IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

317

The Design and Evaluation of a
Self-Organizing Superpeer Network

Pawet Garbacki, Dick H.J. Epema, and Maarten van Steen

Abstract—Superpeer architectures exploit the heterogeneity of nodes in a peer-to-peer (P2P) network by assigning additional
responsibilities to higher capacity nodes. In the design of a superpeer network for file sharing, several issues have to be addressed:
how client peers are related to superpeers, how superpeers locate files, how the load is balanced among the superpeers, and how the
system deals with node failures. In this paper, we introduce a self-organizing superpeer network architecture (SOSPNET) that solves
these issues in a fully decentralized manner. SOSPNET maintains a superpeer network topology that reflects the semantic similarity of
peers sharing content interests. Superpeers maintain semantic caches of pointers to files, which are requested by peers with similar
interests. Client peers, on the other hand, dynamically select superpeers offering the best search performance. We show how this
simple approach can be employed not only to optimize searching, but also to solve generally difficult problems encountered in P2P
architectures such as load balancing and fault tolerance. We evaluate SOSPNET using a model of the semantic structure derived from
eight-month traces of two large file-sharing communities. The obtained results indicate that SOSPNET achieves close-to-optimal file
search performance, quickly adjusts to changes in the environment (node joins and leaves), survives even catastrophic node failures,
and efficiently distributes the system load taking into account superpeer capacities.

Index Terms—Peer to peer, superpeer architectures, semantic clustering, self-organizing systems.

1 INTRODUCTION

A significant amount of work has been done in the field
of optimizing the performance and reliability of content
sharing peer-to-peer (P2P) networks [37], [47]. Among the
proposed optimizations, the concept of leveraging the
heterogeneity of peers by exploiting high-capacity nodes
in the system design has proved to have great potential [58].
The resulting architectures break the symmetry of pure P2P
systems by assigning additional responsibilities to high-
capacity nodes called superpeers. In a superpeer network, a
superpeer acts as a server to client (ordinary, weak) peers.
Weak peers submit queries to their superpeers and receive
results from them. Superpeers are connected to each other
by an overlay network of their own, submitting and
answering requests on behalf of the weak peers.

Several protocols have been proposed to exploit super-
peers [39], [41], [57], [58]. We add to this work the design of a
superpeer network capable of optimizing the relationships
between peers taking into account their content interests as
deduced from their (possibly changing) behavior. We call
our architecture the Self-Organizing Superpeer Network
(SOSPNET) because the relationships between peers are
discovered, maintained, and exploited automatically, with-
out any need for user intervention or explicit mechanisms.

o P. Garbacki is with Google, Inc., 1600 Amphitheatre Parkway, Mountain
View, CA 94043. E-mail: pawelg@gmail.com.

e D.H.]. Epema is with the Department of Computer Science, Delft
University of Technology, PO Box 5031, 2600 GA Delft, The Netherlands.
E-mail: d.h.j.epema@ewi.tudelft.nl.

e M. van Steen is with the Vrije Universiteit Amsterdam, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands. E-mail: steen@cs.vu.nl.

Manuscript received 5 Dec. 2007; revised 10 Apr. 2009; accepted 19 Aug.
2009; published online 13 Oct. 2009.

Recommended for acceptance by C.-L. Wang.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2007-12-0623.
Digital Object Identifier no. 10.1109/TC.2009.157.

0018-9340/10/$26.00 © 2010 IEEE

While some researchers have focused on exploiting static
properties of shared data [45], [51], [59], also the possibility
of utilizing patterns in dynamic peer behavior has attracted
the attention of the research community [11], [14], [52], [53],
[55]. Such patterns in peer behavior have been reported by
several measurement studies [24], [25], [26], [28], which
have revealed correlations between the search requests
made by users of popular P2P systems. It was observed that
the performance of locating content can be greatly im-
proved [20], [33] by grouping peers interested in similar
files and routing their search requests within these groups.
The semantic relationships between peers and files can be
discovered relatively easily [11], [55]. The biggest challenge
is, thus, to build an architecture that maintains and exploits
the discovered semantic structure existing in all these
semantic relationships. In this paper, we present the design
and evaluation of a P2P architecture that combines the
homogeneity of peer interests with the heterogeneity of peer
capacities to solve the problem of efficient peer relationship
management.

The design of our self-organizing superpeer network is
guided by the following requirements: First, SOSPNET
should be self-organizing in that it is able to discover and
exploit the semantic structure present in the network, no
matter what the initial topology is. Second, a new peer joining
the network does not need to have any knowledge about the
system; the longer a peer stays in the system, the more
information it can collect and exploit for improving the
performance of its searches. Third, the time it takes anew peer
to achieve its optimal performance should be minimized.

SOSPNET uses two-level semantic caches deployed at
both the superpeer and the weak peer level to maintain
relationships between related peers and files. The cache
maintained by a superpeer contains references to those files

Published by the IEEE Computer Society



318

that were recently requested by its weak peers, while the
cache of a weak peer stores references to those superpeers
that satisfied most of its requests. We propose a novel mixed
caching policy that combines the advantages of the
traditional least frequently used (LFU) and least recently
used (LRU) policies to improve the cache hit rates for less
popular files. Furthermore, SOSPNET incorporates in its
design a mechanism for balancing the load among super-
peers. Load balancing is fully integrated with the content
search algorithm and does not require any additional
information exchange between superpeers nor a separate,
external control component. The load balancing decisions
are made independently by individual superpeers based on
local information.

We also introduce a general performance model of a P2P
system with semantic relations between peers and files
based on two 8-month-long measurements of a large P2P
network. From the model, we derive a bound on the search
performance of a superpeer network using semantic caches.
In a series of simulations, we show that the performance of
SOSPNET is very close to the theoretical bound. In addition,
we evaluate in our simulations the fault tolerance, the
clustering properties, and the load balancing capabilities of
SOSPNET. Finally, we compare SOSPNET with alternative
architectures, assess its responsiveness to peer joins and
leaves, and measure the time needed to find an optimal set of
connections between peers, which all help in understanding
how the system would perform in a real environment.

The rest of the paper is organized as follows: In Section 2,
we specify the problem domain and scope of the presented
system. Section 3 describes in detail the architecture of our
self-organizing superpeer network. Section 4 introduces a
model of P2P networks with semantic relationships
between peers and files based on real-world traces. This
model is used in Section 5 to evaluate the performance of
our architecture. Section 6 summarizes the related work.
The paper concludes in Section 7 by exploring some
opportunities for future work.

2 ORGANIZING PEER RELATIONSHIPS

The vast majority of mechanisms for optimizing different
performance aspects of P2P networks rely in one way or
another on organizing the relations between peers. The
relationships are organized by defining for each peer the set
of other peers, called its neighbors, it interacts with.

In symmetric P2P networks such as Gnutella [2] and
Freenet [16], any two peers are potential neighbors. In hybrid
approaches such as Napster [6], all peers have a single
neighbor—a central server that keeps information on all
peers and responds to requests for that information. In
superpeer networks [58] such as Kazaa [4], Gnutella ultra-
peers [49], and Chord superpeers [38], neighbors are selected
from the set of high-capacity peers called superpeers; low-
capacity peers—the client peers—cannot become neighbors.

In this paper, we aim at solving the problems of the existing
superpeer networks related to the issue of establishing
relationships between peers. Before presenting our approach,
we identify the weak points of existing superpeer architec-
tures. Each of the popular superpeer protocols proposed in
the literature, including Kazaa, Gnutella ultrapeers, and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

Chord superpeers, makes at least one of the following three
assumptions:

1. Every peer is assigned to a fixed, very small number
(usually one) of superpeers. Consequently, super-
peers become bottlenecks in terms of fault tolerance.
Restoring the system structures such as routing
tables back to a consistent state after a superpeer
crash requires a considerable effort.

2. Peers are assigned to superpeers randomly and
statically. The randomness of the assignment is
explicit (as in Gnutella) or implicit (as in Chord,
where the superpeer selection is based on peer
identifiers, which are selected randomly). This static
assignment does not adapt to changes in the network
structure or in peer characteristics (e.g., content
interests).

3. The peer-to-superpeer assignment has the so-called
all-or-nothing property. When a peer connects to a
superpeer, the latter takes responsibility for all the
content stored at the peer. Such an assignment does
not take into account the possible diversity of the
peer’s interests, and makes balancing the load
among the superpeers difficult.

In the rest of the paper, we show how to overcome all

these limitations by introducing our self-organizing super-
peer architecture SOSPNET.

3 THE ARCHITECTURE OF THE SELF-ORGANIZING
SUPERPEER NETWORK

In this section, we present the SOSPNET system design.
After a general overview of the SOSPNET architecture, we
discuss in detail the employed data structures and protocols.

3.1 Architecture Overview

The basic idea behind the system architecture we propose is
simple and intuitive. Weak peers with similar interests are
connected to the same superpeers. As a consequence, super-
peers get many requests for the same files. The request
locality suggests the usage of caches that store the results of
recent searches. But not only superpeers are responsible for
discovering semantic structure in the network. We also allow
weak peers to collect statistics about the content indexed by
the superpeers. Having this information, weak peers can
make local decisions about which superpeers to connect to.

