IWANICKI AND VAN STEEN: APPENDICES TO PAPER “GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE..” 1

APPENDIX A
PROOF OF LEMMA 1

Lemma 1: A node from a level-i group can reach a node
in any adjacent level-i group in at most 3’ hops.

Proof: The proof is performed by induction.

Basis: i = 0. Let’s take two arbitrary adjacent level-0
groups: G4 and GY. From Property 1, G = {A} and G% = {B}.
GX and G% are adjacent, thus A and B are neighbors, that is,
A can reach B in 1= 3% hop. Since we chose G4 and GY
arbitrarily, the lemma is true for i = 0.

Inductive step: i = k+ 1 (where k > 0). We assume that
the lemma holds for all levels < k. Let’s take two arbitrary
adjacent level-i groups GZ and G};, and an arbitrary node P €
G). Let R denote a node in Gj that has a neighbor Q such
that O € G/, (existence of Q is guaranteed by the definition of
adjacent groups).

Consider lf;vel-i subgrpups, that is, G"'C*l, G’E' , and GiEI , such
that P€ G-', 0 € Giy!, and Re GL .

We have the following three situations:
1): C = D (group Gic71 is adjacent to group G’IE*I).

In this case, from the inductive assumption P can reach some
node from G ! (hence in G%) in at most 3~ < 3/ hops.
2): G is adjacent to G, .

In this case, from the inductive assumption P can get to some
node in G%! in a most 3! hops and any node from G%, ! can
get to a node from Gf{l in at most 3*~! hops. Consequently,
P can get to some node from GEI (hence in G};) in at most
23771 < 37 hops.

3): ,GF] is not adjacent to G};l (but from Property 4, G’g :
and G5! are both adjacent to Gi 1.

In this case, from the inductive assumption P can get to some
node in G in at most 3"~! hops. Likewise, any node from
Gg_l can get to a node from ij_l in at most 3! hops and any
node from Gi! can get to a node from G ! in at most 37!
hops. Therefore, P can get to some node from Gf{l (hence in
Gf,;)in at most 3-3~! =3/ hops.

Consequently P can get to a node from Gy in at most 3'
hops. Since we chose P arbitrarily, any node from G, can get
to some node from GY in at most 3'. Because G/, and Gi were
also chosen arbitrarily, the lemma is true for i =k+ 1.

By applying mathematical induction to the basis and the
inductive step, we proved the lemma for all i. Moreover, 3' is
a tight bound, that is, it is reachable for some configurations.

0

APPENDIX B
PROOF OF LEMMA 2

Lemma 2: The distance between the head nodes of two
adjacent level-i groups is at most 3’ hops.

Proof: The proof is performed by induction. Let d(A, B)
denote the distance in hops between nodes A and B.

Basis: i = 0. Let’s take two arbitrary adjacent level-0
groups: G4 and GY. From Property 1, G} = {A} and G% = {B}.
Gg and G% are adjacent, thus A and B are neighbors, that is,
d(A,B) =1=3% As we chose G} and GY arbitrarily, the
lemma is true for i = 0.

Inductive step: i = k+ 1 (where k > 0). We assume that
the lemma holds for all levels < k. Let’s take two arbitrary
adjacent level-i groups G and Gj. We have three possible
situations: 1): G, ! is adjacent to Gi; .

In this case, from the inductive assumption, d(A,B) <3~ <
3l

2): There exists Gic_l' such that it belongs to qu or Gg and
it is adjacent to both GA_I and Gy .

or a symmetric
A / . .
N 12 situation

In this case, d(A,B) <d(A,C)+d(B,C). From the inductive
assumption d(A,C),d(B,C) <31, thus d(A,B) <2371 < 3,

3): There exist G- ' and G, ' such that G5! belongs to G},
and G, ! belongs to G and G ' is adjacent to Gl '. (From
Prp;])erty 4, G’g ! is adjacent to Gi(l, and G’E ! is adjacent to
Gy ')

In this case, d(A,B) < d(A,C)+d(C,D)+ d(D,A). From
the inductive assumption d(A,C),d(C,D),d(D,A) < 3/~!, thus
d(A,B) <3.371 =30

Consequently, we have d(A,B) < 3'. Because G, and Gi
were chosen arbitrarily, the lemma is true for i = k+ 1.

