
Optimal decentralized formation of k-member partnerships (May 9, 2010)

Anna Chmielowiec, Maarten van Steen
Dept. of Computer Science

Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
{ania|steen}@cs.vu.nl

Abstract—To keep pace with constantly changing markets,
many companies are seeking strategic partnerships. In this
paper, we assume that a company can electronically provide a
profile of the product or service it has to offer. This profile is
described in such a way that potential partners can assess
the fitness of the company for eventually teaming up. We
concentrate on the fully decentralized optimal formation of
teams consisting of k members. This problem boils down to
developing a decentralized, efficient algorithm for solving a
variant of the maximal weighted k-subgraph problem. We
provide a first solution, along with an assessment of its perfor-
mance, thereby concentrating on the feasibility of an actual
embedding in real-world scenarios consisting of thousands
of companies. In particular, any solution should be highly
adaptive when new or fresh information concerning potential
partners comes available.

Keywords-strategic alliances; product bundling; k-clique
matching; variable neighbourhood search; self-stabilization;

I. INTRODUCTION

For the rapid development of innovative elaborate prod-
ucts, companies are increasingly engaging themselves in
different forms of strategic partnerships. Apple and Nike
are a good example. In 2006 the two companies announced
the Nike+iPod Sport kit — a two-piece sensor-based device
that, when connected to an iPod, allows runners to track
their workout data such as elapsed time, pace and distance
covered as they are jogging and listening to music. The
creation of this product was possible thanks to Nike’s
experience in the design of sportswear and understanding
of a runner’s needs and behaviour combined with Apple’s
expertise in digital and software technology.

These two companies are not the only ones that have
seen benefits in mutual collaboration. Other firms, not only
big corporations but also small and medium enterprises, are
spotting the potential of this kind of cooperation for har-
nessing the competencies and resources of each participating
party in pursue of a common objective. However, the very
first challenge they have to face is finding suitable business
partners.

The choice of business partners can have a significant
impact on the success of a cooperation. As a consequence,
the ability to discover and accurately assess the prospective
collaborators is of foremost importance. Yet, the task of
selecting partners is not easy and it becomes even more

complicated if the company is looking for more than one
partner for a specific venture. In such a case it has to evaluate
not only the fit between itself and a prospective partner but
also between the envisaged partners themselves.

Ironically, the advances in ICT and Internet have made the
discovery of best possible partners more difficult. The cur-
rent communication technology makes it potentially possible
to team up with companies from all over the world. However,
at the same time this means that the choice is much greater,
which in many cases makes the decision process much more
complex.

Furthermore, we need to realize that businesses are forced
to respond ever faster to a constantly changing market,
which is especially apparent in the sector of e-services. This
imposes a special character on the goals of collaborations.
Creating new products from scratch might be too risky
and too time-consuming. Instead companies may integrate
already existing products into one to create a joint offering.
This “sale of two or more separate products in one package”
is called bundling [1] and has been heavily researched in
the marketing, economics, and law literature for over 50
years. Along with an increase in the number and variation
of electronic goods (such as electronic newspapers, e-books,
audio, and video) as well as electronic services that can be
ordered and provisioned online (think, e.g., of streaming-
media services), bundling has gained more interest also in
the information and computer science community.

Partnerships should not only deliver the results quickly
in order to gain the competitive advantage for their par-
ticipants. Also the process of partnership creation should
not be too time-consuming, as the competitors may seize
the opportunity sooner. Yet, searching for “perfect” business
partners might pose a real challenge for small companies
as they lack the knowledge about which firms are there
that have suitable capabilities and resources. Outsourcing
the search to a specialized consulting company may not
be a viable option due to high costs, nor is making use
of only an in-house expert. An attractive alternative could
be an Internet-based system capable of finding prospective
partners in an automated way. As past years have shown,
companies little by little are expanding the use of Internet
and ICT into the growing number of their internal and
external business activities. Therefore, such a system could

find willing adopters, especially among e-services providers.
We believe that such a system should be decentralized —

organized in a network of nodes, each representing a profile
of one company. The main reason for avoiding a central-
ized implementation lies in the ownership that would be
concentrated in one hand. As a result, the decision-making
power would reside with the owners, raising concerns of
trust. Moreover, the centralized solution would most likely
be a paid service akin to the usually expensive consultancy
firms.

This leads us to the following outline of the requirements
for a partnership formation service:
• Clarity The rules by which the potential partners are

selected should be clear and not too complicated.
• Fairness The service, while matching prospective part-

ners, should respect the interests of all the companies
that are represented by nodes in the system.

• Minimal requirements Use of the service should not
pose high computational or memory requirements on
the nodes.

• Ease of deployment Companies should be able to add
their nodes to the system at any time without using
complicated bootstrapping mechanisms.

• Robustness The impact of nodes entering or leaving
the system should be minimal. Moreover, the service
should be able to recover gracefully from the situations
of many nodes leaving the service at the same time.

• Scalability The performance of the service should not
be heavily effected by a growing number of nodes.

We will address most of this requirements and to the others
we will provide a guidance for a plausible implementation.

Contributions

In this paper we present a self-stabilizing protocol for
finding a matching between potential business partners. Our
protocol is a generalization of the distributed algorithm
for solving the weighted matching problem proposed by
Manne and Mjelde [2]. However, our extension of this
algorithm may impose a prohibitively high computational
load on participating nodes. To alleviate this problem, we
also present a heuristic that significantly reduces this load.
We evaluate the performance of our protocol both with
and without our proposed heuristic. Lastly, we discuss an
example of a possible application for our protocol in the
form of a network consisting of companies each of which
is trying to select the best group of prospective partners for
some joint project. We show how our protocol can be used
in this kind of a setting to assist the formation of multilateral
partnerships in a completely decentralized fashion.