In our architecture, superpeers store the information
about the location of the content recently requested by their
weak peers. Weak peers, on the other hand, sort the
superpeers known to them according to the number of
positive responses to their queries, and prefer to connect to
superpeers that have satisfied most of their requests.

To accelerate the process of grouping peers with similar
interests under the same superpeers, we allow weak peers
to exchange their lists of superpeers. More precisely, if a
search succeeds, the requesting peer asks the peer that has
the requested file for its list of top-ranked superpeers. This
list is then merged with the list of superpeers known to the
requesting peer. The intuition here is that if both peers were
interested in the same file, then it is highly probable that
they will share interest for more files in the future.



GARBACKI ET AL.: THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 319

super-peer super-peer network *, > super-peer
connection _/ network core
8 weak peer .__» super-peer cache
reference
ﬁ files <. file cache > weak-peer
reference 7 layer

Fig. 1. The structure of SOSPNET.

3.2 System Model

The information stored at a node in our system depends
on the type of this node. Each weak peer maintains a
superpeer cache, which contains the identities of superpeers
(e.g., their IP addresses and port numbers). Each superpeer
has a file cache of pointers to files stored at the weak peers.
The relationships between SOSPNET peers are presented
in Fig. 1.

All items in the superpeer and file caches are assigned
priorities, which are nonnegative integer numbers. The
priority determines the importance of a particular item,
the higher the better. The initial priority assigned to a data
item when it is added to the cache and the way the priority
is modified upon a cache hit are determined by the caching
policy. There are two situations when the priorities are taken
into account. First, when the cache capacity is exceeded, the
item with the lowest priority is removed. Second, the
priorities are used for optimizing query routing. Details are
presented in Section 3.4.

The last element of Fig. 1 that has not been mentioned
until now is the network interconnecting the superpeers. We
do not specify precisely which P2P protocol should be used
here. We assume, however, that this protocol can efficiently
deal with frequent changes of the information stored at the
superpeers. Additionally, we require that the probability
that a search succeeds is high when the requested informa-
tion is present at least at one of the superpeers. Examples of
protocols satisfying these criteria are Gnutella and epi-
demic-based approaches such as SCAMP [21].

The load balancing mechanisms of SOSPNET require
introducing some specific terminology. We assume that each
superpeer specifies its capacity as a value in the interval (0, 1],
with higher values assigned to more capable peers. We do
not make any further assumptions about the superpeer
capacities, which may either reflect static node properties
(e.g., CPU speed) or change dynamically based on the
current situation in the system (e.g., available bandwidth).
The particular method of computing the capacity values falls
outside the scope of this paper. The current load of a
superpeer is computed by counting the number of requests
processed by the superpeer in a certain time frame called the
request history window. The size of the request history window

is the same for all superpeers, thus making the current-load
values consistent across all superpeers in the system.
However, the values of the current load of the superpeers
cannot be compared directly, as different superpeers may
have different capacities. Instead, we compute for each
superpeer the effective load by dividing the current load by the
capacity of the superpeer. A superpeer controls its load
simply by dropping some of the search requests it receives.
The accepted load is defined as the fraction of accepted search
requests of those sent to the superpeer.

3.3 Two-Level Caching

The two-level caching architecture represented by superpeer
and file caches allows us to separate caching policies that can
be optimized for a peer role. In SOSPNET, the superpeer
caches of the weak peers and the file caches of the superpeers
are controlled according to different caching policies.

The priority of a superpeer in a superpeer cache is
increased by one after every positive feedback provided by
this superpeer. This leads to the in-cache LFU [10] policy. The
benefit of LFU is its inherent memory property—the priority
of a superpeer is determined by the number of successful
feedbacks it has provided in the past. The priority changes
slowly, so one positive response from an unknown super-
peer will not discredit a well-proven superpeer that satisfied
many requests in the past, which would be the case if one
used a memoryless policy [32] such as LRU.

The caching policy employed for file caches should meet
some specific requirements. First, similar to LRU, the file
caches of the superpeers have to adapt fast to the changing
needs of the weak peers. This is important particularly in
the initial stage of the superpeer lifetime, when it is
contacted by random peers. Second, like LFU, the file
caching policy should keep track of long-term file popular-
ity. Addressing the specific requirements of file caches, we
propose a mixed caching policy that combines the desired
properties of LRU and LFU. According to the mixed policy,
if the file pointer is not yet present in the cache, then it is
added to the cache with its priority one higher than the
highest priority of all other cached items as in LRU.
Otherwise, the priority corresponding to the file pointer is
increased by one as in LFU. The high initial priority of the
inserted item and the slow alteration of the priorities of
items in the cache result in a better caching performance for
less popular files as we show in Section 5.

3.4 Search Protocol

Peers use the information collected during past searches to
improve the performance of future requests. The contents
of the superpeer and file caches are reorganized depend-
ing on the feedback provided by peers involved in the
search process.

The pseudocode of the search algorithm employed in
our self-organizing superpeer network presented in Fig. 2
is divided into four subroutines. The superpeer cache of
peer p is denoted by p.S, while the file cache of superpeer
s is represented by s.F.

The main search algorithm is the function peer_search.
When a weak peer p looks for a file f, it first checks the file
caches of the superpeers known to it (line 2). Note that p
starts with the superpeers with the highest priorities. When



320
1 peer_search(p : peer, f : file_name):
2 for s in p.S ordered according to decreasing priorities do
3 q <+ super-peer_local_search(s, f)
4 if super-peer_local_search succeeded then
5 t< s
6 break
7 if f was not found until now then
8 s < super-peer in p.S selected randomly with
probability proportional to its priority in p.S
9 < q,t > < super-peer_search(s,f)
10 if super-peer_search did not succeed then
11 return ERROR “File f not found”
12 if p.S contains t then
13 increase the priority of ¢ in p.S
14 else
15 insert ¢ into p.S

16 merge_super-peer_caches(p, q)
17 return g

18 super-peer_local_search(s : super-peer, f : file_name):
19 if an entry < f,q > exists in cache s.F then

20 increase the priority of < f,q > in s.F
21 return g

22 else

23 return ERROR ”File f not found”

24 super-peer_search(s, f):

25 perform a search in the super-peer network to locate a
super-peer ¢ which has an entry < f, ¢ > in its cache

26 if search succeeded then

27 insert < f,q > into s.F’

28 return < q,t >

29 else

30 return ERROR “File f not found”

31 merge_super-peer_caches(p : peer, g : peer):
32 for s in ¢q.5 do

33 if p.S contains s then

34 increase the priority of s in p.S
35 else

36 insert s into p.S

Fig. 2. Pseudocode of the search protocol in SOSPNET.

the file is found (line 4), a pointer to superpeer s that knows
the location of f is stored for future reference (line 5).
However, if the file was not found with this method (line 7),
the search request is forwarded to one of the superpeers in
p’s superpeer cache selected according to a random
distribution biased toward superpeers with higher priority
(line 8). This superpeer is further responsible for locating
file f. If the search succeeds, a pair <g¢,t>, where ¢ is a peer
that has f and ¢ is a superpeer that has a pointer <f,¢> in
its file cache, is returned to p (line 9). At this point, the self-
(re)organization process begins. This process is performed
in two stages. First, peer p increases the priority of the
superpeer ¢ that satisfied the search request (lines 12-15). As
a consequence, in the future, p will direct more of its
requests to t. Second, p integrates the list of superpeers kept
by the weak peer g with its own superpeer cache (line 16).
We exploit here a simple, yet powerful principle called
interest-based locality [50], which postulates that if p and g are
interested in the same file, it is very likely that more of their
requests will overlap. It is thus beneficial for both p and ¢ to
use the same set of superpeers.

The algorithm of the superpeer_local_search is straight-
forward. The search succeeds only if a pointer to file f is

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

present in the file cache of superpeer s (line 19). Before
returning the peer ¢ that possesses file f (line 21), the priority
of the corresponding cache item is increased (line 20).

The function superpeer_search performs the search in
the superpeer network (line 25). Upon receipt of the search
results, a pointer to the requested file f and to the peer ¢
holding file f is added to the file cache of s (line 27). The
return value of the function (line 28) contains not only the
peer g, but also the superpeer ¢ that has a pointer to f in its
file cache.

The last function presented in Fig. 2, merge_super-
peer_caches, takes two parameters representing two peers p
and g. The superpeer cache of peer p is updated with the
content of ¢’s superpeer cache (lines 32 and 33). The
functionality of merging the superpeer caches is not crucial
for the system operation, but it accelerates the process of
grouping weak peers under the same superpeers, which
improves the search performance.

3.5 Insert Protocol

The file-insert protocol deployed by SOSPNET is very
simple. Once in a while, each weak peer sends information
on the files which it possesses to one of the superpeers in its
superpeer cache. This superpeer is selected randomly with
a probability proportional to its priority in the superpeer
cache of the weak peer.

3.6 Balancing the Load among Superpeers

Load balancing is critical to the availability, accessibility,
scalability, and throughput of a P2P system. Poor load
balancing may gradually transform the superpeer network
into a backbone network as was observed for Gnutella [13].
The idea here is to avoid overloading individual super-
peers, which is the case when some superpeers are getting
significantly more queries than others.