By applying mathematical induction to the basis and the
inductive step, we proved the lemma for all i. Moreover, 3 s
a tight bound, that is, it is reachable for some configurations.

Ol

APPENDIX C
PROOF OF LEMMA 3

Lemma 3: The distance between any two members of a
level-i group is at most 3' — 1 hops.

Proof: We choose an arbitrary group G/ and two arbitrary
nodes P and Q that are members of this group. We add another

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

node R to the system such that R’s only neighbor is QE] R
forms singleton groups G% . G;r From Lemma P can reach
R in at most 3’ hops. Since P can reach R only through Q, P
can reach Q in at most 3/ — 1 hops, that is the distance between
P and Q is at most 3 — 1.

Because P and Q were chosen arbitrarily, the lemma holds
for any members of group Gg. Likewise, the arbitrary choice
of Gi‘ and i proves the lemma for all i. Again, 3’ — 1 is a tight
bound. O

APPENDIX D
PROOF OF LEMMA 4

Lemma 4: Update propagation based on the responsibility
rule and update vectors guarantees eventual consistency of
node labels: in the absence of changes in the system, for any
group G§(and any node A, if A is eventually a member of G§(
(eventually L(A)li]l = X), then A and X eventually have equal
labels starting from position i (for all k > i, L(A)[k] = L(X)Ik]).

Proof: Let (L(A)lil), denote the i-th element of the label
of node A in round r. Moreover, we treat the first (starting
from position 0) null value in the label as the end of the
label. We observe that, from Property 1, at level 0 every node is
always a member of its own singleton group. Therefore, in the
remainder of the proof, when referring to eventual consistency
at level i, we always assume that i > 0.

After changes in the system have stopped, node A eventually
becomes a member of Gg((i > 0) iff:

PR (((L(A)[i]),:(L(X)[i]>r=X) A
Vo< j<i (UL, = UAL),5) A
Vo<j<i (LWL, = (LAIL)D) 5 # null))~

In other words there exists a stabilization round for A’s label
at level i, rj‘", in and after which: A’s label length is greater
than i, the i-th element of A’s label is always equal to X, and
A’s label and update vector do not change at lower levels.

All nodes that are eventually members of G}, constitute the
following set: {A | A is eventually a member of Gi}. Since
this set is finite, we can define its stabilization round, %, as
the maximum stabilization round over all its members. In other
words, 7 denotes the round after which no nodes join or leave
group Gi. We will use (G)5 to denote the stable set of nodes
constituting group Gi.

We will show that if a node belongs to (G%),s its label
and X’s label will eventually be equal at position i+1. In
other words, the two nodes from the same level-i group
will eventually belong to the same level-i+1 group. This is
sufficient to prove eventual consistency. More formally, for an
arbitrary node A € (G%),s:, we will show that (s x):

St Vo (Lt 11, = (LeOti+11),) A
Vos it (UL, = (UALD,51) A

Vosjeirt (LD, = (LAY 1 # mll)).

1. Although in a practical setting this may be impossible, it is perfectly valid
from the graph theory perspective, and consequently, does not invalidate the
proof.

IWANICKI AND VAN STEEN: APPENDICES TO PAPER “GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE..” 3

Recall the responsibility rule and assume that, before the
changes have stopped, the last update by X, acting as a level-
i head, was performed in round r ’“ . The update had the
sequence number A and corresponded to writing () at the
i+1-st position of X’s label. More formally, the following
conditions hold for X’s label and update vector:

Vs it ((<L<X>[i+ll>r=0) A (<U<x>m>,=A))

We will consider rounds > max(r'i,ry*"). We will show
that, for an arbitrary node A € <G§(>rl , the following condition
holds (iit):

3 t+| >max(r‘i_,r;"+|) Vrzr‘;iJrl ((<L(A)[l+ 1]>r = O) A
(Wi, = a)),

which is sufficient to prove (x).