Paper Overview: The remaining part of the paper is
structured as follows. In the next section, related work is
discussed. In Section III, we describe the system model for
discovery of potential sets of partners. Section IV presents

in detail the self-stabilizing distributed algorithm and heuris-
tics used to limit the computational complexity. Section V
provides the experimental evaluation of the protocol based
on simulations followed by the last two sections containing
discussion, plans for future work and conclusions.

II. RELATED WORK

Business partnerships such as strategic alliances and co-
branding collaborations have been a heavily studied topic
in economics and marketing for years. The most pressing
question that researchers have been trying to answer is what
makes this kind of ventures successful. Many papers [3]–[5]
stress the importance of the choice of appropriate partners,
often presenting the guidelines for selecting the right busi-
ness partners. For example, Prince and Davies [6] list four
criteria that a company has to take into consideration while
choosing a co-branding partner. Their very first recommen-
dation is to analyze the compatibility between the firms in
terms of both product fit and brand fit. Also Bronder and
Pritzl in [4] list fundamental fit, strategic fit, and cultural
fit as important factors in selection of business partners for
strategic alliances.

From our perspective an important question is whether
it is realistic to assume that the assessment of business
partner fit can be automated. An important concept in this
respect is that of brand image, defined as “perceptions
about a brand as reflected by the brand associations held
in consumer memory” [7]. Some preliminary research on
automated partner fits has recently been done. In [8], Ver-
meulen shows how the World Wide Web can be used to
assess brand images and how obtained measurements can
be further utilized to discover promising brand alliances. He
extracts the number of co-occurrences of a brand name with
other brand names to compute the strengths of associations
between them and to create a competitive image of a brand.
Similarly, the strengths of associations between a brand
name and some preselected attributes are computed to form
personality, evaluative, and semantic images. All of these
four images are later used by Vermeulen to predict the
chances for successful co-branding ventures between pairs
of companies. This is done by simply assessing the level of
structural equivalence between the corresponding images of
the two companies.

The ideas of business ecosystems [9], network econ-
omy [10] or business webs [11] have drawn attention to the
structural organization of enterprises and markets, and the
changes such organizations are undergoing. There is an irre-
vocable shift of focus from a single company or traditional
value chains to the networks of companies interacting with
each other. Van Heck et al. [12] carve a future scenario
in which such networks become more agile. They foresee
that companies operate in what they call a pick, plug, and
play fashion, dynamically creating linkages with each other
to provide complex, bundled goods and services. Digital

technology plays a pivotal role in facilitating this constant
re-organization of business connections.

This has laid foundations for research expanding into
computer science. For example, Blau et al. [13] present a
formal framework for modeling what they call service value
networks. Such networks bring together legally independent
providers of diverse services and facilitate flexible compo-
sition of complex services triggered directly by customers
requests.

Opposed to service value networks research that focuses
on creating a platform for service composition, our protocol
stays more in line with the smart business networks concept
of swarm-like organization of enterprises and contributes to
making a step in the direction of the automated formation
of linkages between prospective business partners.

Our matching protocol can be viewed as a protocol for the
completely decentralized construction of an overlay network.
The resulting topology partitions the network into fully
connected groups of exactly k nodes. The formation of these
groups emerges from the decisions of nodes based only on
their local view of the whole network to evaluate the fitness
of the group. Other protocols for fully decentralized overlay
construction also exist. Approaches closely related to our
work can be found, for example, in [14] or [15]. In [14],
[16] Jelasity et al. present a protocol (called T-MAN) that
constructs different types of overlay topologies depending on
a ranking function used by nodes to compose neighbour lists.
Similar to this protocol is VICINITY proposed by Voulgaris
and van Steen in [15] which they apply, as an example,
to the construction of an overlay that reflects the semantic
proximity of nodes. Both T-MAN and VICINITY are gossip-
based protocols, organized in a way that is akin to our
matching protocol.

III. SYSTEM MODEL

Throughout this paper, we concentrate on companies that
can represent their business by means of a Web service,
which, in turn, is available at a server dedicated to that
company. Each company is said to be represented by a
dedicated node in the Internet. Note that our approach does
not necessarily imply that a company actually offers such a
service as their product, but rather that each company can be
automatically contacted and queried for what it has to offer.
To this end, we assume that a description of a company is
readily available, and in such a way that its relevance or
usefulness can be evaluated by a contacting party. Such an
evaluation is crucial in order to establish to what extent two
or more parties are fit for a collaboration.

In our model, we express such a fitness in terms of
a nonnegative weight between two parties A and B. The
higher two parties assess that they fit, the higher the weight.
For now, we adopt a simple approach in which the mutual
fitness is symmetric: a collaboration between two parties is
valued the same by both. We return to this symmetry later

in our discussion. Moreover, the fitness of a collaboration
between multiple parties is a combination of the fitness
estimations between all the pairs of the companies.

To discover other parties, we assume the existence of a
partner discovery service. There are many ways in which
such a service can be realized. A traditional one consists of
a broker that has become known to various parties through
an external channel. In our view, a much better approach is
to consider a fully decentralized partner discovery service
realized by means of, for example, an epidemic protocol.
The feasibility of such a decentralized service as been
demonstrated by Jelasity et al. [17].

