
838

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 36

Enforcing Fairness in
Asynchronous Collaborative

Environments
Guillaume Pierre

VU University Amsterdam, The Netherlands

Maarten van Steen
VU University Amsterdam, The Netherlands

INTRODUCTION

Service-Oriented Architectures offer the vision of
distributed applications offering functionality to
each other, such that complex applications may be
realized mostly by composition of existing software
components provided by independent parties. An
example is the recent popularity of Web mash-
ups, where any programmer can take advantage
of service-oriented functionality offered through

Web services. However, users of service-oriented
applications do expect reasonable performance.
This requirement can be translated into: how can
a service provide constant performance regardless
of the request load addressed to it by independent
third parties? Obviously, a single server machine
cannot handle arbitrary amounts of load so one
must design services such that they can expand their
capacity by using additional computing resources
when necessary.

One way a service may obtain temporary access
to extra resources when it needs them is the use of

ABSTRACT

Many large-scale distributed applications rely on collaboration, where unrelated users or organiza-
tions share their resources for everyone’s benefit. However, in such environments any node may attempt
to maximize its own benefit by exploiting other’s resources without contributing back. Collaborative
systems must therefore deploy strategies to fight free-riders, and enforce collaborative behavior. This
chapter explores a family of mechanisms to enforce fairness in asynchronous collaborative environ-
ments, where simple tit-for-tat policies cannot be used. Our solutions rely on enforced neighborhood
relations, where each node is restricted in the choice of other nodes to collaborate with. This creates
long-term collaboration relationships, where each node must behave well with its neighbors if it wants
to be able to use their resources.

DOI: 10.4018/978-1-61520-686-5.ch036

839

Enforcing Fairness in Asynchronous Collaborative Environments

collaborative environments. Such environments
are characterized by multiple users sharing their
resources for everyone’s benefit. For example,
peer-to-peer file sharing applications can improve
everyone’s download speed of a file under the
condition that those users are willing to donate
their resources to upload file contents (Cohen,
2003). Similarly, a service operator may use a col-
laborative content delivery network, which relies
on the willingness of Web server administrators
to help each other if one experiences a temporary
overload (Pierre and van Steen, 2006); another
possible method is to use grid computing, where
system administrators are willing to contribute
their resources in exchange for future use of global
resources (Foster and Kesselman, 1998).

One important issue in such environments is
free riding, where some users try to use the shared
resources without contributing an equivalent
quantity of resources back to the system (Adar and
Huberman, 2000). Free riding can be extremely
detrimental to the performance of collaborative
systems as it decreases the quantity of resources
available to users as a whole. Additionally, it
produces strain on the remaining good nodes in
the system, which reduces the incentive to con-
tribute positively.

An efficient mechanism to enforce collabora-
tion is the tit-for-tat policy, as implemented for
example in the BitTorrent file sharing system
(Cohen, 2003). This policy dictates that, after a
first altruistic interaction, resources are granted to a
user under the condition that an equivalent amount
of resources is simultaneously contributed back.
A few properties of BitTorrent make this scheme
effective and easy to apply. First, collaboration is
symmetric, meaning that collaboration happens
pairwise with no third party involved. Fairness
enforcement can thus be realized by the two
concerned peers themselves, without requiring
the need for external services such as reputation
systems. Second, collaboration is local in time in
that the balance of respective contributions must
be judged as fair by both parties at any instant of

the collaboration. The system therefore does not
need to maintain a memory of past interactions.

However, tit-for-tat is not a panacea for solving
all fairness issues in collaborative environments.
Many such environments rely on asynchronous
collaboration, where the services are not provided
simultaneously from A to B and from B to A. A
good example is a collaborative content distribu-
tion network, where Web servers call each other
for help only when they experience an overload.
For such environments we need more sophisticated
mechanisms.

This chapter explores a family of mechanisms
to enforce fairness in asynchronous collaborative
environments, based on observations from Axel-
rod (Axelrod, 1984). These observations state that
cooperation can emerge only when:

Nodes retain a unique identity over time•
Interactions are repeated many times be-•
tween the same pairs of nodes

The intuition between these rules is that, to
sustain collaboration between the well-behaving
members (and to exclude free-riders), one must
rely on some memory of past interactions with
other nodes. In a large-scale system this implies
that a given node regularly interacts with the same
partners over and over again, to have the ability
to gain some confidence that they will behave
well in the future.