Let us observe that since the group membership is based on
connectivity, all members of (Gi),s form a connected graph.
We can prove this by induction. For i =0, (Gy),s = {X},
hence (G4), is connected as a singleton graph. For i > 0,
our inductive assumption is that the connectivity property
holds for all levels j < i. Let us then consider two arbitrary
nodes: P,Q € <G3(> #i. Like in earlier proofs, we can have three
possibilities. 1): P,Q € <G§,_1>rr,- for some Y, in which case
P and Q are connected from the inductive assumption. 2):
Pc (G;fl)rs,- and Q € <G§{I>rs[(or vice versa) for some Y. In
this case, from the inductive assumption, all nodes in <G§71>rs,-
and all nodes in <G§(_1> ~i are connected. Moreover, from
Property 4, since (Gi '), is the central subgroup of (Gi),s,
it is adjacent to (G?1>r.v,~, that is, there exists at least one
link between (G '),s and (G} 1), Therefore, all nodes from
(GiY) s (in particular Q) are connected with all nodes from
(G715 (in particular P) and vice versa. 3): P € (GL 1)
and Q € (G%_1>,s,- for some Y and Z. Like in 2), in this case
all nodes from <G§/_l> ~ are connected with all nodes from
(G5, through the central subgroup (G4 '), . Consequently,
P and Q are connected. Since we chose P and Q arbitrarily,
the connectivity condition is true for all nodes that belong to
<G§(>,s,-. By applying mathematical induction we proved that
nodes in any (G%),s form a connected graph.

Consequently, we can prove (ffi) by induction over the
number of hops, n, from X.

Basis: n=0. The only node, A € <G§(>rw, that is only zero
hops away from X is A =X, so so ry"" = max(ri,ry*").
Consequently, ($i}) holds.

Inductive step: n =k + 1 (where k > 0). We assume that
(£%%) holds for all nodes in (GY),s that are < k hops away
from X. Let us take an arbitrary node, A € <G§()rs,~, that is k+1
hops away from X. A has a neighbor, B € (Gi),s, which is k
hops away from X and for which (11%) holds:

35 ’+l>max(r‘1 r ’H) V,,Z,’;iﬂ <(<L(B)[l—|— 1]>r = O) A
(UML), = A)).
Assume that there is no message loss. In round rfgi+ '+1,A

receives a gossip message from B and compares its label
against B’s label to find the minimal common level (see

Sect. 4.3.2). Since A and B are members of (Gi),s, their
minimal common level, j is <i. A then compares its update
vector with B’s update vector starting from position j. Since
both A and B belong to (GY),, the first position at which
their update vectors can differ is i, otherwise one of them
would have to change its update vector in the present round
at position < i, which precludes membership in (G),s;. If the
update vectors do not differ at position i ((UB)Lil) iy =

(UAL]) sic1 = A), then (LA i1, = O because the
responsibility rule ensures the followfng invariant:

Vroir (((L(P)[i]),z(L(Q)[i]),) A (UPIi), = (UQIH),) =

((LP)i+ 1), = (LQ)li + 11>,)).

If the update vectors differ at position i, in turn, then
(UAL) s +1 <Aas Ais the last update performed by X act-
ing as a level-i head. Consequently, following our consistency
enforcement algorithm A copies B’s label and update vector
starting from position i. As a result, (L(A)[i]>r;;+| > =0 and

(UIil) 511, = A. In both cases, we have shown that:
B

HVXH >max(r'i,ry 'H <(<L(A)[l+ 1]> Y'H = O) A
(<U(A)[l]>rz+1 = A))
A

Thus, to prove (iii), we still have to show that A’s label ele-
ment at level i4-1 and A’s update vector element at level i do not
change in any round r > rj{“ To this end, assume the opposite,
that is, in some round r > rA“", A’s label or update vector
change at the mentioned levels. The change cannot be a result
of a local update by A at some level < i because this would
violate A € (G). Therefore, the change must be a result of
copying the label of some neighbor, C, after a gossip message
from the neighbor has been received. Again, the copying
cannot be performed starting from any level < i, as this would
violate A € (G%),si. Therefore, the copying occurred starting
from level i. This means that (L(A)lil), = (L{Olil), = X and
(Ui, = A < (U(O)lil),. We have a contradiction, because
A was the sequence number of the last update performed by
X acting as a level-i head, and thus it must be the case that:
A > (U(Oil),. Therefore, we have proved (#%%). Since A was
chosen arbitrarily, the inductive step holds for any node that
belongs to (Gi),s and is k+ 1 hops away from X.