An epidemic-based partner discovery service is imple-
mented by letting each node maintain what is called a partial
view of the entire system. A partial view is a (relatively
small) list with references to other nodes. Periodically, each
node randomly selects a node from its view and initiates an
exchange, yielding that references are passed back and forth
between the two nodes. The effect is that partial views will
appear to continuously consist of a uniform, random sample
of all nodes in the system.

To select the best parties for collaboration, we let every
node maintain a much larger list of other potential partners,
a list which is continuously updated with new (and better
fitting) entries obtained from the partner discovery service,
while entries that have been evaluated to have a low fitness
may be evicted. Again, to keep matters simple, we assume
that entries are never evicted unless a node discovers that a
referenced peer is no longer part of the system.

With this approach, we are capable of running fully
decentralized algorithms, which logically operate at a layer
on top of the partner discovery service. In particular, in
the next section we describe a decentralized algorithm that
would allow nodes to arrange themselves into prospective
partnerships.

IV. A MATCHING PROTOCOL

The problem of companies finding prospective partner-
ships can be translated into a well-known problem from
graph theory. If we look at the nodes as a vertices in
the graph, then the weight of an edge between a pair of
any two vertices represents the fitness of these two nodes
for a potential collaboration. Moreover, each clique of k
vertices represents a potential k-party partnership and the
weight of this clique depicts the overall evaluation of the
cooperation aptitude of the firms that are part of this clique.
We assume that all companies in the system are interested
in participating in exactly one1 partnership at a time, for

1If a company is considering creating more than one partnership, it could
represent itself with more than just one node. However, in our current
work we neglect neglect issues related to such multiplication of nodes;
such as, company’s participation in two different partnerships that may
raise conflicts of interest or company’s attempt to exploit the service and
its other participants by putting an excessive number of nodes into the
network.

Table I
NOTATION USED

Symbol Meaning
N(v) set of all neighbours of v
C[v] set of k−1 neighbours with which v wants to create

a clique
wv(C) weight of the clique consisting of v and nodes in C
w[v] the weight wv(C[v])

attrv(C) the attractiveness of clique C for node v (see text)

example, due to limited resources and we focus solely on
the formation of these potential strategic structures. We
thus abstract from the details of particular projects that
firms might intend to realize. We express the problem of
discovering partners in terms of what is known in graph
theory as a (edge) weighted k-clique packing problem.

Definition 1 (Weighted Clique Packing): Given a graph
G = (V,E) a clique packing is a disconnected subgraph
of G whose components are cliques. If edges in G have
assigned nonnegative weights, we define the weight of an
(edge) weighted clique packing as the sum of the weights of
all cliques from this packing. The (edge) weighted clique
packing problem concerns finding the clique packing of
maximum weight in G.

The fact that the cliques in a clique packing are dis-
connected reflects our initial assumption that the companies
limit themselves to the participation in at most one partner-
ship. Obviously, each company would attempt to form the
most promising collaboration. Thus, each node would strive
to maximize the weight of the clique it is part of in a clique
packing. As a consequence, we might be less interested in
the global maximum and more in a local greedy algorithm
that gives a suboptimal global solution but maximizes the
individual prospects of nodes.

If we restrict ourselves to a situation in which all com-
panies are looking for the same number of partners, we can
reduce our problem to the (edge) weighted k-clique matching
problem.

Definition 2 (Weighted k-Clique Matching): Given
a graph G = (V,E) with nonnegative edge weights, a
k-clique matching is a clique packing where each clique
has exactly k vertices. The weight of the k-clique matching
is defined as the sum of the weights of all its k-cliques.
Note that a 2-clique matching corresponds to a traditional
matching in graphs.

A. Self-Stabilizing Protocol

Our protocol for matching nodes is inspired by the self-
stabilizing distributed algorithm by Manne and Mjelde [2].
By introducing minor changes to this algorithm we create
a protocol that finds a weighted k-clique matching whose
total weight is off by at most a factor k ≥ 2 in comparison
to an optimal solution. In practice, we see that much better
matchings are found, and most often even close to optimal.

1: loop
2: C ← {}
3: for all U ≡ {u1, . . . , uk−1} ⊆ N(v) do
4: if attrv(U) > attrv(C) then
5: C ← U
6: end if
7: end for
8: C[v]← C
9: broadcast(C[v])

10: end loop

Figure 1. Self-stabilizing weighted k-clique matching protocol (executed
by node v)

Notation: For any subset of nodes U ⊆ V , let w(U)
denote the weight of the subgraph induced by the nodes in
U . In particular, w({u, v}) > 0 denotes the weight of an
edge between two adjacent nodes u and v. Moreover, let
wv(U) denote the weight of a clique consisting of v and
nodes in U , thus wv(U) ≡ w({v} + U). The set of nodes
adjacent to node v, i.e., its neighbour set, is denoted by
N(v).

Assumptions: We assume that each node v has a unique
identifier id(v) and that a total ordering is imposed on these
identifiers. We also assume that the weight of each k-clique
in the graph is unique2.

Variables: As in the algorithm from [2], each node v in
the network has two variables: C[v] denoting a set of k− 1
neighbours of v with which v is willing to form a clique,
and w[v] ≡ wv(C[v]) denoting a weight of that clique. We
consider a clique induced by nodes v1, v2, . . . , vk as matched
only if for each vi we have that C[vi] = {v1, v2, . . . , vk}−
{vi} (with 1 ≤ i ≤ k). In a stable configuration each node
v that is part of some clique should have all other nodes
from that clique as elements of its set C[v]. Moreover, each
node v that is not part of any clique in a stable configuration
should have C[v] empty and thus w[v] = wv({}) = 0.