Before describing the load balancing mechanism of
SOSPNET, we first define the requirements of load balancing
for a superpeer network in general. A minimal requirement
is to prevent situations in which the load imposed on a
superpeer exceeds its capacities. A more advanced load
balancing solution can further guarantee that the load
assigned to each superpeer is proportional to its capacity.
Finally, the performance overhead and implementation
burden incurred by adding the load balancing extensions
should be low. In the remainder of this section, we show
how the above goals can be easily achieved by exploiting the
properties of the self-organizing superpeer network.

At first sight, the load balancing problem that we face in
the SOSPNET design seems to be more difficult than in
other superpeer networks because the SOSPNET superpeers
do not explicitly know their weak peers. Furthermore, in the
SOSPNET architecture, the assignment of weak peers to
superpeers is not fixed. As a consequence, the superpeers
cannot transfer weak peers between each other without the
active cooperation of the weak peer layer. Being aware of
these limitations, we have built into the search protocol a
mechanism that indirectly influences the set of superpeers
contacted by the weak peers by discouraging directing
requests to overloaded superpeers.

The basic idea behind the load balancing mechanism of
SOSPNET relies on the observation that a superpeer may
control the number of received requests by affecting its



GARBACKI ET AL.: THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 321

18 super-peer_local_search(s : super-peer, f : file_name):
181  r < random value from range (0, 1)
18.2 if r > s.accepted_load then
18.3 return ERROR ’Super-peer s overloaded”
18.4 add request timestamp to request history window s.W
19 if an entry < f,q > exists in cache s.F then

24 super-peer_search(s, f):

26 if search succeeded then
26.1 update_accepted_load(s, t)
27 insert < f,q > into s.F

37 update_accepted_load(s : super-peer, ¢ : super-peer):

38 s.requests < number of requests in window s.WW

39 t.requests <— number of requests in window ¢.W

40 s.effective_load < s.requests/s.capacity

41 t.effective_load <+ t.requests/t.capacity

42 A «+ (t.effective_load —s.effective_load) |
(t.effective_load +s.effective_load)

43 new_accepted_load < s.accepted_load + A

44 if new_accepted_load > 1 then

45 new_accepted_load <+ 1
46 if new_accepted_load < 0 then
47 new_accepted_load < 0

48 s.accepted_load < [ - s.accepted_load+
(1 —PB) - new_accepted_load

Fig. 3. Pseudocode of the superpeer load balancing protocol in
SOSPNET.

priority in the superpeer caches of weak peers. An over-
loaded superpeer can simply start dropping some of the
requests, effectively decreasing its priority in the superpeer
caches of the requesting peers. As the priority of a
superpeer has a direct impact on the probability of that
superpeer being selected as a request target, the load
imposed on the overloaded superpeer will gradually
decrease. Note that if a superpeer s refuses to service a
request, then eventually, the client peer will ask another
superpeer ¢ to search for the file and to subsequently store a
reference in its file cache. In other words, ¢ will eventually
take over some of the file references that were cached by s.

The requirement that the load experienced by a super-
peer is proportional to its capacity involves relating the
effective load of that superpeer to the effective loads of
other superpeers in the system. To avoid introducing an
independent load-information exchange protocol, we let
superpeers gather load values of other nodes while
performing searches.

The integration of the SOSPNET load balancing func-
tionality with the search protocol is presented in Fig. 3.
The function superpeer_local_search of Fig. 2 is extended
with lines 18.1-18.4, which control the fraction of requests
that are handled by superpeer s. Only a fraction of
s.accepted_load randomly selected requests are accepted
and processed as described in Section 3.4. The remaining
requests are dropped, forcing the requesters to decrease
the priority of s. If a request is accepted, its time stamp is
saved in the request history window denoted by s.W (line
18.4). Request time stamps are used later for computing
the current load of the superpeer.

The value of the accepted load of superpeer s is updated
every time s discovers another superpeer t during the
invocation of superpeer_search (line 26.1) by taking into
account the load of ¢ in the update_accepted_load function.
The values of the effective loads of s and ¢, denoted by
s.ef fective_load and t.ef fective_load, respectively, are com-
puted by dividing the numbers of requests in the request
history windows of the two peers by their capacities (lines
38-41). The imbalance between the loads of s and ¢ is then
quantified by computing the relative difference A between
the effective loads (line 42), which is then used to compute
the value of the parameter new_accepted_load of s (lines
43-47). Finally, the accepted load of s is updated by
applying exponential smoothing [12] with weighting factor
B€(0,1) to the current value of the accepted load and
new_accepted_load (line 48). We use exponential smoothing
instead of just replacing the accepted loads with the new
values to avoid drastic changes in the accepted loads, giving
the system time to adapt to the new settings [19].

In one specific case, the behavior of the load balancing
algorithm can be confusing. Let’s assume that superpeer s is
overloaded and that it has in its cache the pointer <f, ¢> to
file f requested by p. The request will be forwarded to
another superpeer, say t. Superpeer ¢ will then perform a
superpeer search, find s, store a pointer to f in its own
cache, and return <g, s> to p. As a consequence, peer p will
increase the priority of s in its superpeer cache. This
behavior is counterintuitive as p should be discouraged to
contact s in the near future. However, the increase of the
priority of s should be interpreted as a one-time trade-off. If
a different peer subsequently sends a request for file f to ¢,
superpeer t will satisfy the request from its local file cache.
Our load balancing algorithm has, thus, the highly desired
property of replicating file pointers cached by the over-
loaded superpeers at lighter loaded peers.

The load balancing scheme that we presented here is
simple yet powerful and extremely flexible. While many
state-of-the-art load balancing algorithms assume that all
peers have equal capacities [30], [31], our self-organizing
architecture can deal with arbitrary capacity values and
even allows these values to be changed during system
operation. The load imbalance caused by a change of the
parameters of the superpeers is automatically taken into
account, and the system gradually adapts to the new
circumstances. Because neither the weak peers nor the file
pointers have to be explicitly reassigned from one super-
peer to another, no complex overlay infrastructure such as
virtual servers [44], [60] or buckets of file identifiers [9] needs
to be introduced.

3.7 Discussion

The flexibility built into SOSPNET eliminates all three weak
points of existing superpeer designs mentioned in Section 2.
First, by manipulating the size of its superpeer cache, a
weak peer may decide to how many superpeers it is
connected. The more connections maintained by the peer,
the better is the resilience to crashes of multiple nodes.
Second, the problem of static peer-to-superpeer assign-
ment is solved by the policy used for the superpeer caches.
This policy prefers superpeers indexing content that is close
to a user’s interests. Possible changes in user interests or in



322

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

TABLE 1
Details of the Four Data Sets

Dataset name Data collecting period Number of semantic types | Number of files
suprnova.org February 2004 — April 2004 198 24,081
piratebay.org | November 2005 — May 2006 40 164,821
suprnova._syn — 198 24,081
piratebay_syn — 40 164,821

the type of files cached at the superpeers result in
restructuring the connections between peers.

Third, the all-or-nothing property is replaced with a
property that we refer to as partial responsibility. The super-
peers in our system index individually selected files rather
than the entire set of files stored at their weak peers. This type
of architecture can deal with a situation in which a single
weak peer has files of different semantic types. Pointers to
these files can then be cached by multiple superpeers.

4 PERFORMANCE MODEL

In this section, we introduce a performance model of P2P
systems with a semantic structure in the popularities of the
files that are being shared and in the interests of the peers
that are present in such systems. The semantic structure is
described by a file access pattern and can be defined
mathematically by the file request probabilities of the peers
in the system. Below, we first show how the analytical
model allows us to extract the semantic structure from real-
world traces and how to generate it in synthetic data sets
that can serve as inputs to simulations. We then apply this
model to the two traces that we use in our performance
evaluation in Section 5. Second, we show that there is an
optimal arrangement of the items in the caches in the two-
level caching scheme of SOSPNET that reflects the semantic
structure of file popularities and peer interests, and we
derive a theoretical bound on the performance of this
arrangement. We use this bound when assessing the
caching performance of SOSPNET in Section 5. We start
this section with introducing some definitions and notation.

4.1 Definitions and Notation

It has been observed [20] that user content interests as
well as file popularities in file sharing P2P networks are
not independent. The similarities in user request patterns
can be modeled by assigning semantic types to both files
and peers.

We use the symbols D, U, and N to denote the total
numbers of files (data items), peers (users), and semantic
types in the system. The numbers of files and peers of
(semantic) type n, n =1,..., N, are denoted by d,, and w,,
respectively. Each peer periodically generates a request for
a file, which is selected according to a distribution that
depends on the peer’s type only. We denote by p(m) the
type popularity of semantic type m, m =1,..., N, which is
defined as the overall probability that a random peer
requests a file of type m. Similarly, we denote by p(m, k)
the file popularity of file k, k=1,...,d,,, of type m, which
is the overall probability that a random peer asks for the
kth file of type m. We assume that the types and the files

per type are numbered in decreasing order of popularity.
The rank of a file is its number in the ordering of all files if
we list the semantic types, and within each semantic type
the corresponding files, in decreasing order of popularity.
The distribution of the type popularities can be computed
from the file popularities in the following way:

din

Z:p(m7 k).
=1

p(m) = (1)
Further, we use the symbol p,(m,k) to denote the
probability that a peer of type n requests the kth file of
type m. We will define this probability in the next section.