The following sections explore the applica-
tion of these general principles to two classes of
asynchronous collaborative environments. First,
we study fairness enforcement in a collaborative
content distribution network. In such a system,
Web servers may request each other’s help when
they experience an overload. The interaction is
thus necessarily asynchronous because a cur-
rently overloaded server cannot be of much help
to another overloaded server. It makes more sense
that underloaded servers help overloaded servers,
thereby creating asynchronous collaboration. We
then turn to peer-to-peer grids, where a user can

11 more pages are available in the full version of this document, which may

be purchased using the "Add to Cart" button on the publisher's webpage:

www.igi-global.com/chapter/enforcing-fairness-asynchronous-collaborative-

environments/40830

Related Content

Keys for Administration of Reconfigurable NoC: Self-Adaptive Network Interface Case Study
Rachid Dafali and Jean-Philippe Diguet (2010). Dynamic Reconfigurable Network-on-Chip Design:

Innovations for Computational Processing and Communication (pp. 67-83).

www.irma-international.org/chapter/keys-administration-reconfigurable-noc/44221/

Discovering Knowledge in Data Using Formal Concept Analysis
Simon Andrews and Constantinos Orphanides (2013). International Journal of Distributed Systems and

Technologies (pp. 31-50).

www.irma-international.org/article/discovering-knowledge-data-using-formal/78152/

Dynamically Reconfigurable NoC for Future Heterogeneous Multi-core Architectures
Balal Ahmad, Ali Ahmadinia and Tughrul Arslan (2010). Dynamic Reconfigurable Network-on-Chip Design:

Innovations for Computational Processing and Communication (pp. 256-276).

www.irma-international.org/chapter/dynamically-reconfigurable-noc-future-
heterogeneous/44228/

The Effect of Real Workloads and Synthetic Workloads on the Performance of Job Scheduling

for Non-Contiguous Allocation in 2D Mesh Multicomputers
Saad Bani-Mohammad (2015). International Journal of Distributed Systems and Technologies (pp. 53-68).

www.irma-international.org/article/the-effect-of-real-workloads-and-synthetic-workloads-on-the-
performance-of-job-scheduling-for-non-contiguous-allocation-in-2d-mesh-
multicomputers/120460/

Scalable Fault Tolerance for Large-Scale Parallel and Distributed Computing
Zizhong Chen (2010). Handbook of Research on Scalable Computing Technologies (pp. 760-783).

www.irma-international.org/chapter/scalable-fault-tolerance-large-scale/36433/

http://www.igi-global.com/chapter/enforcing-fairness-asynchronous-collaborative-environments/40830
http://www.igi-global.com/chapter/enforcing-fairness-asynchronous-collaborative-environments/40830
http://www.irma-international.org/chapter/keys-administration-reconfigurable-noc/44221/
http://www.irma-international.org/article/discovering-knowledge-data-using-formal/78152/
http://www.irma-international.org/chapter/dynamically-reconfigurable-noc-future-heterogeneous/44228/
http://www.irma-international.org/chapter/dynamically-reconfigurable-noc-future-heterogeneous/44228/
http://www.irma-international.org/article/the-effect-of-real-workloads-and-synthetic-workloads-on-the-performance-of-job-scheduling-for-non-contiguous-allocation-in-2d-mesh-multicomputers/120460/
http://www.irma-international.org/article/the-effect-of-real-workloads-and-synthetic-workloads-on-the-performance-of-job-scheduling-for-non-contiguous-allocation-in-2d-mesh-multicomputers/120460/
http://www.irma-international.org/article/the-effect-of-real-workloads-and-synthetic-workloads-on-the-performance-of-job-scheduling-for-non-contiguous-allocation-in-2d-mesh-multicomputers/120460/
http://www.irma-international.org/chapter/scalable-fault-tolerance-large-scale/36433/

