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APPENDIX A
PROOF OF LEMMA 1

Lemma 1: A node from a level-i group can reach a node
in any adjacent level-i group in at most 3i hops.

Proof: The proof is performed by induction.
Basis: i = 0. Let’s take two arbitrary adjacent level-0

groups: G0
A and G0

B. From Property 1, G0
A = {A} and G0

B = {B}.
G0

A and G0
B are adjacent, thus A and B are neighbors, that is,

A can reach B in 1 = 30 hop. Since we chose G0
A and G0

B
arbitrarily, the lemma is true for i = 0.

Inductive step: i = k + 1 (where k ≥ 0). We assume that
the lemma holds for all levels ≤ k. Let’s take two arbitrary
adjacent level-i groups Gi

A and Gi
B, and an arbitrary node P ∈

Gi
A. Let R denote a node in Gi

B that has a neighbor Q such
that Q ∈Gi

A (existence of Q is guaranteed by the definition of
adjacent groups).

P

R
Q

G
i

A

G
i

B

Consider level-i subgroups, that is, Gi−1
C , Gi−1

D , and Gi−1
E , such

that P ∈ Gi−1
C , Q ∈ Gi−1

D , and R ∈ Gi−1
E .
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We have the following three situations:
1): C = D (group Gi−1

C is adjacent to group Gi−1
E ).
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In this case, from the inductive assumption P can reach some
node from Gi−1

E (hence in Gi
B) in at most 3i−1 < 3i hops.

2): Gi−1
C is adjacent to Gi−1

D .
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In this case, from the inductive assumption P can get to some
node in Gi−1

D in a most 3i−1 hops and any node from Gi−1
D can

get to a node from Gi−1
E in at most 3i−1 hops. Consequently,

P can get to some node from Gi−1
E (hence in Gi

B) in at most
2 ·3i−1 < 3i hops.

3): Gi−1
C is not adjacent to Gi−1

D (but from Property 4, Gi−1
C

and Gi−1
D are both adjacent to Gi−1

A ).
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In this case, from the inductive assumption P can get to some
node in Gi−1

A in at most 3i−1 hops. Likewise, any node from
Gi−1

A can get to a node from Gi−1
D in at most 3i−1 hops and any

node from Gi−1
D can get to a node from Gi−1

E in at most 3i−1

hops. Therefore, P can get to some node from Gi−1
E (hence in

Gi
B)in at most 3 ·3i−1 = 3i hops.
Consequently P can get to a node from Gi

B in at most 3i

hops. Since we chose P arbitrarily, any node from Gi
A can get

to some node from Gi
B in at most 3i. Because Gi

A and Gi
B were

also chosen arbitrarily, the lemma is true for i = k +1.
By applying mathematical induction to the basis and the

inductive step, we proved the lemma for all i. Moreover, 3i is
a tight bound, that is, it is reachable for some configurations.

APPENDIX B
PROOF OF LEMMA 2

Lemma 2: The distance between the head nodes of two
adjacent level-i groups is at most 3i hops.

Proof: The proof is performed by induction. Let d(A,B)
denote the distance in hops between nodes A and B.

Basis: i = 0. Let’s take two arbitrary adjacent level-0
groups: G0

A and G0
B. From Property 1, G0

A = {A} and G0
B = {B}.

G0
A and G0

B are adjacent, thus A and B are neighbors, that is,
d(A,B) = 1 = 30. As we chose G0

A and G0
B arbitrarily, the

lemma is true for i = 0.
Inductive step: i = k + 1 (where k ≥ 0). We assume that

the lemma holds for all levels ≤ k. Let’s take two arbitrary
adjacent level-i groups Gi

A and Gi
B. We have three possible

situations: 1): Gi−1
A is adjacent to Gi−1

B .
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In this case, from the inductive assumption, d(A,B)≤ 3i−1 <
3i.

2): There exists Gi−1
C such that it belongs to Gi

A or Gi
B and

it is adjacent to both Gi−1
A and Gi−1

B .
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In this case, d(A,B) ≤ d(A,C)+ d(B,C). From the inductive
assumption d(A,C),d(B,C)≤ 3i−1, thus d(A,B)≤ 2 ·3i−1 < 3i.

