hierarchy height. In the

experiments, we used various models of network dynamics

(e.g., uniform failures, correlated failures, massive failures,

and network partitions). PL-GOSSIP proved to be robust in

all the experiments. Thus for brevity, here we present only

the experiments with uniform failures.
In each such experiment, a 1,024-node network operated

for 21,000 rounds. In any round, some 128 nodes out of 1,024

(12.5 percent) were dead. Moreover, 32 randomly selected

nodes were always alive and were used for measuring the

routing quality by letting them send messages to each other.

In the initial 1,000 rounds, there were no changes in the

node population. During the next 10,000 rounds, we

generated node churn of a given rate. For instance, with a

churn rate of 2, in every round, one random live node was

killed and one random dead node was rebooted. Finally,

during the last 10,000 rounds, there was again no churn. We

ran the experiments for different rates of churn and message

loss. We also varied the maximal age of a routing table

entry, which determines how fast the unrefreshed entries

are cleaned. The huge number of configurations and the

long duration of a single experiment allowed us to conduct

only one 21,000-round run per configuration.

Fig. 6 presents the results of a sample run, for
presentation purposes, with high churn and message loss.
Due to repeated message loss triggering unnecessary
hierarchy changes, the reachability (top plot), that is, the
existence of routes between nodes, occasionally falls during
the initial 1,000 and the last 10,000 rounds. This is because
with such high message loss it is very likely that some node
falsely determines that a link failed. If such a “failure”
triggers a membership change for a group, the communica-
tion to and from the group is temporarily disrupted (the
communication within the group is preserved). This
reduces reachability of a number of nodes, depending on
the level of the group in the hierarchy. Node churn, which
introduces real failures in the system, amplifies this effect
causing greater oscillations in reachability.

Similarly, network dynamics generate peaks in the hop
stretch (center plot). This is because propagating a new
short route via a just-booted node requires some time.

Node churn also leads to larger routing tables (bottom
plot). It takes a few rounds, depending on the maximal age
of a routing table entry, to determine that a node is dead or
a group ceased to exist. Therefore, the routing tables are
polluted with entries for no longer existing groups. In
addition, new nodes are constantly added to the system,
further increasing the node routing tables. Nevertheless,
even under high churn, the average routing table size is
relatively small and stable, and it decreases fast when the
churn stops.

Finally, message loss and network dynamics may result
in the increments or decrements of the hierarchy height (not
plotted). Such events, however, are very rare.

Fig. 7 shows the reachability deterioration and the routing
table growth for different rates of churn and message loss.
These results illustrate trends rather than absolute values
because the churn and message loss rates we chose for the
experiments were very high. For the churn rate of 8, the
mean interfailure interval of a node is ð1;024� 128Þ � ð28Þ ¼
224 rounds, which even for a long duty cycle, T ¼ 5 minutes,
translates to 18.67 hours. In practice, once successfully
deployed, a sensor node usually works for weeks or months.
Consequently, even a churn rate of 1 results in a high mean
interfailure interval of 6 days 5 hours and 20 minutes.

We finish the discussion on fault tolerance by augment-
ing the above experimental results with two important
observations. First, a single node failure is rarely disruptive.
Unless a failed node is a group head or the sole node
connecting two groups, no changes in the hierarchy are
necessary. Since the number of such nodes decreases

572 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

Fig. 6. An example of the system behavior with message loss and
network dynamics.

Fig. 7. The hierarchy and route behavior in the presence of churn and
message loss. (a) Reachability. (b) Average routing table size.

exponentially with the level, the probability that a failure is
disruptive also decreases exponentially with the level. As a
result, on average, the work involved in repairing a node
failure is small. Second, the reachability depends on node
proximity. If a disruptive failure occurs within a group, the
reachability between the members of this group deterio-
rates. However, if a failure occurs outside the group, all
members of the group are able to reach each other anyway.
Such behavior is crucial in many applications, for instance,
systems for disaster containment.