Apart from C[v] and w[v], every node also needs to know
the weights of the edges between its neighbours to be able
to compute the weights of the cliques it can be part of. Note
that it is not necessary for a node to know the weights of all
edges in the network, only the weights of the edges between
its neighbours are needed. In our protocol, we assume that
these weights are readily available, and abstract away from
how they are obtained by each node. Note that the process
of gathering information about such weights can be totally
independent from the k-clique matching protocol.

Fig. 1 shows the pseudo-code of our weighted k-clique
matching protocol. In an infinite loop each node in the
network looks for the most attractive k-clique that it can
become part of (we will formalize attractiveness shortly). In
order to discover such a clique node v considers all

(|N(v)|
k−1

)

2Note this is easy to realize by extending each weight of a clique with
a tuple of its node ids, sorted in descending order.

subsets of k − 1 neighbouring nodes (line 3) and keeps the
most attractive one.

To assess the attractiveness of a clique formed with nodes
from set U, node v has to ensure that none of these nodes
is currently involved in a heavier clique, because such a
node would not be interested in joining a clique of a smaller
weight. To this end, we call a set U = {u1, . . . , uk−1} of
k − 1 neighbours proper if and only if

∀ui ∈ U : w({v, u1, . . . , uk−1}) ≥ w[ui]

and denote this fact through the predicate proper(v, U). Only
cliques constructed with proper combinations of neighbours
can be considered as admissible.

Subsequently, to compare any two sets of k − 1 neigh-
bours, nodes follow two straightforward rules. From the
perspective of node v, subset C ′ is better than subset C
if:
• C ′ is proper and C is not, or
• both C ′ and C are proper and wv(C ′) > wv(C).

We can express it in a more concise way by, firstly, defining
the function attrv():

attrv(C) =

{
wv(C) if proper (v, C)
0 otherwise

As a result, we can now check whether C ′ is better than C
by evaluating the expression attr v(C

′) > attrv(C).
By executing lines 3–7, node v chooses the heaviest

admissible (most attractive) clique, setting C[v] and w[v]
accordingly and broadcasting these values (line 9.) As a
result, all of v’s neighbours have updated information about
the clique chosen by v.

In a manner similar to the one presented in [2], one
can prove that the weighted k-clique matching protocol
computes a solution that approximates an optimal weighted
k-clique matching by at worst a factor k. Likewise, one can
show that it converges in a number of rounds proportional
to the number of cliques found.

B. Variable Neighbourhood Search Heuristic

To reduce the computational complexity of the task per-
formed by each node in a single round, we incorporate a
heuristic for finding the heaviest k-clique. In the protocol
presented in Fig. 1 each node has to examine

(|N(v)|
k−1

)
subsets

of neighbours with whom it can create a k-clique. If the
number of neighbours is substantial then even for small
values of k the cost of executing the protocol in its original
version may be prohibitively high. Therefore, instead of
checking all the possible combinations of neighbours, we
propose that nodes use what is known as variable neigh-
bourhood search (VNS) to find their k-clique. Our choice is
motivated by the work of Brimberg el al. who have applied
VNS to the problem of finding the heaviest k-subgraph, that
is a subgraph induced on k vertices with maximal weight.
In [18] they report that VNS is consistently the best over a

function Shake(v, C, d)

1: randomly select U ⊆ C with 1 ≤ |U | ≤ d
2: randomly select U∗ ⊆ N(v)− C with |U∗| = |U |
3: return (C + U∗ − U)

Figure 2. Shake function randomly generates new candidate for a k-clique
from NSd(C)

number of other heuristics tested, including tabu search and
multi-start local search.

Variable neighbourhood search is a meta-heuristic that has
found many applications in solving various combinatorial
and global optimization problems [19]. At the core of this
method lies the interchangeable execution of two basic
steps: (1) randomly changing the current solution (to avoid
stagnation at a local optimum), and (2) improving the current
solution by performing some form of local search. Both
these steps make use of neighbourhood structures (hence the
heuristics name) that define the sets of solutions at most d
units away from some particular solution in a metric imposed
on the solution space.

VNS for k-clique matching: We do not apply VNS to
the weighted k-clique matching problem. Instead, we apply
it to the subproblem of finding the heaviest admissible k-
clique each node v can be part of. Thus, the solution space
Sv consists of all

(|N(v)|
k−1

)
combinations of v’s neighbours

(represented by sets of k − 1 elements each):

Sv = {C|C ⊆ N(v) with |C| = k − 1}

To this solution space we introduce a metric δ:

δ(C,C ′) = |C − C ′|

which tells us in how many elements C and C ′ differ. This
metric is then used to construct the following neighbourhood
structures NSd:

NSd(C) = {C ′|C ′ ∈ Sv with δ(C,C ′) ≤ d}

Note that the neighbourhood structures are nested (i.e.,
NSd−1(C) ⊆ NSd(C)) and that it makes sense only to
consider d < k as NS k−1(C) = NSk(C) = · · · .

The Shake function (see pseudo-code in Fig. 2) returns a
random set of k − 1 neighbours of v that is at most d units
away from a given set C. This is achieved by randomly
selecting at most d elements from C and swapping these
with an equal number of elements from N(v)− C.