3): There exist Gi−1
C and Gi−1

D such that Gi−1
C belongs to Gi

A
and Gi−1

D belongs to Gi
B and Gi−1

C is adjacent to Gi−1
D . (From

Property 4, Gi−1
C is adjacent to Gi−1

A , and Gi−1
D is adjacent to

Gi−1
B .)
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In this case, d(A,B) ≤ d(A,C) + d(C,D) + d(D,A). From
the inductive assumption d(A,C),d(C,D),d(D,A)≤ 3i−1, thus
d(A,B)≤ 3 ·3i−1 = 3i.

Consequently, we have d(A,B) ≤ 3i. Because Gi
A and Gi

B
were chosen arbitrarily, the lemma is true for i = k +1.

By applying mathematical induction to the basis and the
inductive step, we proved the lemma for all i. Moreover, 3i is
a tight bound, that is, it is reachable for some configurations.

APPENDIX C
PROOF OF LEMMA 3

Lemma 3: The distance between any two members of a
level-i group is at most 3i−1 hops.

Proof: We choose an arbitrary group Gi
A and two arbitrary

nodes P and Q that are members of this group. We add another

node R to the system such that R’s only neighbor is Q.1 R
forms singleton groups G0

R . . .Gi
R. From Lemma 1, P can reach

R in at most 3i hops. Since P can reach R only through Q, P
can reach Q in at most 3i−1 hops, that is the distance between
P and Q is at most 3i−1.

Because P and Q were chosen arbitrarily, the lemma holds
for any members of group Gi

A. Likewise, the arbitrary choice
of Gi

A and i proves the lemma for all i. Again, 3i−1 is a tight
bound.

APPENDIX D
PROOF OF LEMMA 4

Lemma 4: Update propagation based on the responsibility
rule and update vectors guarantees eventual consistency of
node labels: in the absence of changes in the system, for any
group Gi

X and any node A, if A is eventually a member of Gi
X

(eventually L(A)[i] = X), then A and X eventually have equal
labels starting from position i (for all k≥ i, L(A)[k] = L(X )[k]).

Proof: Let 〈L(A)[i]〉r denote the i-th element of the label
of node A in round r. Moreover, we treat the first (starting
from position 0) null value in the label as the end of the
label. We observe that, from Property 1, at level 0 every node is
always a member of its own singleton group. Therefore, in the
remainder of the proof, when referring to eventual consistency
at level i, we always assume that i > 0.

After changes in the system have stopped, node A eventually
becomes a member of Gi

X (i > 0) iff:

∃r
si
A
∀r≥r

si
A

((
〈L(A)[i]〉r = 〈L(X )[i]〉r = X

)
∧

∀0≤ j<i
(
〈U (A)[ j]〉r = 〈U (A)[ j]〉rsi

A

)
∧

∀0≤ j<i
(
〈L(A)[ j]〉r = 〈L(A)[ j]〉rsi

A
6= null

))
.

In other words there exists a stabilization round for A’s label
at level i, rsi

A , in and after which: A’s label length is greater
than i, the i-th element of A’s label is always equal to X , and
A’s label and update vector do not change at lower levels.

All nodes that are eventually members of Gi
X constitute the

following set: {A | A is eventually a member o f Gi
X}. Since

this set is finite, we can define its stabilization round, rsi , as
the maximum stabilization round over all its members. In other
words, rsi denotes the round after which no nodes join or leave
group Gi

X . We will use 〈Gi
X 〉rsi to denote the stable set of nodes

constituting group Gi
X .