5.3 Implementation-Based Experiments

Our TinyOS 2.0 implementation of PL-GOSSIP was tested
using a simple application that periodically broadcasts
gossip messages and reported node statistics to a PC over a
serial port. In addition, the application incorporated
standard link estimation functionality [36]. As mentioned
earlier, this functionality was used by PL-GOSSIP to
discriminate neighbors with high-quality links from poorly
connected nodes.

We conducted experiments with the implementation in
TOSSIM and on our indoor testbed consisting of 55 TelosB
sensor nodes [32]. The testbed was used to confirm that
the implementation can run on real hardware. We tested
how PL-GOSSIP maintains the group hierarchy and routes
on a 4-hop network topology, scattered across several
rooms and changing when nodes were turned off or
rebooted. A sample hierarchy built and maintained by PL-
GOSSIP in one of such testbed experiments is depicted in
Fig. 8. The hierarchy simply meets all the properties
defined in Section 4.1. Moreover, whenever the internode
connectivity or the node population changes such that

those properties become invalid, PL-GOSSIP detects and
accounts for such changes, in exactly the same way as in
the above high-level simulations. In other words, the
testbed experiments evidence that PL-GOSSIP seamlessly
operates on the real hardware.

TOSSIM, in turn, was employed to validate the claims
about large-scale operation with realistic communication,

and thus, we used a similar grid-based 1,024-node config-
urations as for the experiments with our simulator. With the
standard tools and empirical real-world data provided by
TOSSIM, we set up two realistic environments, outdoor and
indoor, differing in signal propagation characteristics. Both

environments exhibited irregularities in the neighborhood
graph. In the outdoor environment, the irregularities were
smaller, and thus, the link quality was mainly a function of
distance. In contrast, in the indoor one, due to phenomena
such as multipath reflections, nearby nodes were not

necessarily connected and there were many asymmetric
links. In fact, this environment exhibited much worse

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 573

Fig. 8. An example hierarchy built by PL-GOSSIP on our 55-node testbed.

Fig. 9. Hierarchy bootstrap in TOSSIM and our simulator.

communication quality than our testbed. A sample of the
experimental results from TOSSIM are presented in Figs. 9
and 10. Again, the results match with the high-level
simulations, which confirms that PL-GOSSIP can operate
in realistic large deployment scenarios.

5.4 Comparison with Existing Protocols

Encouraged by the above results, we also implemented an
existing state-of-the-art hierarchy maintenance protocol [4],
[5]. The protocol is based on hierarchical beaconing (cf.,
Section 2.2). Periodically, every T time units, or after a
change in the hierarchy, each group head broadcasts a
beacon message. The beacon message is flooded over
multiple hops depending on the level of the issuing node
as a group head, as explained in Section 2.2. Typically, a
level-i group head issues a beacon that is forwarded over 2i

hops which offers a polylogarithmic hierarchy height. In
this way, in a single period, each node receives and
rebroadcasts multiple beacon messages from the group
heads that have the node in their advertisement radii. Using
the received beacons, a node fills in and refreshes its routing
table. Based on the contents of their routing tables, some
nodes probabilistically promote themselves to higher-level
group heads using heuristics similar to the ones of PL-
GOSSIP (cf., Section 4.4). Since a cost of forwarding higher-
level beacon in every period is prohibitive, the protocol
amortizes the cost over longer periods by increasing the
interbeacon interval proportionally to the beacon propaga-
tion radius: a level-i beacon, which is forwarded over 2i

hops, is issued every 2i protocol periods. Even with this
modification, however, in every period, a node forwards
multiple beacon messages. Since, to the best of our knowl-
edge, this was again the first implementation of the protocol
on real sensor nodes, it took us considerable time to make it
work in the real world.