By applying mathematical induction to the basis and the
inductive step, we proved (&%}) for all n, that is, for all nodes
that constitute (G'),s. Since for any A € (GY) s, (x*x) is a
direct consequence of (%), we proved (xx*x) for all nodes
that belong to <G§(>rsi. In other words, we proved that, for any
level i, any two nodes that eventually have equal labels at level
i, also eventually have their labels equal at level i+1.

Because the number of levels is finite, the proof implies
that, for any level i, any two nodes that have their label equal
at level i, also have their labels equal at all levels k > i. This
ends the proof of Lemma [4] O

APPENDIX E
PROOF OF LEMMA 5

Lemma 5: Assume that the slot size is longer than the
number of rounds it takes to propagate information between
the heads, X and Y, of two adjacent “top-level” groups G§(
and G’)',. In this case, with probability > l, Gé(will be able to
join G?’l or vice versa.

Proof: Consider two arbitrary nodes, X and Y, that are
heads of adjacent “top-level” groups G and G respectively.
X and Y must potentially spawn level-i4+-1 groups.

Let rx and ry denote the round in which X and Y respec-
tively choose their virtual slots, as described in Sect. 4.4.1.
Note that this implies that in round ry, X has learned about
Y, and similarly, in round ry, Y has learned about X. Let the
number of slots § = 2. Moreover, assume that the slot size,
R, meets the requirements of the lemma, that is, it is longer
than the number of rounds necessary to propagate information
between X and Y.

We have the following four possible slot selection configu-
rations, each obtained with probability %:

| I]I|m|Iv
s OO0 1 1
Sy 0 1 0 1

Without the loss of generality assume that ry > ry, that is,
X selects its slot in the same or later round than Y. Consider
configuration III, in which X selects slot sy =1 and Y selects
slot sy =0. Let ry = rx +sx-R+1 denote the round in
which X potentially spawns group G?l, as specified by the
algorithm. Likewise, let ry = ry +sy - R+ 1 denote the round
in which Y potentially spawns group G§,+l. We will show
(by contradiction) that by the time it spawns group Gi!, X
discovers that Y has spawned Gg,“. Consequently, X can make
G a subgroup of G§/+1, decreasing the number of groups at
level i+1.

To this end, assume that X spawns Gy'' in round r§ and
Y spawns G5! in round rj. Consider value r —rf which
denotes how many rounds after ¥ has spawned group G? n

node X spawns group G?l.

% *
rx—ry =

= (rx+SX~R+1)—(ry+Sy~R+1):

= rx—ry—‘r(SX—Sy)'R:

= rx—ry+(1—0)-R=

= ry—ry +R Z(from: rx>ry)

> rx—rx+R=

= R.

From the above calculation X spawns group Gg'(+ I at least
R rounds after ¥ has spawned group G;H. Contradiction!,
because within at most R rounds, X would have learned that
Y spawned G;“, and consequently, would have made G} a
subgroup of G;}“. Therefore, with probability at least %, G
and Gi, will be subgroups of a common group G;j/ly Because
X,Y, Gé(, and Gg, were chosen arbitrarily, Lemma holds for
any head node at any level. In practice, the aforementioned
probability is higher than J. 0

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

APPENDIX F
THE MAINTENANCE ALGORITHM

Each node running PL-GOSSIP reacts to two types of events:
reception of a gossip message and periodical timeouts. Below,
we describe these events in detail. We present the simplest
version of the algorithm, without any optimizations.