The aim of the LocalSearch function is to improve the
given solution. To this end, we need to be able to compare
any two sets of k − 1 neighbours of node v. The local
search function uses the attrv() function to find the first
improvement over a given set C among the sets that are in
the first neighbourhood structure of C. This means that only
the sets that differ from C by one neighbour are considered.
There are at most (k− 1) · (|N(v)| − k+ 1) such sets. If no

function LocalSearch(v, C)

1: for all u ∈ C do
2: for all u∗ ∈ N(v)− C do
3: C ′ ← C + {u∗} − {u}
4: if attrv(C

′) > attrv(C) then
5: return C ′

6: end if
7: end for
8: end for
9: return C

Figure 3. LocalSearch finds first improvement of a clique from NS 1(C)

function VNS (v, Copt)

1: if Copt = {} then
2: randomly select Copt ⊆ N(v) with |Copt| = k − 1
3: end if
4: while stopping condition = false do
5: d← 1
6: while d < k do
7: C ← Shake(v, Copt, d)
8: C ′ ← LocalSearch(v, C)
9: if attrv(C

′) > attrv(Copt) then
10: Copt ← C ′

11: d← 1
12: else
13: d← d+ 1
14: end if
15: end while
16: end while
17: return Copt

Figure 4. VNS heuristic returns the heaviest admissible k-clique found
for node v

improvement is found, C is returned as the result. Instead
of using the first improvement found, we could also select
the best improvement. (As the first improvement mechanism
performed well in our simulations, we have not tested the
best improvement mechanism.)

The VNS heuristic function is outlined in Fig. 4. In the
inner loop the algorithm tries to improve the currently best
solution Copt. First, it randomly chooses some set C from
the d-th neighbourhood of Copt via the Shake function.
Then it tries to refine C by performing a local search. If
the set C ′ returned by LocalSearch is more attractive than
the current best solution Copt that solution is replaced and
the next iteration of the loop is performed in the smallest
neighbourhood structure NS 1 of the new best solution.
Otherwise, when C ′ is not better, d is increased. Note that
with the fixed set of neighbours and the information about
neighbours’ cliques fixed too, there is no threat of looping
infinitely in the inner loop. Variable d is set to 1 only if
a clique better than the currently best one is found and

1: loop
2: C ← {}
3: if proper (v,C[v]) then
4: C ← C[v]
5: end if
6: for all u ∈ N(v) do
7: if v ∈ C[u] and

attrv(C[u] + {u} − {v}) > attrv(C) then
8: C ← C[u] + {u} − {v}
9: end if

10: end for
11: C ′ ← VNS(v, C)
12: if attrv(C ′) > attrv(C) then
13: C ← C ′

14: end if
15: C[v]← C
16: broadcast(C[v])
17: end loop

Figure 5. Self-stabilizing weighted k-clique matching protocol with VNS
heuristic

the number of such improvements is bounded by the finite
elements in the solution space.

The inner loop is abandoned when parameter d reaches
k and starts its execution anew, if possible. This searching
for a better solution has to be explicitly bounded. The
outer loop contains a stopping condition that limits the
number of the inner loop executions. The possible stopping
conditions that can be used here are: number of full inner
loop executions from d = 1 to k − 1, the total CPU
time, or the maximum number of iterations between two
improvements. Additionally, if the executions of inner loop
are too lengthy, the CPU time condition can be used to break
from both inner and outer loop.

The modified k-clique matching protocol with incorpo-
rated VNS heuristic is presented in Fig. 5. Apart from
executing the VNS function it has been extended to also
check the solution found in the previous round and to
consider cliques sent by neighbours that contain node v.
These modifications come from considering the scope of
the search performed by the VNS function in comparison to
the protocol from Fig. 1. In the latter, nodes search the full
solution space to find the heaviest admissible clique. There
is thus no need to re-evaluate a previous solution or solutions
sent by the neighbours, as they will be evaluated anyway.
When the heuristic is used only part of the solution space is
explored in a single round of the protocol. Thus, a very good
solution from a previous round or those sent by neighbours
might be forgotten/neglected causing the protocol to lose its
self-stabilization property. To prevent this from happening,
in lines 3–5 a node re-evaluates its solution from the previous
round and in lines 6–10 it evaluates the cliques sent by
neighbours. The set of k − 1 neighbours found in this way

is thereafter fed to the VNS function as its starting point.

V. EXPERIMENTAL RESULTS

A. Simulation Setup

In our simulations we focused on the situation in which
nodes have full knowledge about the network. Thus, if
there are n nodes in the network, then the size of the
neighbour set N(v) of each node would be equal to n− 1.
The reason for this is to control the size of the k-clique
matching to be at the level of bn/kc regardless of the weight
assignments. However, this approach does restrict the sizes
of the networks that we were able to simulate.

Apart from the fact that the list of neighbours of each
node consists of all the nodes in the network, each node also
has global knowledge about the weights not only between
itself and its neighbours but also between each pair of its
neighbours, as discussed above. This provides the node with
enough information to compute the weight of any clique it
can be potentially part of.

The weight between each pair of nodes is assigned
uniformly at random from the interval (0, 1). The weight of a
clique is computed as the geometric mean3 of the respective
weights between each pair of nodes in the clique. The
reasons for choosing the geometric mean over, for example,
the more commonly used arithmetic mean is twofold. First,
by using the geometric mean we promote cliques for which
in general the weights are closer to each other. Secondly,
when using the geometric mean we can use weight 0 to
effectively represent the fact that two nodes cannot or should
not join the same clique, thus also capturing the absence
of an edge. Note that this also weakens our requirement
(in a positive sense) that a node needs to know all weights
between its neighbours: lack of knowledge can be modeled
by assigning zero weight to an edge.