To systematically compare the performance of PL-
GOSSIP with the performance of the above protocol, we
have adapted the implementation of PL-GOSSIP such that it
built the same hierarchy as the implementation of the other
protocol. To this end, we have replaced in PL-GOSSIP the
hierarchy properties assumed in Section 4.1 with the
hierarchy properties employed by the existing protocol
(e.g., the radius of a group could not exceed 2i). This, in
particular, required implementing in PL-GOSSIP the same

group head promotion heuristics as in the other protocol. In
practice, we tried to make the implementations share as
much code as possible. In effect, PL-GOSSIP maintained a
hierarchy with the same properties as the other protocol,
but with completely different (gossip-based) mechanisms.
Consequently, we obtained a means of systematically
comparing the existing hierarchy maintenance mechan-
isms—notably hierarchical beaconing—with the gossip-
based mechanisms introduced by PL-GOSSIP. In addition,
by having modified PL-GOSSIP, we confirmed our claims
from Section 4.1 that the ideas behind our protocol can
indeed be employed to maintain group hierarchies with
various sets of properties.

We have compared the two different hierarchy main-
tenance protocol implementations both in TOSSIM and on
our testbed. We were interested to see how the protocols
differ in terms of the energy consumption and the latency of
bootstrapping and recovering the hierarchy. In contrast to
PL-GOSSIP, the previously proposed protocol does not offer
any opportunities for aggressive energy conservation and
simply assumes that the MAC layer is solely responsible for
powering a node’s radio down when inactive. Therefore, to
compare in a fair manner the energy consumption of that
protocol with that of PL-GOSSIP, we used the standard
TinyOS 2.0 MAC layer [37], which opportunistically shuts
node radios down when inactive while ensuring that a
sleeping node always wakes up to hear a message
transmission. Employing that MAC layer, however, implies
that the resulting energy consumption of PL-GOSSIP can be
orders of magnitude higher than when employing a
customized MAC layer that makes use of the well-defined
periodic traffic pattern offered by the protocol [38], [39].
Since presenting all the details of the experiments is beyond
the scope of this paper, we give only a sample of the
experimental results in Fig. 11. An interested reader should
refer to our subsequent paper [28].

In short, even without the customized MAC layer, PL-
GOSSIP maintains the hierarchy more efficiently. In
Fig. 11, we can see that when the protocols operate with
the same period/round, T ¼ 10 minutes, PL-GOSSIP

generates fewer messages, but bootstraps the hierarchy
more slowly. We can vary T for the protocols to make
them either consume the same amount of energy or
bootstrap the hierarchy with the same speed. When
configured to bootstrap the hierarchy with a similar
speed as the other protocol, PL-GOSSIP consumes 33-
51 percent less energy. When the two protocols are
configured to consume a similar amount of energy, in
turn, PL-GOSSIP bootstraps the hierarchy 2.6-3.1 times
faster and recovers it after failures even 11.12 times faster
[28]. This is because the hierarchy information in PL-
GOSSIP is disseminated more efficiently. Instead of using
a single message to refresh a single routing entry at a
node, as in hierarchical beaconing, in PL-GOSSIP, a single

574 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

Fig. 10. Common statistics for the implementation-based experiments of
PL-GOSSIP.

Fig. 11. Comparison of PL-GOSSIP and an existing protocol based on hierarchical beaconing.

received gossip message refreshes multiple routing entries
at a node. Consequently, nodes generate fewer messages
to maintain the hierarchy, and thus, the MAC layer
generates fewer radio on/off events, which are the main
cause of overhead on energy consumption. As a result,
even without a customized MAC layer that makes use of
the well-defined traffic offered by PL-GOSSIP, PL-GOSSIP

maintains the group hierarchy in a more efficient way
than existing state-of-the-art protocols.

6 CONCLUSION

In this paper, we considered the problem of maintaining a

recursive multihop area hierarchy in large WSNs. We

presented a gossip-based protocol that maintains such a

hierarchy in a manner that addresses all the peculiarities of

WSNs. More specifically, our protocol offers excellent

opportunities for aggressive energy saving and facilitates

provisioning energy harvesting infrastructure. In addition,

it bootstraps and recovers the hierarchy after failures

relatively fast while also being robust to message loss.