We will show that if a node belongs to 〈Gi
X 〉rsi its label

and X’s label will eventually be equal at position i+1. In
other words, the two nodes from the same level-i group
will eventually belong to the same level-i+1 group. This is
sufficient to prove eventual consistency. More formally, for an
arbitrary node A ∈ 〈Gi

X 〉rsi , we will show that (∗∗∗):

∃r
si+1
A
∀r≥r

si+1
A

((
〈L(A)[i+1]〉r = 〈L(X )[i+1]〉r

)
∧

∀0≤ j<i+1
(
〈U (A)[ j]〉r = 〈U (A)[ j]〉rsi+1

A

)
∧

∀0≤ j<i+1
(
〈L(A)[ j]〉r = 〈L(A)[ j]〉rsi+1

A
6= null

))
.

1. Although in a practical setting this may be impossible, it is perfectly valid
from the graph theory perspective, and consequently, does not invalidate the
proof.
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Recall the responsibility rule and assume that, before the
changes have stopped, the last update by X , acting as a level-
i head, was performed in round rui+1

X . The update had the
sequence number ∆ and corresponded to writing © at the
i+1-st position of X’s label. More formally, the following
conditions hold for X’s label and update vector:

∀r≥r
ui+1
X

((
〈L(X )[i+1]〉r =©

)
∧

(
〈U (X )[i]〉r = ∆

))
We will consider rounds ≥ max(rsi ,rui+1

X ). We will show
that, for an arbitrary node A∈ 〈Gi

X 〉rsi , the following condition
holds (‡‡‡):

∃r
si+1
A ≥max(rsi ,r

ui+1
X ) ∀r≥r

si+1
A

((
〈L(A)[i+1]〉r =©

)
∧(

〈U (A)[i]〉r = ∆
))

,

which is sufficient to prove (∗∗∗).
Let us observe that since the group membership is based on

connectivity, all members of 〈Gi
X 〉rsi form a connected graph.

We can prove this by induction. For i = 0, 〈Gi
X 〉rsi = {X},

hence 〈Gi
X 〉rsi is connected as a singleton graph. For i > 0,

our inductive assumption is that the connectivity property
holds for all levels j < i. Let us then consider two arbitrary
nodes: P,Q∈ 〈Gi

X 〉rsi . Like in earlier proofs, we can have three
possibilities. 1): P,Q ∈ 〈Gi−1

Y 〉rsi for some Y , in which case
P and Q are connected from the inductive assumption. 2):
P ∈ 〈Gi−1

Y 〉rsi and Q ∈ 〈Gi−1
X 〉rsi (or vice versa) for some Y . In

this case, from the inductive assumption, all nodes in 〈Gi−1
Y 〉rsi

and all nodes in 〈Gi−1
X 〉rsi are connected. Moreover, from

Property 4, since 〈Gi−1
X 〉rsi is the central subgroup of 〈Gi

X 〉rsi ,
it is adjacent to 〈Gi−1

Y 〉rsi , that is, there exists at least one
link between 〈Gi−1

X 〉rsi and 〈Gi−1
Y 〉rsi . Therefore, all nodes from

〈Gi−1
X 〉rsi (in particular Q) are connected with all nodes from

〈Gi−1
Y 〉rsi (in particular P) and vice versa. 3): P ∈ 〈Gi−1

Y 〉rsi

and Q ∈ 〈Gi−1
Z 〉rsi for some Y and Z. Like in 2), in this case

all nodes from 〈Gi−1
Y 〉rsi are connected with all nodes from

〈Gi−1
Z 〉rsi through the central subgroup 〈Gi−1

X 〉rsi . Consequently,
P and Q are connected. Since we chose P and Q arbitrarily,
the connectivity condition is true for all nodes that belong to
〈Gi

X 〉rsi . By applying mathematical induction we proved that
nodes in any 〈Gi

X 〉rsi form a connected graph.
Consequently, we can prove (‡‡‡) by induction over the

number of hops, n, from X .
Basis: n = 0. The only node, A ∈ 〈Gi

X 〉rsi , that is only zero
hops away from X is A = X , so so rsi+1

A = max(rsi ,rui+1
X ).