4.2 Models of the Semantic Structure

In our experiments, we use four data sets to model file
popularities. The first two of them are based on real-world
traces, while the second two are created synthetically. The
properties of the data sets are presented in Table 1. There
are two reasons for using both models. First, a broader
spectrum of the simulation data increases the credibility of
our results. Second, we use the opportunity to assess the
usefulness of synthetic data sets in the evaluation of system
designs based on the semantic paradigm. The validation is
performed by comparing the behavior of SOSPNET with
real and synthetic data sets.

4.2.1 Model Based on Real Traces

Before presenting the method for computing the type
popularities p(m) and the file popularities p(m,k) from
the actual data traces, we describe how we have obtained
these traces. For a period of eight months, we have collected
the download statistics provided by the suprnova.org [7]
and piratebay.org [8] Websites, which at the time of
gathering the data were the most popular [29], [43] Websites
used for searching files in the BitTorrent [17] network.
BitTorrent is currently the largest P2P network with over
one-third of the world’s P2P traffic [42]. Each file registered
at suprnova.org or piratebay.org is categorized by
human volunteers called moderators. We treat the cate-
gories defined by the moderators as the semantic types.
For each file registered at suprnova.org or pirate-
bay.org, we were able to obtain the number of peers
downloading this file. The fraction of downloaders for a file
can be interpreted as the file popularity p(m, k). In order to
reduce the influence of temporal interest localities such as
flashcrowds [43] on the value of p(m, k), we compute for
each file the average number of downloads observed
during the whole measuring period. The average is
obtained by dividing the total number of downloads of
the file by the duration of the period in which the file was



GARBACKI ET AL.:

0.1

0.01 -

0.001 -

1e-04 |

1e-05

1e-06 -

File popularity

1e-07

1e-08 -

1e-09

1e-10

h L L L
5000 10000 15000 20000 25000

File rank

(@)

0.1

0.001

1e-04

i
MSWWMMMMMNMMMWMM

1e-06 -

File popularity

1e-07

1e-08 -

1e-09

1e-10

L L T L
5000 10000 15000 20000 25000

File rank

(©

THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 323

0.1

0.01 |

0.001

1e-04

1e-05 -

1e-06

File popularity

1e-07

1e-08

1e-09 -

1e-10

L L L ! L
[ 30000 60000 90000 120000 150000

L

Fig. 4. The file popularity distribution p(m, k) for the four data sets. The visible “tail’ of the suprnova_syn synthetic distribution is caused by the fact
that the last semantic type is represented by more files than the other types in the data set. (a) suprnova.org, (b) piratebay.org,

(c) suprnova_syn, and (d) piratebay syn.

accessible for download. The distributions of the file
popularities p(m,k) extracted from the suprnova.org
and piratebay.org traces are presented in Figs. 4a and
4b, respectively, with the files ranked as explained above.

Although collecting the access patterns for a particular
file is possible, obtaining complete statistics about the
content downloaded by a specific peer is infeasible. First,
many users are behind NAT boxes, which prevents us from
discovering their peer IP addresses. Second, we cannot
guarantee that a user is not using other Websites to look for
the files he is interested in. Consequently, the behavior of
users needs to be modeled synthetically, taking, however,
file popularities into account.

We propose the following formulas for w,, and p,(m, k):

u, = p(n) - U, (2)

( ) {(1—0[)~p(m,k), m#n7 ( )

pn(m, k) = —)+ 2| pn m=n 3
R R ]

Equation (2) explains that the number of users of a certain
semantic type is proportional to the popularity of this type.
The parameter « € [0, 1] in (3) characterizes how strong the
interest of users is for files of their own type. When o equals
0, peers of all types behave indifferently, while at the other
extreme with « equal to 1, peers of type n request only files
of type n.

Clearly, the values p,(m,k) define valid probability
distributions because the sum }_ , p.(m,k) equals 1 for
everyn=1,...,N:

an(ma k) = an(nv k) + Z pa(m, k)

m,k k m#n,k

=Zﬂ >}mk)
_az

k

Z (1 = a)p(m, k)

m#n,k

(1- a)Zp(m,k) =1
m,k

In the above formulas, we use (1) and the fact that p(m, k) is
a probability distribution, which implies that >_, , p(m, k)
equals 1.

A very important property of our model of the semantic
structure is that the frequency of queries to files generated by
all the peers in the system follows the distribution p(m, k). To
prove this fact, we compute the probability that a randomly
and uniformly chosen peer selects the kth file of type m:

Zp

:Mmﬂm—m+ﬁ%ﬂ

= ap(m, k) +

Up

pnmk pnmk

p(m. k) + Y p(n)(1 - a)p(m, k)

n#m

Zp(n

In the above reasoning, we make use of the fact that p(n) is a
valid probability distribution and so >, p(n) equals 1.

(I —a)p(m

4.2.2 Synthetic Model

The synthetic model of the semantic structure that we use in
our experiments was previously introduced in [22]. This
model assumes that the numbers of files of each semantic
type is the same, and that the distribution of the file



324

popularity within one type, the file popularities without
type partitioning, and the numbers of peers of each type
follow Zipf’'s law. We note that most related studies have
assumed a Zipf distribution (e.g., [15], [28], [36], [48]), with
the notable exception of an evaluation of Kazaa [24] that
tends to indicate that content popularity follows a different
type of distribution.

The number of files and peers of each semantic type, and
the request characteristics in the synthetic model are given
by the following formulas:

U
n — 5 4
= (4)
D
dn: 5 5
T (5)
(m) = — (6)
m) =
P o Hy
1 1
k) = . 7
p(m, k) oy FH (7)
1 l—a 1
K, m 7 m# .

pn(m'vk'): .1 " 1—a 1 (8)
k:.Hd”.<a+ n >E’ e

where H; = 23:1 1/7 is the ith harmonic number and Z is a
normalizing constant chosen such that ", , p,(m, k) equals
1 for n=1,...,N. It can be shown that Z equals
(1 —a)- Hy + o, independent of n.

For the sake of comparison with the trace-based data sets,
we generate two synthetic data sets which we shall further
call suprnova_syn and piratebay_syn. The numbers of
files and semantic types in the synthetic data sets are the
same as in the corresponding trace-based data sets (see
Table 1). Figs. 4c and 4d show the request frequencies per
file in the suprnova_syn and piratebay_syn data sets,
respectively.

4.3 Optimal Caching Performance

Having the formal description of the model of the semantic
structure, we can compute the optimal caching performance of
SOSPNET, which is defined as the expected cache hit rate
when the arrangement of items in the caches is optimal. It is
generally not obvious how to define the optimality of a
particular arrangement of cached items. Here, we describe
the optimality in terms of performance and fairness by
considering Pareto optimality [27]. An arrangement of items in
caches is Pareto optimal if it is not possible to modify the
contents of the cache of one peer in such a way that the
fraction of requests produced by this peer that can be satisfied
by the superpeers in its superpeer cache increases, while for
all other peers, this fraction does not decrease. Note that in
our model, the optimality is determined by the arrangement
of the items in the superpeer caches, as the contents of the file
caches are fully determined by the arrangements of items in
the superpeer caches. To support this claim, note first that the
content of a file cache of a superpeer depends only on the set
of weak peers that sends requests to this superpeer, and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

second that a weak peer contacts a specific superpeer only if a
pointer to this superpeer is in its superpeer cache.

4.3.1 Existence of the Optimum

We will now prove that there always exists an arrangement
of items in the superpeer caches that is optimal. Consider
the file cache s.F of superpeer s, and denote by r,(s) the
fraction of all requests submitted to s that are issued by
peers of type n. Assuming the Independent Reference
Model [54] which generalizes the properties of demand-
driven caching policies such as LFU, LRU, or mixed, the
cache hit ratio of a peer of type n is nondecreasing function
of 7, (s)—the more requests are produced by peers of type n,
the better cache s.F" adapts to the needs of peers of this type.

We say that an arrangement of items in the superpeer
caches of the weak peers is structured if the caches of all
peers of the same semantic type are the same. Consider a
nonoptimal structured arrangement of items in the super-
peer caches. Nonoptimality of an arrangement implies that
it is possible to modify a superpeer cache of one of the
peers, say p, in such a way that two conditions hold. First,
the fraction of requests produced by p that can be satisfied
by the superpeers in p’s superpeer cache increases. Second,
for all other peers, this fraction does not decrease.