Finally, it seamlessly operates on real sensor node hardware

in realistic deployment scenarios. We have confirmed these

claims through simulations and experiments with an actual

embedded implementation of the protocol. In addition, we

have shown that our solution can outperform existing state-

of-the-art hierarchy maintenance protocols.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to

A. Bakker, A. Gaba, M. Szymaniak, and G. Urdaneta for

providing the computing power necessary to conduct

some of the simulations. Moreover, the authors would

like to thank their associate editor and the anonymous

reviewers for their feedback, which helped to improve the

final version of this paper.

REFERENCES

[1] F. Kamoun, “Design Considerations for Large Computer Com-
munication Networks,” PhD dissertation, Univ. of California, Apr.
1976.

[2] J. Hagouel, “Issues in Routing for Large and Dynamic Networks,”
PhD dissertation, Columbia Univ., May 1983.

[3] P.F. Tsuchiya, “The Landmark Hierarchy: A New Hierarchy for
Routing in Very Large Networks,” ACM SIGCOMM Computer
Comm. Rev., vol. 18, no. 4, pp. 35-42, Aug. 1988.

[4] S. Kumar, C. Alaettinoglu, and D. Estrin, “Scalable Object-
Tracking through Unattended Techniques (SCOUT),” Proc. Eighth
IEEE Int’l Conf. Network Protocols (ICNP ’00), pp. 253-262, Nov.
2000.

[5] S. Bandyopadhyay and E.J. Coyle, “An Energy Efficient Hier-
archical Clustering Algorithm for Wireless Sensor Networks,”
Proc. IEEE INFOCOM ’03, pp. 1713-1723, Mar./Apr. 2003.

[6] S. Du, A. Khan, S. PalChaudhuri, A. Post, A.K. Saha, P. Druschel,
D.B. Johnson, and R. Riedi, “Self-Organizing Hierarchical Routing
for Scalable Ad Hoc Networking,” Technical Report TR04-433,
Rice Univ., Mar. 2004.

[7] K. Iwanicki and M. van Steen, “Using Area Hierarchy for
Multi-Resolution Storage and Search in Large Wireless Sensor
Networks,” Proc. IEEE Int’l Conf. Comm. (ICC ’09), June 2009.

[8] X. Li, Y.J. Kim, R. Govindan, and W. Hong, “Multi-Dimensional
Range Queries in Sensor Networks,” Proc. First ACM Int’l Conf.
Embedded Networked Sensor Systems (SenSys ’03), pp. 63-75, Nov.
2003.

[9] C. Sharp, S. Schaffert, A. Woo, N. Sastry, C. Karlof, S. Sastry, and
D. Culler, “Design and Implementation of a Sensor Network
System for Vehicle Tracking and Autonomous Interception,” Proc.
Second European Workshop Wireless Sensor Networks (EWSN ’05),
pp. 93-107, Jan. 2005.

[10] I.F. Akyildiz and I.H. Kasimoglu, “Wireless Sensor and Actor
Networks: Research Challenges,” Ad Hoc Networks, vol. 2, no. 4,
pp. 351-367, Oct. 2004.

[11] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J.
Hui, P. Dutta, and D. Culler, “Marionette: Using RPC for
Interactive Development and Debugging of Wireless Embedded
Networks,” Proc. Fifth Int’l Conf. Information Processing in Sensor
Networks (IPSN ’06), pp. 416-423, Apr. 2006.

[12] K. Iwanicki and M. van Steen, “Towards a Versatile Problem
Diagnosis Infrastructure for Large Wireless Sensor Networks,”
Proc. Second Int’l Workshop Pervasive Systems (PerSys ’07), pp. 845-
855, Nov. 2007.

[13] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J.
Heidemann, “An Evaluation of Multi-Resolution Storage for
Sensor Networks,” Proc. First ACM Int’l Conf. Embedded Networked
Sensor Systems (SenSys ’03), pp. 89-102, Nov. 2003.