Consequently, (‡‡‡) holds.
Inductive step: n = k + 1 (where k ≥ 0). We assume that

(‡‡‡) holds for all nodes in 〈Gi
X 〉rsi that are ≤ k hops away

from X . Let us take an arbitrary node, A∈ 〈Gi
X 〉rsi , that is k+1

hops away from X . A has a neighbor, B ∈ 〈Gi
X 〉rsi , which is k

hops away from X and for which (‡‡‡) holds:

∃r
si+1
B ≥max(rsi ,r

ui+1
X ) ∀r≥r

si+1
B

((
〈L(B)[i+1]〉r =©

)
∧(

〈U (B)[i]〉r = ∆
))

.

Assume that there is no message loss. In round rsi+1
B + 1, A

receives a gossip message from B and compares its label
against B’s label to find the minimal common level (see

Sect. 4.3.2). Since A and B are members of 〈Gi
X 〉rsi , their

minimal common level, j is ≤ i. A then compares its update
vector with B’s update vector starting from position j. Since
both A and B belong to 〈Gi

X 〉rsi , the first position at which
their update vectors can differ is i, otherwise one of them
would have to change its update vector in the present round
at position < i, which precludes membership in 〈Gi

X 〉rsi . If the
update vectors do not differ at position i (〈U (B)[i]〉rsi+1

B +1 =
〈U (A)[i]〉rsi+1

B +1 = ∆), then 〈L(A)[i]〉rsi+1
B +1 =© because the

responsibility rule ensures the following invariant:

∀P,Q,i,r

((
〈L(P)[i]〉r = 〈L(Q)[i]〉r

)
∧

(
〈U (P)[i]〉r = 〈U (Q)[i]〉r

)
⇒(

〈L(P)[i+1]〉r = 〈L(Q)[i+1]〉r
))

.

If the update vectors differ at position i, in turn, then
〈U (A)[i]〉rsi+1

B +1 < ∆ as ∆ is the last update performed by X act-
ing as a level-i head. Consequently, following our consistency
enforcement algorithm A copies B’s label and update vector
starting from position i. As a result, 〈L(A)[i]〉rsi+1

B +2 =© and
〈U (A)[i]〉rsi+1

B +2 = ∆. In both cases, we have shown that:

∃r
si+1
A ≥max(rsi ,r

ui+1
X )

((
〈L(A)[i+1]〉rsi+1

A
=©

)
∧(

〈U (A)[i]〉rsi+1
A

= ∆
))

.

Thus, to prove (‡‡‡), we still have to show that A’s label ele-
ment at level i+1 and A’s update vector element at level i do not
change in any round r≥ rsi+1

A . To this end, assume the opposite,
that is, in some round r ≥ rsi+1

A , A’s label or update vector
change at the mentioned levels. The change cannot be a result
of a local update by A at some level < i because this would
violate A ∈ 〈Gi

X 〉rsi . Therefore, the change must be a result of
copying the label of some neighbor, C, after a gossip message
from the neighbor has been received. Again, the copying
cannot be performed starting from any level < i, as this would
violate A ∈ 〈Gi

X 〉rsi . Therefore, the copying occurred starting
from level i. This means that 〈L(A)[i]〉r = 〈L(C)[i]〉r = X and
〈U (A)[i]〉r = ∆ < 〈U (C)[i]〉r. We have a contradiction, because
∆ was the sequence number of the last update performed by
X acting as a level-i head, and thus it must be the case that:
∆≥ 〈U (C)[i]〉r. Therefore, we have proved (‡‡‡). Since A was
chosen arbitrarily, the inductive step holds for any node that
belongs to 〈Gi

X 〉rsi and is k +1 hops away from X .
By applying mathematical induction to the basis and the

inductive step, we proved (‡‡‡) for all n, that is, for all nodes
that constitute 〈Gi

X 〉rsi . Since for any A ∈ 〈Gi
X 〉rsi , (∗∗∗) is a

direct consequence of (‡‡‡), we proved (∗ ∗ ∗) for all nodes
that belong to 〈Gi

X 〉rsi . In other words, we proved that, for any
level i, any two nodes that eventually have equal labels at level
i, also eventually have their labels equal at level i+1.