F.1 Gossip Message Reception

Receiving a message (see Listing [T)) allows a node to discover
changes in the hierarchy and to update its routing table. A
gossip message contains the label of the sender node with the
corresponding update vector and the sender’s routing table,
plus some possible additional information piggybacked by
lower layers (e.g., link quality information of the sender’s
neighbors). First, the node that received the message searches
for the minimal common-level group it shares with the sender
of the message (listing lines 3-7, see also Sect. 4.3.2). If such
a group exists (1l. 9), the node compares its update vector
with the sender’s update vector to determine which of the two
labels is more fresh (1. 13-17, see also Sect. 4.3.2). If both
the labels are fresh (1. 19), the node only updates its routing
table with the entries contained in the gossip message (11. 20-
21). If, however, the sender’s label is more fresh (1l. 22), before
updating its routing table (1l. 27-28), the node adopts that label
as explained in Sect. 4.3.2 (1. 23-26). Finally, if the sender’s
label is stale, the node can still use parts of the sender’s routing
table to update its own routing table (1. 30-32).

If the node and the sender of the gossip message do not
share any group (Il. 35), the node has just discovered a
violation of Property 2 (see Sect. 4.4.1). To propagate the
information about this violation to the head of its top-level
group, the node adds appropriate entries to its routing table,
as explained in Sect. 4.2 (1l. 36-43). These entries will allow
the head to react to the violation.

F.2 Periodic Timeout

The timeout event (see Listing [2) gives a node the opportunity
to react to the changes in the system that occurred since the last
timeout. First, the node removes stale entries from its routing
table (listing lines 49-50), which enables detecting disruptive
failures. More specifically, if the node, being a level-i head
(where i > 0), is not the top-level head (1l. 55), it must check
whether the central subgroup of its level-i+1 group is still
reachable and adjacent to the node’s level-i group (Il. 56-61),
as explained in Sect. 4.4.2. If these conditions are not met (a
violation of Property 4 occurred), the node cuts its label down
to level i (1. 62-65), as described in Sect. 4.4.2. Otherwise,
from the node’s perspective, there were no disruptive failures
in the system.

Second, if the node is the top-level head (1l. 72, possibly
as a result of an earlier label cut), it must check whether the
hierarchy construction is complete. To this end, the node first
determines if its routing table contains entries for a level-i4-1
group it could join (ll. 73-76), as explained in Sect. 4.4.1. If
this is the case (1. 76), the node joins its level-i group to the
level-i+1 group, by extending its label with the identifier of

IWANICKI AND VAN STEEN: APPENDICES TO PAPER “GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE..”

HANDLER onGossipReceived(msg) {

1
2
3 // determine if we share any group

4 inti=0;

5 for (; i < min(this.lab.len, msg.lab.len); ++i)
6 if (this.lab[i] == msg.lab[i])

7 break;

8

9

if (i < min(this.lab.len, msg.lab.len)) {
10 // we found a node that shares a group with us,

1 // so determine who has a more recent label

13 // find the minimal differing position

4o dntj=i
15 for (; j < min(this.lab.len, msg.lab.len); ++j)
16 if (this.uvec[j] != msg.uvec[j])

17 break;

18

19 if (j >= min(this.lab.len, msg.lab.len)) {

20 // we both have the same labels

21 this.rt.mergeWith(msg.rt, i — 1, msg.rt.topRow);
2 } else if (this.uvec[j] < msg.uvec[j]) {

23 // we are not up to date, so

24 // change our label and update vector

25 this.lab.copyFrom(msg.lab, j);

2 this.uvec.copyFrom(msg.uvec, j);

27 // merge routing tables

28 this.rt. mergeWith(msg.rt, i — 1, msg.rt.topRow);
» Y else

30 // the other guy is not up to date, but we

31 // can still use a part of his routing table

32 this.rt. mergeWith(msg.rt, i — 1, j);

33

34

s) else {

36 // we encountered a node from a completely

37 // different group (a violation of Property 2),
38 // so add the groups of the encountered node
39 if (msg.lab.len >= this.lab.len)

40 this.rt. mergeWithNodeGroups(

41 msg.lab, msg.rt,

42 this.lab.len — 1,

83 msg.lab.len — 1);

4}

45}

Listing 1. The handler of the gossip message reception.

the head of this level-i+1 group (1. 77-81). It also cancels
any possible pending suppression of label extension which
corresponded to spawning a new supergroup (1l. 82-83). As
explained in Sect. 4.4.1, if the level-i+1 group is itself a
member of some higher-level groups, all members of the
node’s level-i group will gradually extend their labels when
exchanging gossip messages (1. 22-28).