[14] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and R.
Govindan, “Multiresolution Storage and Search in Sensor Net-
works,” ACM Trans. Storage, vol. 1, no. 3, pp. 277-315, Aug. 2005.

[15] A. Kansal, J. Hsu, S. Zahedi, and M.B. Srivastava, “Power
Management in Energy Harvesting Sensor Networks,” ACM
Trans. Embedded Computing Systems, vol. 6, no. 4, p. 32, Sept. 2007.

[16] K. Iwanicki and M. van Steen, “The PL-Gossip Algorithm,”
Technical Report IR-CS-034, Vrije Univ., http://www.few.vu.nl/
~iwanicki/, Mar. 2007.

[17] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic Algorithms for
Replicated Database Maintenance,” Proc. Sixth Ann. ACM Symp.
Principles of Distributed Computing (PODC ’87), pp. 1-12, Aug. 1987.

[18] R. van Renesse, “Power-Aware Epidemics,” Proc. 21st IEEE Int’l
Symp. Reliable Distributed Systems (SRDS ’02), pp. 358-361, Oct.
2002.

[19] J. Han and M. Kamber, Data Mining: Concepts and Techniques.
Morgan Kaufmann, 2001.

[20] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
Efficient Communication Protocols for Wireless Microsensor
Networks,” Proc. 33rd Hawaii Int’l Conf. System Sciences, vol. 8,
Aug. 2000.

[21] A. Manjeshwar and D.P. Agrawal, “TEEN: A Routing Protocol for
Enhanced Efficiency in Wireless Sensor Networks,” Proc. 15th
IEEE Int’l Parallel and Distributed Processing Symp. (IPDPS ’01
Workshops), Apr. 2001.

[22] M. Ye, C. Li, G. Chen, and J. Wu, “EECS: An Energy Efficient
Clustering Scheme in Wireless Sensor Networks,” Proc. 24th IEEE
Int’l Performance, Computing, and Comm. Conf. (IPCCC ’05), pp. 535-
540, Apr. 2005.

[23] N. Shacham and J. Westcott, “Future Directions in Packet Radio
Architectures and Protocols,” Proc. IEEE, vol. 75, no. 1, pp. 83-99,
Jan. 1987.

[24] B. Chen and R. Morris, “Lþ: Scalable Landmark Routing and
Address Lookup for Multi-Hop Wireless Networks,” Technical
Report MIT-LCS-TR-837, Mass. Inst. of Technology, Mar. 2002.

[25] L. Subramanian and R.H. Katz, “An Architecture for Building
Self-Configurable Systems,” Proc. ACM MobiHoc ’00, pp. 63-73,
Aug. 2000.

[26] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The Broadcast
Storm Problem in a Mobile Ad Hoc Network,” Proc. ACM
MobiCom ’99, pp. 151-162, Aug. 1999.

[27] P. Levis, N. Patel, D. Culler, and S. Shenker, “Trickle: A Self-
Regulating Algorithm for Code Propagation and Maintenance in
Wireless Sensor Networks,” Proc. First USENIX Symp. Networked
Systems Design and Implementation (NSDI ’04), pp. 15-28, Mar. 2004.

[28] K. Iwanicki and M. van Steen, “Multi-Hop Cluster Hierarchy
Maintenance in Wireless Sensor Networks: A Case for Gossip-
Based Protocols,” Proc. Sixth European Conf. Wireless Sensor
Networks (EWSN ’09), pp. 102-117, Feb. 2009.

[29] K. Iwanicki and M. van Steen, “On Hierarchical Routing in
Wireless Sensor Networks,” Proc. Eighth ACM/IEEE Int’l Conf.
Information Processing in Sensor Networks (IPSN ’09), pp. 133-144,
Apr. 2009.