Because the number of levels is finite, the proof implies
that, for any level i, any two nodes that have their label equal
at level i, also have their labels equal at all levels k > i. This
ends the proof of Lemma 4.
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APPENDIX E
PROOF OF LEMMA 5

Lemma 5: Assume that the slot size is longer than the
number of rounds it takes to propagate information between
the heads, X and Y , of two adjacent “top-level” groups Gi

X
and Gi

Y . In this case, with probability ≥ 1
4 , Gi

X will be able to
join Gi+1

Y or vice versa.

Proof: Consider two arbitrary nodes, X and Y , that are
heads of adjacent “top-level” groups Gi

X and Gi
Y respectively.

X and Y must potentially spawn level-i+1 groups.
Let rX and rY denote the round in which X and Y respec-

tively choose their virtual slots, as described in Sect. 4.4.1.
Note that this implies that in round rX , X has learned about
Y , and similarly, in round rY , Y has learned about X . Let the
number of slots S = 2. Moreover, assume that the slot size,
R, meets the requirements of the lemma, that is, it is longer
than the number of rounds necessary to propagate information
between X and Y .

We have the following four possible slot selection configu-
rations, each obtained with probability 1

4 :

I II III IV
sX 0 0 1 1
sY 0 1 0 1

Without the loss of generality assume that rX ≥ rY , that is,
X selects its slot in the same or later round than Y . Consider
configuration III, in which X selects slot sX = 1 and Y selects
slot sY = 0. Let r∗X = rX + sX · R + 1 denote the round in
which X potentially spawns group Gi+1

X , as specified by the
algorithm. Likewise, let r∗Y = rY + sY ·R+1 denote the round
in which Y potentially spawns group Gi+1

Y . We will show
(by contradiction) that by the time it spawns group Gi+1

X , X
discovers that Y has spawned Gi+1

Y . Consequently, X can make
Gi

X a subgroup of Gi+1
Y , decreasing the number of groups at

level i+1.
To this end, assume that X spawns Gi+1

X in round r∗X and
Y spawns Gi+1

Y in round r∗Y . Consider value r∗X − r∗Y which
denotes how many rounds after Y has spawned group Gi+1

Y ,
node X spawns group Gi+1

X .

r∗X − r∗Y =
= (rX + sX ·R+1)− (rY + sY ·R+1) =
= rX − rY +(sX − sY ) ·R =
= rX − rY +(1−0) ·R =
= rX − rY +R≥( f rom: rX≥rY )

≥ rX − rX +R =
= R.

From the above calculation X spawns group Gi+1
X at least

R rounds after Y has spawned group Gi+1
Y . Contradiction!,

because within at most R rounds, X would have learned that
Y spawned Gi+1

Y , and consequently, would have made Gi
X a

subgroup of Gi+1
Y . Therefore, with probability at least 1

4 , Gi
X

and Gi
Y will be subgroups of a common group Gi+1

X/Y . Because
X , Y , Gi

X , and Gi
Y were chosen arbitrarily, Lemma 5 holds for

any head node at any level. In practice, the aforementioned
probability is higher than 1

4 .

APPENDIX F
THE MAINTENANCE ALGORITHM

Each node running PL-GOSSIP reacts to two types of events:
reception of a gossip message and periodical timeouts. Below,
we describe these events in detail. We present the simplest
version of the algorithm, without any optimizations.

F.1 Gossip Message Reception

Receiving a message (see Listing 1) allows a node to discover
changes in the hierarchy and to update its routing table. A
gossip message contains the label of the sender node with the
corresponding update vector and the sender’s routing table,
plus some possible additional information piggybacked by
lower layers (e.g., link quality information of the sender’s
neighbors). First, the node that received the message searches
for the minimal common-level group it shares with the sender
of the message (listing lines 3-7, see also Sect. 4.3.2). If such
a group exists (ll. 9), the node compares its update vector
with the sender’s update vector to determine which of the two
labels is more fresh (ll. 13-17, see also Sect. 4.3.2). If both
the labels are fresh (ll. 19), the node only updates its routing
table with the entries contained in the gossip message (ll. 20-
21). If, however, the sender’s label is more fresh (ll. 22), before
updating its routing table (ll. 27-28), the node adopts that label
as explained in Sect. 4.3.2 (ll. 23-26). Finally, if the sender’s
label is stale, the node can still use parts of the sender’s routing
table to update its own routing table (ll. 30-32).