Even if an appropriate level-i4+1 group to join could not be
found, it is still possible that the hierarchy is not complete.
More specifically, the node must check whether its routing
table contains any entries for other groups starting from level
i (1. 88). If so the node activates a suppression counter to defer
spawning a new level-i+ 1 group (1l. 99-103), as explained in
Sect. 4.4.1. The suppression counter, once activated, is decre-
mented during each timeout (1I. 107-108). When it reaches
zero and the level-i4+1 group still has to be spawned (11. 90),
the node extends its label and cancels the counter (1. 91-97),
effectively spawning a new level-i+1 group (with itself as the
head of that group).

Finally, when the node reacted to all changes in the system,
it broadcasts a gossip message (Il. 117-118), such that its
neighbors can adopt any label updates and update the routes.

47 HANDLER onTimeout() {

48 int olducnt = this.ucnt;

49

50 // evict dead entries from the routing table
51 this.rt.ageAndClean();

52

53 int i = this.lab.getHeadLevel();

54

55 // check if we need to cut the label

se if (i+ 1 < this.lab.len) {

57 // we are not the top level head, so check if

58 // our superhead died or ceased to be adjacent

59 RtEntry centralSubgroupEntry =

60 this.rt[i][this.lab[i + 1]];

61 if (centralSubgroupEntry == null

62 || 'centralSubgroupEntry.isAdjacent) {
63 // perform the label cut operation

64 this.lab.cutTo(i);

65 this.uvec.cutTo(i);

66 this.uvec|i] = ++this.ucnt;

o }ese{

68 // our superhead works so there is nothing to do
69 }

70}

71

72 // check if we need to extend the label

73 if (i + 1 == thislab.len) {

74 // we are the top level head, so check if there is

75 // any same— or higher—level group we could join
76 JoinCandidate jc = this.rt.getJoinCandidate();
7 if (o = nul) {

78 // we have a group which we can join,

79 // so perform the label extension operation
80 this.lab.extendWith(jc.group);

81 this.uvec.extendWith(0);

82 this.uvec|i] = ++this.ucnt;

83 // reset suppression counter

84 this.scnt = —1;

s Yelse

86 // we do not have such a group

87 if (this.scnt <= 0) {

88 // check if we need to extend the label
89 if (this.rt.hasOtherEntriesUpFrom(i)) {
90 // yes, we do have to extend the label...
91 if (this.scnt == 0) {

92 // our surrpression timer just fired,
93 // so perform the label extension

94 this.lab.extendWith(this.lab[0]);

95 this.uvec.extendWith(0);

9% this.uvec[i] = ++this.ucnt;

97 // reset surrpression counter

98 this.scnt = —1;

5 } else {

100 // we have to activate the counter
101 this.scnt = selectRandSlot(i) *

102 normalize(

103 min(intpow(3, i), MAX_PATH),
104 6);

105 }

106

107 } else {

108 // our surrpression timer is ticking

109 ——this.scnt;

110 }

11 }

.}

113

114

15 if (olducnt < this.ucnt)

116 save("UPDATE_CNT”, this.ucnt);

117

118 // broadcast the gossip message

119 broadcastGossip(this.lab, this.uvec, this.rt);

120 }
Listing 2. The periodical timer handler.

122 HANDLER onNodeBoot() {

123 // initialize

124 this.lab = {this.NODE_ID};

125 this.uvec = {0};

126 thisrt = {}{}:

127 this.scnt = —1;

128 this.ucnt = restore("UPDATE_CNT”);
129

130 // set timer handler

131 setTimer(AT, &onTimeout);

132}
Listing 3. The initialization handler.

LeveI-2\match
Level-1 match

Fig. 1. An example of hierarchical routing in the hierarchy
from Fig. 1 of the paper.

F.3 Remarks

When a node repaired after a failure rejoins the system, its
membership decisions (label updates) made before the failure
may still be present in the labels of other nodes. Therefore,
it is crucial to ensure that any decision made by this node
after the failure is perceived by other nodes as later than any
decision made by this node before the failure. Otherwise, the
ordering of label updates is not preserved, which disrupts the
consistency enforcement algorithm. In that case, we cannot
predict the behavior of the system.