IWANICKI AND VAN STEEN: GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE WIRELESS... 575

[30] D. Thaler and C.V. Ravishankar, “Distributed Top-Down Hier-
archy Construction,” Proc. IEEE INFOCOM ’98, pp. 693-701, Mar./
Apr. 1998.

[31] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I.
Stoica, “A Unifying Link Abstraction for Wireless Sensor Net-
works,” Proc. Third ACM Int’l Conf. Embedded Networked Sensor
Systems (SenSys ’05), pp. 76-89, Nov. 2005.

[32] K. Iwanicki, A. Gaba, and M. van Steen, “KonTest: A Wireless
Sensor Network Testbed at Vrije Universiteit Amsterdam,”
Technical Report IR-CS-045, Vrije Univ., http://www.few.vu.nl/
~iwanicki/, Aug. 2008.

[33] B. Leong, B. Liskov, and R. Morris, “Geographic Routing without
Planarization,” Proc. Third USENIX Symp. Networked Systems
Design and Implementation (NSDI ’06), pp. 339-352, May 2006.

[34] J. Newsome and D. Song, “GEM: Graph EMbedding for Routing
and Data-Centric Storage in Sensor Networks without Geographic
Information,” Proc. First ACM Int’l Conf. Embedded Networked
Sensor Systems (SenSys ’03), pp. 76-88, Nov. 2003.

[35] Y. Mao, F. Wang, L. Qiu, S.S. Lam, and J.M. Smith, “S4: Small State
and Small Stretch Routing Protocol for Large Wireless Sensor
Networks,” Proc. Fourth USENIX Symp. Networked Systems Design
and Implementation (NSDI ’07), pp. 101-114, Apr. 2007.

[36] A. Woo, T. Tong, and D. Culler, “Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks,”
Proc. First ACM Int’l Conf. Embedded Networked Sensor Systems
(SenSys ’03), pp. 14-27, Nov. 2003.

[37] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media
Access for Wireless Sensor Networks,” Proc. Second ACM Int’l
Conf. Embedded Networked Sensor Systems (SenSys ’04), pp. 95-107,
Nov. 2004.

[38] T. Melodia, M.C. Vuran, and D. Pompili, “The State of the Art in
Cross-Layer Design for Wireless Sensor Networks,” Proc. Second
EuroNGI Workshop Wireless and Mobility, pp. 78-92, July 2005.

[39] P. Dutta, D. Culler, and S. Shenker, “Procrastination Might Lead
to a Longer and More Useful Life,” Proc. Sixth ACM Workshop Hot
Topics in Networks (HotNets-VI), Nov. 2007.

Konrad Iwanicki is currently working toward the
PhD degree in the Computer Systems Group,
Vrije Universiteit Amsterdam. He is a student
member of the ACM, the IEEE, and the IEEE
Computer Society. His research interests in-
clude large-scale distributed systems and net-
work protocols, especially for low-power wireless
networks. His recent research activities have
been focused on scalable point-to-point routing
for low-power wireless networks. In particular,

he has been investigating the applicability of hierarchical routing and
other small-state routing protocols to wireless sensor networks. Prior to
his current position, he was working on a scalable archival storage
system in the Robust and Secure Systems Group of NEC Laboratories
America, Inc. The system he helped create has recently become a
successful commercial product.

Maarten van Steen is full professor in the
Computer Systems Group, Vrije Universiteit
Amsterdam. He teaches modules and courses
covering distributed systems, computer net-
works, operating systems, and complex net-
works to academics and professionals. He has
coauthored two textbooks on networked compu-
ter systems. His research is focused on large-
scale distributed systems with a strong emphasis
on adaptive techniques that support automatic

replication, management, and organization of wired and wireless
systems. Recently, he has been exploring gossip-based solutions to
achieve decentralized autonomous systems, partly focusing on very
large wireless sensor networks and pervasive computing. Furthermore,
he is a consultant for Philips Research, and closely participates with a
collaboration of high-tech SMEs for developing and deploying real-world
pervasive computing systems. He is a senior member of the IEEE and the
IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