All nodes start with no initial clique chosen. They execute
the protocol in a round-based fashion — in each round each
node in the network executes a single loop. The order in
which nodes execute their protocol in each round is random.
Each simulation with distinct parameters has been executed
3 times and the results have been averaged. All simulations
presented in this paper were conducted using the PeerSim
simulator [20].

B. k-Clique Matching Protocol Performance

Let us first focus on the performance of the protocol
without VNS. In Fig. 6a the percentage of nodes in cliques
over rounds is depicted. In the network of 200 nodes the
number of rounds needed for all nodes to find a matching
clique increases with the value of k. Yet, even for k = 5 it
does not exceed 20 rounds.

Nonetheless, if we present the percentage of matched
cliques as a function of number of cliques evaluated by

3Recall that the geometric mean over a series x1, x2, . . . , xn is com-
puted as (x1 · · · · · xn)1/n.

 0%

 20%

 40%

 60%

 80%

100%

 0 5 10 15 20

no
de

s
in

 c
liq

ue
s

rounds

2-cliques (200 nodes)
3-cliques (201 nodes)
4 cliques (200 nodes)
5-cliques (200 nodes)

(a)

 0%

 20%

 40%

 60%

 80%

100%

100 102 104 106 108 1010

no
de

s
in

 c
liq

ue
s

considered cliques (log scale)

2-cliques (200 nodes)
3-cliques (201 nodes)
4 cliques (200 nodes)
5-cliques (200 nodes)

(b)

Figure 6. Performance of the protocol without VNS; percentages of nodes
matched into cliques for different values of k as a function of: (a) number
of rounds, (b) average number of cliques evaluated by a single node since
the beginning of a simulation

a single node since the start of the protocol, a completely
different picture arises (see Fig. 6b, notice the logarithmic
scale on the horizontal axis). This new measure can be
regarded as a possible metric of the computational cost of
an algorithm. The number of cliques that each node has
to evaluate in a single round is equal to

(|N(v)|
k−1

)
which

is proportional to nk−1, hence the exponential increase in
the time needed by nodes when k increases linearly. As a
consequence, for even small values of k such as 4 or 5
the protocol can impose a prohibitively high computational
burden on a node with substantial number of neighbours.

C. k-clique matching protocol performance with VNS

Incorporating VNS heuristic into the protocol is meant
to tackle the very problem of computational load faced by
nodes. Our implementation of the VNS heuristic is very
basic. Moreover, while performing the simulation with VNS,
we did not try to tune its parameters in any way and we
arbitrarily set the stopping condition of the VNS to 25 full
executions of the inner loop.

Fig. 7 compares the performance of the protocol without
VNS to the protocol with VNS for forming 3-, 4-, and
5-cliques. As depicted in Fig. 7a and 7d, there is little
difference in the effectiveness of both protocols while nodes

3-cliques (201 nodes) 4-cliques (200 nodes) 5-cliques (200 nodes)

 0%

 20%

 40%

 60%

 80%

100%

 0 5 10 15 20 25 30

no
de

s
in

 c
liq

ue
s

rounds

no VNS
VNS

(a)

 0%

 20%

 40%

 60%

 80%

100%

 0 20 40 60 80 100 120

no
de

s
in

 c
liq

ue
s

rounds

no VNS
VNS

(b)

 0%

 20%

 40%

 60%

 80%

100%

 0 50 100 150 200 250 300 350 400

no
de

s
in

 c
liq

ue
s

rounds

no VNS
VNS

(c)

 0%

 20%

 40%

 60%

 80%

100%

100 101 102 103 104 105 106 107

no
de

s
in

 c
liq

ue
s

considered cliques (log scale)

no VNS
VNS

(d)

 0%

 20%

 40%

 60%

 80%

100%

100 101 102 103 104 105 106 107 108

no
de

s
in

 c
liq

ue
s

considered cliques (log scale)

no VNS
VNS

(e)

 0%

 20%

 40%

 60%

 80%

100%

100 101 102 103 104 105 106 107 108 1091010

no
de

s
in

 c
liq

ue
s

considered cliques (log scale)

no VNS
VNS

(f)

Figure 7. Percentages of nodes matched into 3-, 4-, and 5-cliques (column-wise) executing the protocol with and without VNS as a function of: (a)-(c)
number of rounds, (d)-(f) number of cliques evaluated by a single node

are forming into 3-cliques. And this is true irrespective of
the percentages being depicted as a function of rounds or
as a function of an average number of cliques evaluated by
a single node. This should not be a surprise, since for 3-
cliques VNS is actually able to browse through a large part
of the possible solution space while repeatedly executing
the LocalSearch function. The situation for 4-cliques and 5-
cliques is very different from the one with 3-cliques. To form
into 4- or 5-cliques, nodes need substantially more rounds
(note the larger range of the x-axes). Yet, in terms of the
average number of cliques evaluated by a single node using
the VNS is much more advantageous. For 5-cliques the gain
is almost hundredfold.

When we look at the graphs for 4- and 5-cliques, we can
also observe that when using VNS the percentage of nodes
formed in cliques does not rise as steadily as for the protocol
without VNS. With VNS a high percentage of nodes quickly
compose themselves into cliques but then the percentage
starts to fluctuate between 80% and 100% for some time
before it finally converges to 100%. The reason for this is
that many nodes initially form cliques that are not optimal
(because with VNS they search only part of the possible
cliques.) These cliques are soon broken by one of the nodes
that finds a more attractive clique.