To this end, whenever a node performs a label update it
stores the new value of the update counter persistently, for
instance, in the local flash memory (ll. 114-115). During
boot, the node restores the last value of the counter from
the persistent storage (see Listing [3] line 126), which ensures
correct ordering of any subsequent membership decisions.
Alternatively, a node rejoining the system obtains a new unique
identifier which eliminates the problem completely.

APPENDIX G
HIERARCHICAL SUFFIX-BASED ROUTING

Routing is performed by resolving consecutive elements of the
destination label starting from the maximal-position element
differing at the sender (see Fig. [I). The main routing method,
executed by a node on each hop, is presented in Listing [4]
Upon reception of an application message (which is differ-
ent from a gossip message used by PL-GOSSIP to maintain the
network structure), a node decrements the time-to-live (TTL)
counter associated with the message and examines this counter
to decide whether the message should be dropped (listing
line 2-6). TTL is a mechanism for dropping messages that
cannot be delivered to their receivers due to network dynamics

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

FUNCTION getNextHop(msg) {

1

2

3 // change TTL of the message
4 ——msg.ttl;

5 if (msg.ttl < 0)

6 return null;

7

8

// determine if we share any group
9 int cpos = 0;
10 for (; cpos < min(this.lab.len, msg.dstLab.len); ++cpos)
11 if (this.lab[cpos] == msg.dstLab[cpos])
12 break;
13
14 if (cpos == 0} {

15 // we are the destination node
16 acceptMessage(msg);
17 return null;

18
19} else if (this.neighbors.contains(msg.dstLab[0])) {

20 // one of our neighbors is the destination node
21 // (this is just an optimization)
2 return msg.dstLab[0];

23
24} else if (cpos <= min(this.lab.len, msg.dstLab.len)) {

25 // resolve the next hop based on the routing table

26 Entry entry = this.rtf{cpos — 1][msg.dstLab[cpos — 1]];
27 return entry != null ? entry.nextHop : null;

28

») else {

30 // we cannot forward the message

31 return null;

32

3}

Listing 4. The main routing function.

35 FUNCTION initMessage(dstLab, data) {
36

37 // create a new message

33 Message msg = new Message();

39 msg.dstLab = dstLab;

40 msg.data = data;

41

42 // compute TTL based on Lemma

43 inti;

44 for (i = 0; i < min(dstLab.len, this.lab.len); ++i) {
45 if (dstLabl[i] == this.labl[i])

46 break;

}
48 msg.ttl = min(intpow(3, i) — 1, MAX_PATH);
49 }
Listing 5. The message initialization function.

(e.g., receiver failures). The TTL counter of a message is
set by the originator of this message based on Lemma [3]
(see Listing [5)). More specifically, the originator resolves the
minimal-level group it shares with the destination node (1. 41-
46;), suppose the level of this group is i, and sets the TTL
counter accordingly to 3’ — 1.

If the message has not been dropped, the node determines
how many elements of the destination label are left to be
resolved (1l. 8-12). If there are no such elements left, then the
present node is the destination and thus, it accepts the message
(11. 14-17). Otherwise, the message must be forwarded. As
an optimization, the node first checks whether one of its
neighbors is the destination node and if so, it forwards the
message to this neighbor (1. 19-22). If there are no such
neighbors, the next hop is determined based on the routing
table. More specifically, the present nodes looks up an entry for
the next unresolved element of the destination, and forwards
the message to the next hop neighbor associated with this

IWANICKI AND VAN STEEN: APPENDICES TO PAPER “GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE..”

entry (11. 24-37). Finally, it may happen that due to hierarchy
disturbance, the next hop cannot be resolved. In this case,
the node drops the message (the main routing method returns
null).

	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Lemma 2
	Appendix C: Proof of Lemma 3
	Appendix D: Proof of Lemma 4
	Appendix E: Proof of Lemma 5
	Appendix F: The Maintenance Algorithm
	Gossip Message Reception
	Periodic Timeout
	Remarks

	Appendix G: Hierarchical Suffix-Based Routing