If the node and the sender of the gossip message do not
share any group (ll. 35), the node has just discovered a
violation of Property 2 (see Sect. 4.4.1). To propagate the
information about this violation to the head of its top-level
group, the node adds appropriate entries to its routing table,
as explained in Sect. 4.2 (ll. 36-43). These entries will allow
the head to react to the violation.

F.2 Periodic Timeout

The timeout event (see Listing 2) gives a node the opportunity
to react to the changes in the system that occurred since the last
timeout. First, the node removes stale entries from its routing
table (listing lines 49-50), which enables detecting disruptive
failures. More specifically, if the node, being a level-i head
(where i≥ 0), is not the top-level head (ll. 55), it must check
whether the central subgroup of its level-i+1 group is still
reachable and adjacent to the node’s level-i group (ll. 56-61),
as explained in Sect. 4.4.2. If these conditions are not met (a
violation of Property 4 occurred), the node cuts its label down
to level i (ll. 62-65), as described in Sect. 4.4.2. Otherwise,
from the node’s perspective, there were no disruptive failures
in the system.

Second, if the node is the top-level head (ll. 72, possibly
as a result of an earlier label cut), it must check whether the
hierarchy construction is complete. To this end, the node first
determines if its routing table contains entries for a level-i+1
group it could join (ll. 73-76), as explained in Sect. 4.4.1. If
this is the case (ll. 76), the node joins its level-i group to the
level-i+1 group, by extending its label with the identifier of



IWANICKI AND VAN STEEN: APPENDICES TO PAPER “GOSSIP-BASED SELF-MANAGEMENT OF A RECURSIVE AREA HIERARCHY FOR LARGE...” 5

1 HANDLER onGossipReceived(msg) {
2

3 // determine if we share any group
4 int i = 0;
5 for (; i < min(this.lab.len, msg.lab.len); ++i)
6 if (this.lab[i] == msg.lab[i])
7 break;
8

9 if (i < min(this.lab.len, msg.lab.len)) {
10 // we found a node that shares a group with us,
11 // so determine who has a more recent label
12

13 // find the minimal differing position
14 int j = i;
15 for (; j < min(this.lab.len, msg.lab.len); ++j)
16 if (this.uvec[j] != msg.uvec[j])
17 break;
18

19 if (j >= min(this.lab.len, msg.lab.len)) {
20 // we both have the same labels
21 this.rt.mergeWith(msg.rt, i − 1, msg.rt.topRow);
22 } else if (this.uvec[j] < msg.uvec[j]) {
23 // we are not up to date, so
24 // change our label and update vector
25 this.lab.copyFrom(msg.lab, j);
26 this.uvec.copyFrom(msg.uvec, j);
27 // merge routing tables
28 this.rt.mergeWith(msg.rt, i − 1, msg.rt.topRow);
29 } else {
30 // the other guy is not up to date, but we
31 // can still use a part of his routing table
32 this.rt.mergeWith(msg.rt, i − 1, j);
33 }
34

35 } else {
36 // we encountered a node from a completely
37 // different group (a violation of Property 2),
38 // so add the groups of the encountered node
39 if (msg.lab.len >= this.lab.len)
40 this.rt.mergeWithNodeGroups(
41 msg.lab, msg.rt,
42 this.lab.len − 1,
43 msg.lab.len − 1);
44 }
45 }

Listing 1. The handler of the gossip message reception.

the head of this level-i+1 group (ll. 77-81). It also cancels
any possible pending suppression of label extension which
corresponded to spawning a new supergroup (ll. 82-83). As
explained in Sect. 4.4.1, if the level-i+1 group is itself a
member of some higher-level groups, all members of the
node’s level-i group will gradually extend their labels when
exchanging gossip messages (ll. 22-28).