A cache modification for a peer p of type n influences the
values of r,(s) of some of the file caches at the superpeers.
Removing any superpeer s from p’s cache decreases (or
does not influence) r,(s) and increases (or does not
influence) ,,(s), where m is different from n. Subsequently
adding any superpeer s to p’s cache has the opposite
effect—r,(s) increases (or does not change) and 7,,(s)
decreases (or does not change). Furthermore, if for some /,
r/(s) increased (decreased) after modifying p’s cache, then it
will also increase (decrease) when we perform the same
modification to the cache in p/, where p' is a peer of the same
type as p. We explained above that the cache hit ratio of a
peer of type [ at superpeer s is a monotonic function of r;(s).
We conclude that if a certain modification in a peer’s
superpeer cache improves the hit ratios at some peers and
does not decrease the hit ratios at all other peers, then
applying the same modification to the cache in another peer
of the same type will improve the same hit ratios, and will
not decrease the others.

We have just shown that if a certain modification of the
superpeer cache of peer p improves the nonoptimal,
structured arrangement of superpeer caches, then by
applying the same modification to the superpeer caches of
all peers of the same type as p, the arrangement can be
improved by at least the same amount. Such a modification
results in an arrangement that is again structured. There is,
however, a finite number of (structured) arrangements,
which means that we cannot endlessly improve. At some
point, we will end up with a structured arrangement which
is optimal. Note that in the optimal arrangement, the
superpeer caches of all weak peers of the same semantic
type are the same.

4.3.2 Upper Bound

After proving the existence of the optimal caching perfor-
mance, we will provide an upper bound on its value. In an
ideal situation, each weak peer p has its own “private” set of
superpeers that caches pointers to files which are most likely



GARBACKI ET AL.: THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 325

to be requested by p. Let’s assume for simplicity that the
sizes of all superpeer caches in the system are equal to o, and
that the sizes of all file caches are equal to ¢. Consequently,
the superpeers of p can index in total at most o - ¢ unique
files. Now we only have to find the set of o - ¢ files, which is
most likely to be requested by p. According to (3), the
probability that the kth file of type m is requested by p is
pn(m, k), where n is the semantic type of p. We sort all values
pn(m, k) in a descending order: p,(mq, k1) > pp(ma, ko) >

> pn(mp, kp), (mi, ki) # (mj, k;) for i # j. The probability
that a file request of p is satisfied by one of its superpeers,
denoted by ocp(n) (optimal caching performance of a peer of
type n), can be expressed as

Zl 1p71 i)
W an mi, k;) 9)
i=1 Pn T z

The optimal caching performance of the whole system, ocp,
is the weighted average of the values ocp(n), with the
weights equal to the fractions of peers of type n:

ocp = Z— ocp(n Zp

The optimal caching performance in an ideal situation
quantified in (10) provides an upper bound on the optimal
caching performance value in any (nonideal) situation.

ocp(n) =

-ocp(n). (10)

5 PERFORMANCE EVALUATION

For the purpose of performance evaluation, we have built a
discrete time simulator of SOSPNET and some alternative
system architectures that provide the reference points. The
simulator uses the model of the semantic structure intro-
duced in Section 4. We investigate a variety of performance
aspects of the simulated systems including the cache hit
ratios, the efficiency of the caching policies, the dynamics of
peer joins and leaves, and the properties of the load
balancing mechanisms.

We believe that the performance of SOSPNET, and in
particular, its performance relative to the systems to which
we compare SOSPNET, in a real environment will be close
to its performance in our simulations for two reasons. First,
SOSPNET operates at a level that is no way dependent on
such elements as the actual network with its particular
latency and connectivity characteristics in which it would
run. Second, we use workloads that are based on the traces
of real systems.

5.1 Experimental Setup

The simulated system consists of 100,000 peers and 1,000
superpeers. The selection of the number of peers relative to
the number of superpeers is guided by what was learned
from the study of Kazaa [34], the most popular superpeer
network ever deployed, in which the peer-to-superpeer
ratio is around 100. The sets of files and semantic types are
obtained with the method described in Sections 4.2.1 and
4.2.2. The numbers of peers of a particular semantic type
follow the distribution defined by (2). The value of the
parameter « in (3) is set to 0.8. The size of the superpeer
cache in any weak peer is 10 while the size of the file cache
in any superpeer is 1,000. Before the simulation starts, all
the superpeer caches have been filled with the identities of

superpeers selected randomly and uniformly from the set of
all superpeers. The file caches are initially empty. Each peer
initially stores 10 files selected randomly, taking into
account the file popularities and peer type. The superpeers
are organized into a Gnutella-like network. If a superpeer
cannot answer a file request, it employs request flooding in
the superpeer network.

The simulation is executed in phases. In each phase,
every weak peer requests one file. The target of the request
is determined by the distributions p,(m, k). Although in
SOSPNET searching and load balancing are integrated in
one protocol, in the experiments, we evaluate these two
mechanisms separately by disabling load balancing during
all experiments but the last one.

5.2 Results

This section presents the results of the experimental
evaluation of SOSPNET.

5.2.1 Caching Performance

In the first series of experiments, we compare the perfor-
mance of searching in SOSPNET with three other systems
that exploit a semantic structure in the P2P network.

The first of these systems, the symmetric peer-to-peer
network, does not make use of superpeers. Similarly as in
[55], each peer in this network maintains a cache of nodes
that answered their requests in the past. The caching policy
used here is the same as the policy of the superpeer caches
in SOSPNET. The size of the peer caches is set to 40. The
total number of items cached in the symmetric network is
4,000,000 (100,000 peers with caches of size 40 each), which
is twice as high as the total number of items cached in
SOSPNET, which is 2,000,000 (100,000 superpeer caches of
size 10 each, and 1,000 file caches of size 1,000 each).

The second system used for comparison, the fixed
superpeer network, exploits superpeers, but assumes that
the set of superpeers assigned to a weak peer is fixed.
Similar to SOSPNET, weak peers are initially assigned a list
of 10 randomly and uniformly selected superpeers, but this
list stays unmodified during the whole simulation. The
fixed superpeer architecture is comparable with the
Gnutella network with ultrapeers [49], with the addition
that the responses to peer requests are cached. The size of
the file cache at each superpeer is the same as in our self-
organizing network, and equals 1,000.

Finally, the third reference system, the superpeer net-
work with two-level caching, follows the approach described
in [22], exploiting two-level caching of semantic informa-
tion, without weak peers exchanging information about
their superpeers.

Fig. 5 presents a comparison of the performance of
SOSPNET and the three reference systems. The results are
shown separately for all four data sets. For each execution
phase, we present the fraction of search requests that are
satisfied by one of the peer’s direct neighbors (cache hit
ratio). The direct neighbors in the symmetric system are the
nodes stored in the peer’s cache. In the superpeer architec-
tures, the direct neighbors are the superpeers contained in
the superpeer cache. To improve the clarity, we only plot
every fifth point. Also, we organize the labels in the legends
to reflect the order of the lines in the plots. The solid line
represents the value of the optimal caching performance
given by (10).



326

04 | 1

Optimal caching performance 4

Self-organizing super-peer network ---4---

Super-peer network with two-level caching ---+---
Fixed super-peer network o
‘Symm:‘atric peler-to—pt?er netvyork . =}

Fraction of requests satisfied from the cache

L

0 L . I
0 100 200 300 400 500 600 700 800 900 1000
Execution phase

(@)

02 I Optimal caching performance 4
: Self-organizing super-peer network ---4---
Super-peer network with two-level caching -+~
0.1k Fixed super-peer network o
‘Symm:‘atric peler—to—ppier netvyork . =}

Fraction of requests satisfied from the cache

0 L . I
0 100 200 300 400 500 600 700 800 900 1000
Execution phase

(©)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

Optimal caching performance 4
Self-organizing super-peer network ---a---
Super-peer network with two-level caching
Fixed super-peer network
‘Symmelatric peler—to—p?er netvyork

Fraction of requests satisfied from the cache
b

ot

0 L I I
0 100 200 300 400 500 600 700 800 900 1000

Execution phase

(b)

Optimal caching performance 4
Self-organizing super-peer network ---a---
Super-peer network with two-level caching
Fixed super-peer network
‘Symmelatric peler—to—poier netvyork

b

Fraction of requests satisfied from the cache
I

=)

0 L I I
0 100 200 300 400 500 600 700 800 900 1000

Execution phase

(©)

Fig. 5. Cache hit ratio for four types of P2P architectures exploiting the semantic relations between peers. (a) suprnova.org, (b) piratebay.org,

(c) suprnova_syn, and (d) piratebay_ syn.

All three superpeer architectures outperform the sym-
metric design. The cache hit ratios of the self-organizing, the
two-level caching-based, and the fixed superpeer networks
are very similar in the early execution phases. However, at
some point, around phase 30, the performance of the fixed
system stabilizes. This is the point where the items in the
file caches are arranged optimally and further improvement
could only be achieved by modifying the peer-to-superpeer
assignments. In the two-level caching network, weak peers
are not allowed to merge the contents of their superpeer
caches, which has a significant performance impact. Among
the evaluated systems, only SOSPNET reaches the theore-
tical performance upper bound.

An interesting observation regarding the optimal cach-
ing performance introduced in Section 4.3 can be made at
this point. The value of ocp is defined with the simplifying
assumption that peers of different types are using distinct
sets of superpeers. Consequently, the value estimated by
(10) may be higher than the actual achievable performance
of an SOSPNET-like system, where superpeers are shared
among peers of different semantic types. The experimental
validation using a realistic system model shows, however,
that this is not the case. The fact that the cache hit ratio of
SOSPNET converges to ocp has two consequences. First, the
formula in (10), which gives the performance upper bound,
is also an accurate approximation of the actual value of the
optimal caching performance. Second, the performance
achieved by SOSPNET is close to optimal.