Fig. 8 shows that not only the percentage of nodes teamed
into cliques converges to 100% when using VNS, but also
that the weights of these cliques are equally high for both
protocols. Fig. 8a depicts the average weight of the cliques
formed as a function of rounds during a single simulation,
while Fig. 8b presents the percentage of nodes composed

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 20 40 60 80 100 120

cl
iq

ue
 w

ei
gh

t

rounds

ω (no VNS)
ω±σ (no VNS)

ω (VNS)
ω±σ (VNS)

(a)

 0%

 20%

 40%

 60%

 80%

100%

 0 20 40 60 80 100 120

no
de

s
in

 c
liq

ue
s

rounds

no VNS
VNS

(b)

Figure 8. Performance of the protocol with and without using VNS (while
forming 4-cliques in the network of 200 nodes): (a) average weight ω of
a clique with standard deviations σ, (b) percentage of nodes in cliques, as
functions of the number of rounds

 0%

 20%

 40%

 60%

 80%

100%

 0 100 200 300 400 500 600 700

no
de

s
in

 c
liq

ue
s

rounds

VNS

Figure 9. Performance of the VNS heuristic in the network of 10000
nodes forming into 5-cliques

into these cliques. As can be seen, when the protocol with
VNS stabilizes between rounds 44 and 71 for the first time at
the level of 100% of nodes matched in cliques, the average
weight of these cliques is lower than the corresponding
average weight obtained by nodes using protocol without
VNS. Nonetheless, after some rearrangements in rounds 72–
98 the percentage of nodes composed into cliques reaches
100% again and this time also the average weights of the
cliques (and standard deviations) become equal for both
protocols. It is therefore highly probable that the set of
cliques formed by the two protocols is indeed identical.

We have also run simulations of the protocol with VNS
for larger networks. Fig. 9 depicts the percentage of nodes
formed into 5-cliques in the network of 10000 nodes. For
this particular simulation we have set a stricter stopping
condition that limited the time of execution of the VNS
function. In practice, each node evaluated less than 35000
cliques per round which was just a tiny fraction of the
solutions space consisting of

(
9999

4

)
≈ 4 · 1014 different

cliques. In spite of that, in less than 150 rounds more than
70% nodes are composed into cliques. Another 150 rounds
are needed to reach the level of 80%. In the subsequent
rounds the convergence rate drops significantly. This can be
attributed to the fact that, as more cliques are formed, it
becomes more difficult for a node without a clique to find a
set of neighbours with whom it could team up. Although at
first glance, the performance of the protocol with VNS in as
large network as 10000 nodes does not seem satisfactory, one
must realize that in the same case the protocol without VNS
would need a rough equivalent of 1010 rounds from Fig. 9 to
execute just a single round. Moreover, the high percentage
of nodes composed into cliques in this simulation was not
achieved at the expense of the cliques’ weights; the mean
clique weight at round 500 is 0.967.

VI. DISCUSSION

The convergence speed of our protocols, as well as their
performance in general, is strongly related to the notion of

self-stabilization. As defined by Dijkstra [21], the system
is self-stabilizing if ”regardless of the initial state [...] the
system is guaranteed to find itself in a legitimate state
after finite number of moves.” As a direct consequence,
self-stabilizing systems have the ability to neatly recover
from transient failures such as inconsistent initializations,
transmission errors, or process failures and recoveries [22].
This results in self-stabilization being a highly desirable
property for protocols aimed at networks prone to frequent
changes (e.g. nodes entering or leaving the network, re-
wiring of the connections between nodes.)

Our protocol from Fig. 1 without the VNS is self-
stabilizing. Unfortunately, by introducing the VNS heuristic
into the protocol we have made it impossible to give any
hard bounds on the number of moves (and ultimately, on
the number of rounds) after which the network will converge
into the k-clique matching of maximum cardinality in which
no k nodes could form a more attractive clique. With VNS
it may be possible to prove only the probabilistic self-
stabilization of the protocol.

Nonetheless, we can still try to improve the convergence
speed of the protocol with VNS in large networks. As a
quick patch, we could introduce a mechanism by which
nodes that are not able to find an admissible clique via the
VNS function to try to form a clique with those neighbours
which are known to also have no clique. More promising
is to redefine the function of attractiveness to differentiate
between non proper subsets of neighbours, e.g. based on the
number of neighbours that are in more attractive cliques.
Moreover, Brimberg at al. [18] mention that a skewed
version of VNS (SVNS) may yield better results, specifically
when k is relatively small in comparison to the number of
nodes in the network. In this modification of the VNS, nodes
are encouraged to explore regions of the solution space
further from the current optimum. This can be achieved
by allowing a node to accept results of LocalSearch that
are slightly worse than the optimum found thus far given
their distance from the optimum is sufficiently large to
compensate the change.

In our simulations, we assumed that each node has a
complete knowledge about all the nodes in the network
and of all the weights between these nodes. Yet, in a
more realistic scenario, in which nodes join and leave the
network, it is impossible to make such an assumption.
Besides, over time weights between particular nodes can also
change in value, possibly distorting the existent formation of
cliques. However, a partner discovery service, as described
in Section III, can help nodes to find out about new nodes
in a completely decentralized fashion. A similarly operating
service can be used to gain knowledge about the weights
and changes thereof. As our simulations show, the protocol
converges quickly enough to account for any changes in a
timely manner.