Even if an appropriate level-i+1 group to join could not be
found, it is still possible that the hierarchy is not complete.
More specifically, the node must check whether its routing
table contains any entries for other groups starting from level
i (ll. 88). If so the node activates a suppression counter to defer
spawning a new level-i+1 group (ll. 99-103), as explained in
Sect. 4.4.1. The suppression counter, once activated, is decre-
mented during each timeout (ll. 107-108). When it reaches
zero and the level-i+1 group still has to be spawned (ll. 90),
the node extends its label and cancels the counter (ll. 91-97),
effectively spawning a new level-i+1 group (with itself as the
head of that group).

Finally, when the node reacted to all changes in the system,
it broadcasts a gossip message (ll. 117-118), such that its
neighbors can adopt any label updates and update the routes.

47 HANDLER onTimeout() {
48 int olducnt = this.ucnt;
49

50 // evict dead entries from the routing table
51 this.rt.ageAndClean();
52

53 int i = this.lab.getHeadLevel();
54

55 // check if we need to cut the label
56 if (i + 1 < this.lab.len) {
57 // we are not the top level head, so check if
58 // our superhead died or ceased to be adjacent
59 RtEntry centralSubgroupEntry =
60 this.rt[i][this.lab[i + 1]];
61 if (centralSubgroupEntry == null
62 || !centralSubgroupEntry.isAdjacent) {
63 // perform the label cut operation
64 this.lab.cutTo(i);
65 this.uvec.cutTo(i);
66 this.uvec[i] = ++this.ucnt;
67 } else {
68 // our superhead works so there is nothing to do
69 }
70 }
71

72 // check if we need to extend the label
73 if (i + 1 == this.lab.len) {
74 // we are the top level head, so check if there is
75 // any same− or higher−level group we could join
76 JoinCandidate jc = this.rt.getJoinCandidate();
77 if (jc != null) {
78 // we have a group which we can join,
79 // so perform the label extension operation
80 this.lab.extendWith(jc.group);
81 this.uvec.extendWith(0);
82 this.uvec[i] = ++this.ucnt;
83 // reset suppression counter
84 this.scnt = −1;
85 } else {
86 // we do not have such a group
87 if (this.scnt <= 0) {
88 // check if we need to extend the label
89 if (this.rt.hasOtherEntriesUpFrom(i)) {
90 // yes, we do have to extend the label...
91 if (this.scnt == 0) {
92 // our surrpression timer just fired,
93 // so perform the label extension
94 this.lab.extendWith(this.lab[0]);
95 this.uvec.extendWith(0);
96 this.uvec[i] = ++this.ucnt;
97 // reset surrpression counter
98 this.scnt = −1;
99 } else {

100 // we have to activate the counter
101 this.scnt = selectRandSlot(i) ∗
102 normalize(
103 min(intpow(3, i), MAX PATH),
104 θ);
105 }
106 }
107 } else {
108 // our surrpression timer is ticking
109 −−this.scnt;
110 }
111 }
112 }
113

114

115 if (olducnt < this.ucnt)
116 save(”UPDATE CNT”, this.ucnt);
117

118 // broadcast the gossip message
119 broadcastGossip(this.lab, this.uvec, this.rt);
120 }

Listing 2. The periodical timer handler.
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122 HANDLER onNodeBoot() {
123 // initialize
124 this.lab = {this.NODE ID};
125 this.uvec = {0};
126 this.rt = {}{};
127 this.scnt = −1;
128 this.ucnt = restore(”UPDATE CNT”);
129

130 // set timer handler
131 setTimer(∆T , &onTimeout);
132 }

Listing 3. The initialization handler.

C.P.P

G.P.P
J.Q.P

G1

P
G2

P

Level-2 match
Level-1 match

Level-0 match
(destination reached)

Destination:
C.P.P

Fig. 1. An example of hierarchical routing in the hierarchy
from Fig. 1 of the paper.