5.2.2 File Caching Policy

From here on, we study the performance of SOSPNET on the
suprnova.org data set, leaving the alternative designs
and data sets aside. In the following series of experiments,

we investigate the properties of the novel mixed caching
policy by comparing it to the traditional policies represented
by LFU and LRU. The comparative results are obtained by
running the simulation described in Section 5.2.1 for the
SOSPNET architecture with the mixed file caching policy
replaced first by LFU and then by LRU.

The convergence of the cache hit rates in the course of
the simulation for the three caching policies is presented in
Fig. 6a. In agreement with the expectations discussed in
Section 3.3, LRU converges faster than the other two
policies. Although the cache hit ratio converges to the
highest value for the mixed policy, the improvement over
LRU and LFU is not significant.

The real advantage of the mixed policy is visible only after
presenting the cache hit rates for individual files. Fig. 6b
decomposes the average cache hit ratio in phase 1,000 into
the cache hit rates of requests targeting single files. The files
in this figure are ranked based on their popularity. It is
clearly visible that the mixed policy, compared with LFU and
LRU, leads to higher cache hit rates for less popular files.
This property of the mixed policy decreases the dependency
of the system on the presence of a strong semantic bias in
content popularity and reduces the variance of the caching
performance across files. The mixed policy has thus a
positive impact on the system performance in case of
searches for files with heavy-tailed popularity distributions.

5.2.3 Peer Joins and Leaves

The number of execution phases needed for a system to
achieve its peak performance does not say much about the
bootstrapping period of an individual peer. In the next
experiment, we measure how long it takes for a peer joining



GARBACKI ET AL.: THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 327

02 F B

Fraction of requests satisfied from the cache

0.1 Iru ------- b

1
0 100 200 300 400 500 600 700 800 900 1000

Execution phase

(@)

o1k

popularity:

R .,7............., _

0.001 | e

"\
0.0001 F A

Cache hit ratio / Popularity

1e-05 | i 4

16-06 |- i

L L .
10000 15000 20000
File rank

(b)

1 i
0 5000 25000

Fig. 6. The impact of the file caching policy on (a) the convergence speed and (b) the cache hit ratio for individual files.

the system to find its optimal set of neighbors. We assume
that the new peer joins the network when the system has
reached its maximum performance, i.e., in phase 1,000 of
the experiment described in Section 5.2.1.

Fig. 7a shows how fast the cache hit ratio of the new peer
increases with the phase number of this peer for the
investigated architectures. For better readability, we plot
every fifth data point. The number of iterations (search
queries sent) required by a peer to reach its top performance
is under 50 for the superpeer networks and around 100 for
the symmetric network. It is also worth noting that the
caching performance of a peer in a superpeer network is
generally more stable compared to the performance of a
peer in the symmetric network.

We expect that the self-organizing superpeer network as
well as the other types of systems we evaluate is resilient to
node failures (unexpected leaves) because of the redun-
dancy built into the architecture. A peer that looses some of
its neighbors can still connect to the network using other
nodes in its cache. We simulate a catastrophic system failure
by killing simultaneously half of peers in the symmetric
network, or half of the weak peers and half of the superpeers
in case of the superpeer networks, both selected randomly
and uniformly. As a consequence, on average, 50 percent of
the pointers stored in the semantic caches become invalid.
We measure how long it takes before the system replaces the
broken references with valid ones.

Fig. 7b shows how the performance of the system is
affected by the failure of 50 percent of the nodes in execution
phase 500. In spite of the scale of the failure, the cache hit

Self-organizing super-peer network —a&—

Super-peer network with two-level caching --—+---
Fixed super-peer network ---o

‘Symmtle(ric peler-to-p(?er nelvyork &

900 1000

0.1 ¢

Fraction of requests satisfied from the cache

0 I ! I
0 100 200 300 400 500 600 700 800
Execution phase

(@)

ratio of the superpeer networks does not decrease much and
goes back to the previous level in less than 50 phases. The
performance degradation of the symmetric network is more
visible but it does not prevent the system from recovering,
which takes roughly 80 phases.

5.2.4 Clustering of Peers and Content

In Section 3.1, we claimed that the mutual dependency
established between the superpeer and the file caches
results in semantically related peers and files being
clustered together. Here, we validate the correctness of this
claim. We first investigate the correlation between the
superpeer caches of weak peers of the same semantic type.

Fig. 8a presents the value of the peer clustering coefficient
defined for each semantic type. The semantic types are
sorted according to the decreasing values of the clustering
coefficients. The peer clustering coefficient is the average
number of identical items in the superpeer caches of peers
of one semantic type divided by the size of the superpeer
cache. The statistics are collected in execution phase 1,000.
For the sake of comparison, we also present the peer
clustering coefficient computed at the beginning of the
simulation for randomly initialized superpeer caches.

A high value of the peer clustering coefficient indicates
that the locality property of the weak peer requests is
indeed exploited by the architecture of SOSPNET. For more
than 90 percent of the types, peers of the same type have, on
average, at least 3 (out of 10) identical items in their

0.9 | —

Self-organizing super-peer network —a&—
Super-peer network with two-level caching --—+---
Fixed super-peer network ---o
ISymmg(ric pegr-lo-p(?er netvyork i

900 1000

Fraction of requests satisfied from the cache

0 L L L
0 100 200 300 400 500 600 700 800
Execution phase

(b)

Fig. 7. (a) The caching performance of a weak peer joining the system and (b) the drop in performance when half of the peers simultaneously fail in

phase 500.



328

‘Super-‘peer ca‘ches at‘ the enld of meI simula{tion Ta
Super-peer caches initialized randomly --—+---

0.8 | B

0.6 B

04| —

Peer clustering coefficient

02 |

f f f f t it
0 20 40 60 80 100 120 140 160 180 200
Semantic type rank

(@)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

0.2 T

File caches at fhe end of the simulation —e—
075 File caches initialized randomly --—+---

0.02

0.15 - =

0.015 i%% A
L)

0.125

0.1}

0.075 |

File clustering coefficcient

0.05

0.025

0 L I I I L I L I i
80 100 120 140 160 180 200

Semantic type rank

(b)

Fig. 8. The correlation (a) between the superpeer caches of the weak peers of the same semantic type and (b) between the items in the file caches of

the superpeers.

superpeer caches, which is remarkable given that there are
1,000 superpeers in the system.

In the following experiment, we evaluate the correlation
between the semantic types of files in the file caches. We
define the file clustering coefficient of a semantic type as the
average of the Jaccard coefficients of pairs of files of this type.
The Jaccard coefficient [1] is a commonly accepted measure
of similarity between sample data. The Jaccard coefficient
J(f1, f2) of the pair of files (f1, f2) can be expressed as

_leunew)
QUM +1Q(f2)]

where Q(f;) is the set of superpeers that has a pointer to f; in
its file cache. In other words, the Jaccard coefficient of two
files is the ratio of the number of co-occurrences of both files
and the total number of individual occurrences of these files
in the file caches. The values of the file clustering coefficients
observed in our simulations in execution phase 1,000 are
compared in Fig. 8b with the file clustering coefficients
when the file caches are initialized with pointers to files
selected randomly with a bias toward more popular files
determined by the file request model. Also in this figure, the
semantic types are sorted according to the decreasing values
of the clustering coefficients. The use of the biased instead
of the uniform random distribution during the file cache
initialization makes the comparison more representative for
an environment, where the numbers of file occurrences in
the system are proportional to their popularity.

The lower level of file clustering in SOSPNET compared
to peer clustering is expected because the targets of peer
requests are not limited to files of one semantic type. Even if
all peers of one semantic type use the same superpeers, the
file caches of those superpeers will still maintain pointers to
files of different types.

J(f1: f2) (11)

5.2.5 Load Balancing

In the last experiment, we activate the load balancing
functionality of SOSPNET to assess its ability to deal with
superpeers with heterogeneous capacities.

Every superpeer is randomly and uniformly assigned one
of the four capacity groups. The capacity values and the
number of superpeers in each group are presented in Table 2.
All superpeers start with the same value of the accepted load
equal to 1, resulting in superpeers accepting all requests. The
parameter § controlling the speed of convergence of the
exponential smoothing employed to correct the accepted
loads of the superpeers (see Section 3.6) is set to 0.9. We let the
simulation run for 1,000 phases before measuring the
average effective load, the standard deviation of the effective
load, and the cache hit ratio of the superpeers in the different
capacity groups.

Ideally, the effective loads of all superpeers in the system
should be the same. The results of the experiment, which are
presented in Table 2, indicate that the load balancing
mechanism of SOSPNET is able to distribute the system load
among the superpeers according to their capacities. Further-
more, the low value of the standard deviation indicates that
there are no significant differences in the amounts of load
assigned to superpeers with the same capacities. Finally, the
last column of Table 2 shows that the load balancing
mechanism does not significantly affect the search perfor-
mance by retaining cache hit rates, which are close to those
observed when load balancing is disabled (see Section 5.2.1).