Besides working on the issues mentioned above, we intend

to explore how the protocol could support formation of
cliques with different number of members at the same time.
It is also interesting to see how the protocol is affected
when the weights are not assigned randomly but rather
reflect, for example, the dependencies between real life
companies, presumably resulting in values of weights being
correlated. Lastly, we intend to investigate to what extent
the assumption on weights symmetry can be dropped. This
would allow nodes to evaluate mutual fitness differently, but
in the current form of the protocol lack of weights symmetry
poses the danger of deadlocks.

VII. CONCLUSIONS

In this paper, we presented a viable solution to forming
k-cliques in a fully decentralized fashion, for k of limited
yet reasonable size. We examined the performance of the
proposed protocol through simulations and the results are
encouraging. We see this as a starting-point for further re-
search in decentralized dynamic partnership formation in the
Web. The most important issues which need to be addressed
are allowing differently sized partnerships to be formed and
improving further the performance of the protocol.

REFERENCES

[1] S. Stremersch and G. J. Tellis, “Strategic bundling of products
and prices: A new synthesis for marketing,” Journal of
Marketing, vol. 66, no. 1, pp. 55–72, January 2002.

[2] F. Manne and M. Mjelde, “A self-stabilizing weighted match-
ing algorithm,” in Stabilization, Safety, and Security of Dis-
tributed Systems, ser. LNCS, vol. 4838/2007, 2007, pp. 383–
393.

[3] G. Devlin and M. Bleackley, “Strategic alliancesguidelines
for success,” Long Range Planning, vol. 21, no. 5, pp. 18–
23, 1988.

[4] C. Bronder and R. Pritzl, “Developing strategic alliances: A
conceptual framework for successful co-operation,” European
Management Journal, vol. 10, no. 4, pp. 412 – 421, 1992.

[5] K. Brouthers, L. Brouthers, and T. Wilkinson, “Strategic al-
liances: Choose your partners,” Long Range Planning, vol. 28,
no. 3, p. 2, 1995.

[6] M. Prince and M. Davies, “Co-branding partners: What do
they see in each other?” Business Horizons, vol. 45, no. 5,
pp. 51–55, 2002.

[7] K. L. Keller, “Conceptualizing, measuring, and managing
consumer-based brand equity,” Journal of Marketing, vol. 57,
no. 1, pp. 1–22, January 1993.

[8] I. E. Vermeulen, “Matchmaking in cyberspace: An application
of web-based brand image measurement,” in Proceedings of
the International Conference of Research in Advertising, F. C.
P. . J. Verissimo, Ed. Lisbon: Universidade de Lisboa, 2007.

[9] J. F. Moore, “Predators and prey: A new ecology of compe-
tition,” Harvard Business Review, vol. 71, no. 3, pp. 75–86,
1993.

[10] K. Kelly, “New rules for the new economy,” Wired, vol. 5,
no. 9, 1997.

[11] D. Tapscott, D. Ticoll, and A. Lowy, Digital capital : har-
nessing the power of business webs. Boston, Mass., USA:
Harvard Business School Press, 2000.

[12] E. v. Heck and P. Vervest, “Smart business networks: how
the network wins,” Commun. ACM, vol. 50, no. 6, pp. 28–37,
June 2007.

[13] B. Blau, J. Krämer, T. Conte, and C. Van Dinther, “Service
value networks,” in 2009 IEEE Conference on Commerce and
Enterprise Computing. IEEE, 2009, pp. 194–201.

[14] M. Jelasity and O. Babaoglu, “T-man: Gossip-based over-
lay topology management,” in Engineering Self-Organising
Systems: Third International Workshop (ESOA 2005), ser.
LNCS, S. A. Brueckner, G. D. M. Serugendo, D. Hales, and
F. Zambonelli, Eds., vol. 3910. Springer-Verlag, 2006, pp.
1–15.

[15] S. Voulgaris, M. van Steen, and K. Iwanicki, “Proactive
gossip-based management of semantic overlay networks,”
Concurrency and Computation: Practice and Experience,
vol. 19, no. 17, pp. 2299–2311, 2007, special Issue: Parallel
and Distributed Computing (EuroPar 2005).

[16] M. Jelasity, A. Montresor, and O. Babaoglu, “T-man: Gossip-
based fast overlay topology construction,” Comput. Netw.,
vol. 53, no. 13, pp. 2321–2339, 2009.

[17] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen, “Gossip-based peer sampling,” ACM Trans.
Comput. Syst., vol. 25, no. 3, p. 8, 2007.

[18] J. Brimberg, N. Mladenovic, D. Urosevic, and E. Ngai,
“Variable neighborhood search for the heaviest k-subgraph,”
Computers & Operations Research, vol. 36, no. 11, pp. 2885
– 2891, 2009.

[19] P. Hansen, N. Mladenović, and J. Moreno Pérez, “Variable
neighbourhood search: methods and applications,” Annals of
Operations Research, vol. 175, no. 1, pp. 367–407, March
2010.

[20] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The
Peersim simulator,” http://peersim.sf.net.

[21] E. W. Dijkstra, “Self-stabilizing systems in spite of dsitributed
control,” Communications of the ACM, vol. 17, no. 11, pp.
643–644, November 1974.

[22] M. Schneider, “Self-stabilization,” ACM Comput. Surv.,
vol. 25, pp. 45–67, March 1993.