F.3 Remarks

When a node repaired after a failure rejoins the system, its
membership decisions (label updates) made before the failure
may still be present in the labels of other nodes. Therefore,
it is crucial to ensure that any decision made by this node
after the failure is perceived by other nodes as later than any
decision made by this node before the failure. Otherwise, the
ordering of label updates is not preserved, which disrupts the
consistency enforcement algorithm. In that case, we cannot
predict the behavior of the system.

To this end, whenever a node performs a label update it
stores the new value of the update counter persistently, for
instance, in the local flash memory (ll. 114-115). During
boot, the node restores the last value of the counter from
the persistent storage (see Listing 3, line 126), which ensures
correct ordering of any subsequent membership decisions.
Alternatively, a node rejoining the system obtains a new unique
identifier which eliminates the problem completely.

APPENDIX G
HIERARCHICAL SUFFIX-BASED ROUTING

Routing is performed by resolving consecutive elements of the
destination label starting from the maximal-position element
differing at the sender (see Fig. 1). The main routing method,
executed by a node on each hop, is presented in Listing 4.

Upon reception of an application message (which is differ-
ent from a gossip message used by PL-GOSSIP to maintain the
network structure), a node decrements the time-to-live (TTL)
counter associated with the message and examines this counter
to decide whether the message should be dropped (listing
line 2-6). TTL is a mechanism for dropping messages that
cannot be delivered to their receivers due to network dynamics

1 FUNCTION getNextHop(msg) {
2

3 // change TTL of the message
4 −−msg.ttl;
5 if (msg.ttl < 0)
6 return null;
7

8 // determine if we share any group
9 int cpos = 0;

10 for (; cpos < min(this.lab.len, msg.dstLab.len); ++cpos)
11 if (this.lab[cpos] == msg.dstLab[cpos])
12 break;
13

14 if (cpos == 0} {
15 // we are the destination node
16 acceptMessage(msg);
17 return null;
18

19 } else if (this.neighbors.contains(msg.dstLab[0])) {
20 // one of our neighbors is the destination node
21 // (this is just an optimization)
22 return msg.dstLab[0];
23

24 } else if (cpos <= min(this.lab.len, msg.dstLab.len)) {
25 // resolve the next hop based on the routing table
26 Entry entry = this.rt[cpos − 1][msg.dstLab[cpos − 1]];
27 return entry != null ? entry.nextHop : null;
28

29 } else {
30 // we cannot forward the message
31 return null;
32 }
33 }

Listing 4. The main routing function.

35 FUNCTION initMessage(dstLab, data) {
36

37 // create a new message
38 Message msg = new Message();
39 msg.dstLab = dstLab;
40 msg.data = data;
41

42 // compute TTL based on Lemma 3
43 int i;
44 for (i = 0; i < min(dstLab.len, this.lab.len); ++i) {
45 if (dstLab[i] == this.lab[i])
46 break;
47 }
48 msg.ttl = min(intpow(3, i) − 1, MAX PATH);
49 }

Listing 5. The message initialization function.

(e.g., receiver failures). The TTL counter of a message is
set by the originator of this message based on Lemma 3
(see Listing 5). More specifically, the originator resolves the
minimal-level group it shares with the destination node (ll. 41-
46; ), suppose the level of this group is i, and sets the TTL
counter accordingly to 3i−1.

If the message has not been dropped, the node determines
how many elements of the destination label are left to be
resolved (ll. 8-12). If there are no such elements left, then the
present node is the destination and thus, it accepts the message
(ll. 14-17). Otherwise, the message must be forwarded. As
an optimization, the node first checks whether one of its
neighbors is the destination node and if so, it forwards the
message to this neighbor (ll. 19-22). If there are no such
neighbors, the next hop is determined based on the routing
table. More specifically, the present nodes looks up an entry for
the next unresolved element of the destination, and forwards
the message to the next hop neighbor associated with this
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entry (ll. 24-37). Finally, it may happen that due to hierarchy
disturbance, the next hop cannot be resolved. In this case,
the node drops the message (the main routing method returns
null).
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