6 RELATED WORK

The concept of leveraging the heterogeneity of peers by
exploiting high-capacity nodes as superpeers has proved to

TABLE 2

The Performance of the Load Balancing Algorithm of SOSPNET

Super-peer | Number of Effective load Cache
capacity super-peers | Average | Standard deviation | hit ratio

0.25 242 172.516 30.212 0.843

0.5 252 163.754 20.864 0.835

0.75 243 148.226 19.185 0.847

1 263 159.374 21.549 0.851




GARBACKI ET AL.: THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 329

have great potential [58] and has resulted in implementa-
tions in popular P2P networks. KaZaa [4] and Morpheus [5],
which are both based on the FastTrack [3] protocol, are
widely used file sharing systems that make use of super-
peers. Although FastTrack is a proprietary technology with
no detailed documentation, it is known that FastTrack peers
are automatically elected to become superpeers if they have
sufficient bandwidth and processing power (users can
disable this feature). A central bootstrapping server pro-
vides new peers with a list of one or more superpeers to
which they can connect. Superpeers index the files shared
by client peers connected to them and proxy search requests
on behalf of these peers. All queries are therefore initially
directed to the superpeers.

An extension of the basic Gnutella [46] system has an
architecture based on ultrapeers [49], which are conceptually
equivalent to superpeers. Any new peer with enough
bandwidth and CPU power immediately becomes an
ultrapeer and establishes connections with other ultrapeers,
forming an overlay network. A new ultrapeer is required to
establish a predefined minimum number of connections to
client peers. Neither FastTrack nor Gnutella ultrapeers
rearrange the assignments between peers and superpeers
and so both networks are instances of the fixed superpeer
network architecture that we show to have performance
inferior to that of SOSPNET in Section 5.

The Edutella [35], [40] network proposes a superpeer
architecture based on the concept of semantic clusters. It
creates a logical layer on top of the base P2P network
topology by grouping peers with similar content interests.
The clustering is performed by matching the semantic
information provided by the peers to clusters, with each
cluster being maintained by a superpeer. In addition to
controlling the internal structure of the cluster, superpeers
are responsible for routing messages between peers from
different clusters. In contrast to SOSPNET where peers are
clustered based on patterns automatically discovered in
their requests, in the Edutella network, the policies defining
the peer clustering rules have to be defined manually by
domain experts.

Superpeer architectures have also been proposed for
structured P2P networks [23], [38]. Such architectures
group nearby peers based on some criteria, such as network
latency or adjacency in the key space, and organize the
communication between groups using a superpeer layer.
To find a peer that is responsible for a key, the top layer
overlay network routes among the superpeers to determine
the group responsible for the key, which, in turn, uses an
intragroup overlay network to find the target peer. The
lookup time in structured superpeer networks depends on
the size of the state maintained by each superpeer and on
the total number of superpeers. Some architectures [38] are
even able to guarantee a constant-time lookup. The rigid
organization of content items based on their identifiers in
structured P2P networks hampers optimization efforts that
exploit the semantic properties of the content.

Exploiting the semantic properties of peers and content
has also attracted a significant interest of the research
community. Various approaches to capturing the semantic
proximity between peers have been proposed. Some of them
rely on a predefined ontology (semantic classification) [18].

Unfortunately, defining ontologies is often a manual, time-
consuming process and the resulting semantic classes have
to be continuously adjusted to reflect changes in semantic
profiles of the content. Another approach is based on
adding semantic shortcuts (i.e., extra links) between peers
that share some interest [25], [50]. These links are created
dynamically based on the set of most recent downloads, for
instance. Such a mechanism is very reactive to evolving
download patterns. Nevertheless, the nonintrusive nature
of this approach does not allow to exploit available
information such as the overlap between caches, which
has also been used to approximate the semantic proximity
between peers [56]. A refined proximity measure takes into
account not only the content of peers’ caches but also their
generosity and the popularity of shared files [11]. None of
the approaches discussed here combines a dynamic dis-
covery of semantic proximity between peers and files with a
multilevel P2P architecture as SOSPNET does.

7 CONCLUSIONS

We have introduced a self-organizing superpeer network
architecture called SOSPNET built on top of an unstruc-
tured topology with semantic correlations between peers
and files. Starting with random sets of neighbors, peers are
always able to find superpeers that guarantee the highest
performance of their searches. All decisions in our system
are made locally by each peer based on the information
collected during previous searches. We have also proposed
a novel performance model of a P2P network, where peer
requests exhibit semantic patterns. Through simulations
with real-world trace-based data, we have shown that in
SOSPNET, not only very popular files but also less popular
content can be located very efficiently. Furthermore, we
have demonstrated that a new peer that joins the system can
very quickly find a set of superpeers that guarantees the
highest performance. Finally, we have shown that our
system is robust to catastrophic failures and it supports
superpeers with heterogeneous capacities by controlling the
amounts of load delegated to individual superpeers.

REFERENCES
[1] http://en.wikipedia.org/wiki/jaccard_similarity_coefficent,
2009.

[2] http://gnutella.wego.com, 2007.

[3] http://www. fasttrack.nu, 2009.

[4] http://www .kazaa.com, 2009.

[5]  http://www.musiccity.com, 2009.

[6] http://www.napster.com, 2007.

[71 http://www.suprnova.org, 2009.

[8] http://www.thepiratebay.org, 2009.

[9] Y. Breitbart, R. Vingralek, and G. Weikum, “Load Control in
Scalable Distributed File Structures,” Distributed and Parallel
Databases, vol. 4, no. 4, pp. 319-354, Oct. 1996.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. INFOCOM,, pp. 126-134, Mar. 1999.

[11] Y. Busnel and A.-M. Kermarrec, “Proxsem: Interest-Based
Proximity Measure to Improve Search Efficiency in p2p Systems,”
Proc. European Conf. Universal Multiservice Networks (ECUMN ’07),
Feb. 2007.

[12] C. Chatfield, A.B. Koehler, ].K. Ord, and R.D. Snyder, “A New
Look at Models for Exponential Smoothing,” ]. Royal Statistical
Soc., Series D, The Statistician, vol. 50, pp. 147-159, 2001.

[13] Y. Chawathe, S. Ratnasamy, L. Breslau, and S. Shenker,
“Making Gnutella Like p2p Systems Scalable,” Proc. SIGCOMM,
Aug. 2003.



330

(14]

(15]

[lo]

(17

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(33]

[30]

Y. Chen, Z. Xu, and C. Zhai, “A Scalable Semantic Indexing
Framework for Peer-to-Peer Information Retrieval,” Proc. Work-
shop Heterogeneous and Distributed Information Retrieval, Aug. 2005.
V. Cholvi, P. Felber, and E. Biersack, “Efficient Search in
Unstructured Peer-to-Peer Networks,” Proc. Symp. Parallelism in
Algorithms and Architectures (SPAA '04), June 2004.

L. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System,” Lecture Notes in Computer Science, pp. 46-66, Springer,
2001.

B. Cohen, “Incentives Build Robustness in Bittorrent,” Proc. First
Workshop Economics of Peer-to-Peer Systems, May 2003.

A. Crespo and H. Garcia-Molina, “Semantic Overlay Networks for
p2p Systems,” technical report, Stanford Univ., Sept. 2002.

T. Decker, R. Luling, and S. Tschoke, “A Distributed Load
Balancing Algorithm for Heterogeneous Parallel Computing
System,” Proc. Int’l Conf. Parallel and Distributed Processing
Techniques and Applications, Nov. 2000.

F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L.
Massoulie, “Clustering in Peer-to-Peer File Sharing Workloads,”
Proc. Int’l Workshop Peer-to-Peer Systems (IPTPS '04), Feb. 2004.
AlJ. Ganesh, A.-M. Kermarrec, and L. Massouli, “Peer-to-Peer
Membership Management for Gossip-Based Protocols,” IEEE
Trans. Computers, vol. 52, no. 2, pp. 139-149, Feb. 2003.

P. Garbacki, D.H.J. Epema, and M. van Steen, “Two-Level
Semantic Caching Scheme for Super-Peer Networks,” Proc. IEEE
10th Int’l Workshop Web Content Caching and Distribution, Sept.
2005.

L. Garces-Erice, EZW. Biersack, KW. Ross, P.A. Felber, and G.
Urvoy-Keller, “Hierarchical Peer-to-Peer Systems,” Proc. ACM/
IFIP Int’l Conf. Parallel and Distributed Computing (Euro-Par), 2003.
K.P. Gummadi, R.J. Dunn, S. Saroiu, S.D. Gribble, HM. Levy, and
J. Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-
Peer File-Sharing Workload,” Proc. Symp. Operating Systems
Principles (SOSP "03), Oct. 2003.

S. Handurukande, A.-M. Kermarrec, F. Le Fessant, and L.
Massoulie, “Exploiting Semantic Clustering in the Edonkey p2p
Network,” Proc. 11th ACM SIGOPS European Workshop, Sept. 2004.
S.B. Handurukande, A.M. Kermarrec, F. Le Fessant, L. Massoulie,
and S. Patarin, “Peer Sharing Behaviour in the Edonkey Network,
and Implications for the Design of Server-Less File Sharing
Systems,” Proc. EuroSys Conf., Apr. 2006.

M. Hutter, “Self-Optimizing and Pareto-Optimal Policies in
General Environments Based on Bayes-Mixtures,” Proc. 15th
Ann. Conf. Computational Learning Theory (COLT ’02), 2002.

A. Jamnitchi, M. Ripeanu, and I. Foster, “Small-World File-
Sharing Communities,” Proc. IEEE INFOCOM, Mar. 2004.

A. Tosup, P. Garbacki, J. Pouwelse, and D. Epema, “Correlating
Topology and Path Characteristics of Overlay Networks and the
Internet,” Proc. Global and Peer-to-Peer Computing Workshop
(GP2PC '06) in Conjunction with the IEEE/ACM Int'l Symp. Cluster
Computing and the Grid (CCGrid '06), May 2006.

M. Jelasity, A. Montresor, and O. Babaoglu, “A Modular Paradigm
for Building Self-Organizing Peer-to-Peer Applications,” Engineer-
ing Self-Organising Systems: Nature Inspired Approaches to Software
Engineering, G. Di Marzo Serugendo, A. Karageorgos, O.F. Rana,
and F. Zambonelli, eds., pp. 265-282, Springer-Verlag, Apr. 2004.
D.R. Karger and M. Ruhl, “Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems,” Proc. 16th Ann. ACM Symp.
Parallelism in Algorithms and Architectures (SPAA "04), pp. 36-43,
2004.

N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta Algorithms for
Hierarchical Web Caches,” Proc. IEEE Int’l Performance Computing
and Comm. Conf. (IEEE IPCCC), Apr. 2004.

S. Le Blond, J.-L. Guillaume, and M. Latapy, “Clustering in p2p
Exchanges and Consequences on Performances,” Proc. Int’'l Work-
shop Peer-to-Peer Systems (IPTPS "05), Feb. 2005.

J. Liang, R. Kumar, and K.W. Ross, “The Kazaa Overlay: A
Measurement Study,” Computer Networks, special issue on over-
lays, vol. 49, no. 6, Oct. 2005.

A. Loser, M. Wolpers, W. Siberski, and W. Nejdl, “Semantic
Overlay Clusters within Super-Peer Networks,” Proc. Int’l Work-
shop Databases, Information Systems, and P2P Computing, Collocated
with 29th Int’l Conf. Very Large Databases (VLDB "03), Sept. 2003.
Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. Int’l
Conf. Supercomputing (ICS '02), June 2002.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO.3, MARCH 2010

(371

(38]

(39]

[40]

[41]

(42]

[43]

(44]

[43]

[40]

[47]

(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

[50]

[57]

(58]

[59]

[60]

D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B.
Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,”
Technical Report HPL-2002-57, HP Labs, Mar. 2002.

A.T. Mizrak, Y. Cheng, V. Kumar, and S. Savage, “Structured
Superpeers: Leveraging Heterogeneity to Provide Constant-Time
Lookup,” Proc. Third IEEE Workshop Internet Applications, June
2003.

A. Montresor, “A Robust Protocol for Building Superpeer Overlay
Topologies,” Proc. Fourth Int’l Conf. Peer-to-Peer Computing, Aug.
2004.

W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M.
Nilsson, M. Palmer, and T. Risch, “Edutella: A p2p Networking
Infrastructure Based on rdf,” Proc. 11th Int’'l World Wide Web Conf.
(WWW ’02), May 2002.

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, 1.
Brunkhorst, and A. Loser, “Super-Peer-Based Routing Strategies
for Rdf-Based Peer-to-Peer Networks,” Web Semantics, vol. 1, no. 2,
pp- 177-186, Feb. 2004.

A. Parker, “P2p in 2005,” http:/ /www.cachelogic.com/research/,
2005.

J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips, “The
Bittorrent p2p File-Sharing System: Measurements and Analysis,”
Proc. Int’l Workshop Peer-to-Peer Systems (IPTPS '05), Feb. 2005.

A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Dynamic Structured p2p Systems,” Proc. IEEE
INFOCOM, Mar. 2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content Addressable Network,” Proc. SIGCOMM, 2001.

M. Ripeanu, “Peer-to-Peer Architecture Case Study: Gnutella
Network,” Proc. First Int’l Conf. Peer-to-Peer Computing (P2P '01 ),
Aug. 2001.

J. Risson and T. Moors, “Survey of Research Towards Robust Peer-
to-Peer Networks: Search Methods,” Computer Networks, vol. 50,
no. 17, pp. 3485-3521, 2006.

M.T. Schlosser, T.E. Condie, and S.D. Kamvar, “Simulating a File-
Sharing p2p Network,” Proc. First Workshop Semantics in P2P and
Grid Computing, May 2003.

A. Singla and C. Rohrs, “Ultrapeers: Another Step Towards
Gnutella Scalability,” http://www.limewire.com/developer/
Ultrapeers.html, 2001.

K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems,”
Proc. INFOCOM, Apr. 2003.

L. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. SIGCOMM, pp. 149-160, 2001.

C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay Networks,”
Proc. SIGCOMM, Aug. 2003.

C. Tempich, S. Staab, and A. Wranik, “Remindin’: Semantic Query
Routing in Peer-to-Peer Networks Based on Social Metaphors,”
Proc. 13th Int’'l World Wide Web Conf., May 2004.

S. Vanichpun and A.M. Makowski, “The Output of a Cache under
the Independent Reference Model—Where Did the Locality of
Reference Go?” Proc. SIGMETRICS 2004/PERFORMANCE 2004:
Joint Int’l Conf. Measurement and Modeling of Computer Systems,
pp- 295-306, 2004.

S. Voulgaris, A.-M. Kermarrec, L. Massoulie, and M. van Steen,
“Exploiting Semantic Proximity in Peer-to-Peer Content Search-
ing,” Proc. Int’l Workshop Future Trends of Distributed Computing
Systems (FTDCS '04), May 2004.

S. Voulgaris and M. van Steen, “Epidemic-Style Management of
Semantic Overlays for Content-Based Searching,” Proc. EuroPar
2005, Aug. 2005.

Z. Xu and Y. Hu, “Sbarc: A Supernode Based Peer-to-Peer File
Sharing System,” Proc. Eighth IEEE Int’'l Symp. Computers and
Comm., June/July 2003.

B. Yang and H. Garcia-Molina, “Designing a Super-Peer Net-
work,” Proc. IEEE Int’l Conf. Data Eng., Mar. 2003.

B.Y. Zhao, L. Huang, ]. Stribling, S.C. Rhea, A.D. Joseph, and J.D.
Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay for
Service Deployment,” IEEE ]. Selected Areas Comm., vol. 22, no. 1,
pp- 41-53, Jan. 2004.

Y. Zhu and Y. Hu, “Efficient, Proximity-Aware Load Balancing for
dht-Based p2p Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.



GARBACKI ET AL.: THE DESIGN AND EVALUATION OF A SELF-ORGANIZING SUPERPEER NETWORK 331

Pawet Garbacki received the double MSc
degree in computer science from Vrije Universi-
teit Amsterdam and Warsaw University in 2003
and the PhD degree in distributed systems from
Delft University of Technology in 2008. During
the Summer of 2005 and 2006, he was a visiting
scientist at the IBM T.J. Watson Research
Center, Yorktown Heights, New York. A year
later, he pursued an internship at Google in
Zurich, Switzerland. In 2008, he returned to
Google to take a full-time position. His research interests include design,
implementation, and performance analysis of large-scale distributed
systems with emphasis on efficient data transfer protocols and high-
volume data processing.

Dick H.J. Epema received the MSc and PhD
degrees in mathematics from Leiden University,
the Netherlands, in 1979 and 1983, respectively.
From 1983 to 1984, he was in the Computer
Science Department of Leiden University. Since
1984, he has been in the Department of
Computer Science of Delft University of Tech-
nology, where he is currently an associate
. professor in the Parallel and Distributed Systems
. - E Group. During the academic year 1987-1988,
the Fall of 1991, and the Summer of 1998, he was a visiting scientist at
the IBM T.J. Watson Research Center, Yorktown Heights, New York. In
the Fall of 1992, he was a visiting professor at the Catholic University of
Leuven, Belgium. His research interests are in the areas of performance
analysis, distributed systems, peer-to-peer systems, and grids.

Maarten van Steen is a full professor in the
Computer Systems Group at the Vrije Universi-
teit Amsterdam. He teaches modules and
courses covering distributed systems, computer
networks, operating systems, and complex net-
works to academics and professionals. He has
coauthored two textbooks on networked compu-
ter systems. His research concentrates on large-
scale distributed systems with a strong empha-
sis on adaptive techniques that support auto-
matic replication, management, and organization of wired and wireless
systems. Recently, he has been exploring gossip-based solutions to
achieve decentralized autonomous systems, partly focusing on very
large wireless sensor networks and pervasive computing. He is
furthermore a consultant for Philips Research, and closely participates
with a collaboration of high tech SMEs for developing and deploying
real-world pervasive computing systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.



