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Gossiping has been identified as a useful building block for the development of large-scale,
decentralized collaborative systems. With gossiping, individual nodes periodically interact
with random partners, exchanging information about their local state; yet, they may glob-
ally provide several useful services, such as information diffusion, topology management,
monitoring, load-balancing, etc. One fundamental building block for developing gossip pro-
tocols is peer sampling, which provides nodes with the ability to sample the entire popula-
tion of nodes in order to randomly select a gossip partner. In existing implementations,
however, one fundamental aspect is neglected: security. Byzantine nodes may subvert
the peer sampling service and bias the random selection process, for example, by increas-
ing the probability that a fellow malicious node is selected instead of a random one. The
contribution of this paper is an extension to existing peer sampling protocols with a detec-
tion mechanism that identifies and blacklists nodes that are suspected of behaving mali-
ciously. An extensive experimental evaluation shows that our extension is efficient in
dealing with a large number of malicious nodes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Would it make sense to implement large-scale collabo-
rative applications like Facebook or Twitter in a completely
decentralized way? From a social point of view, the answer
is definitely affirmative: the privacy concerns raised by a
company whose end-user agreement can be summarized
as “all your data belongs to us” are astonishing. From a
technological point of view, however, the answer is not
so simple: the enormous scale (hundreds of millions of
users) and dynamism of such systems pose enormous chal-
lenges to developers.

Gossip protocols have proven to be effective in dealing
with these challenges, going beyond the basic dissemina-
tion services for which they have been originally designed
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[1] and implementing sophisticated services like topology
management, aggregation and monitoring, load-balancing,
semantic clustering, etc. [2-5].

A key requirement for gossip protocols is the ability to
randomly select gossip partners from the overall system.
The peer sampling service (PS) satisfies this requirement,
by providing nodes with continuously up-to-date samples
selected uniformly at random from the global node popu-
lation [6]. Informally, gossip-based PS services work as fol-
lows. Each node stores a collection of node descriptors,
called the (partial) view. Execution is divided in periodic
cycles during which each node p selects a node q from its
view and initiates a push-pull communication exchange
with it: p sends a subset of its own descriptors to g, plus
a fresh descriptor of itself, and q replies in the same way.
Node p updates its view based on the message received
from q, and symmetrically g does the same. Old descriptors
are progressively replaced by new ones; this mechanism
keeps views continuously up-to-date with respect to node
joins and leaves.
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Several implementations exist [7,8], that can be distin-
guished based on how they select the exchange partner
(e.g., completely at random or based on a timestamp);
how many and which descriptors are exchanged (e.g., all
of them or a small subset); how the update operation is
performed (e.g., by discarding old descriptors or by
swapping).

By interpreting descriptors as edges, the PS service can
also be seen as a mechanism to maintain a topology among
nodes. In all existing implementations, the resulting topol-
ogies present characteristics similar to those of random
graphs: small diameter and extreme robustness against
partitions. They are even self-repairing in the sense that
old descriptors tend to be discarded and information about
new nodes is naturally spread through gossip. These prop-
erties make them the right platform for gossip protocol
development.

An important issue of modern PS services is their poten-
tial exploitation by malicious nodes (or attackers for short).
The characteristics of the topology depend on the way
descriptors are exchanged; if some of the nodes do not be-
have according to the protocol, the sample process can be
biased toward a specific group of nodes instead of being ran-

(a) Healthy (pseudo) random graph

(d) After the attack: f = 18

(e) After the attack: f = 16

dom; the resulting topology can fail to show the desired
properties.

The most important kind of attack that can be pursued
against gossip-based PS services is the hub attack, where
attackers attempt to gain a leading position in the topology
(they attempt to become hubs), to later exploit their lead to
cause havoc to the system, such as performing a DoS attack
that leaves the topology in a disconnected state.

For a concrete example of such attack, look at Fig. 1.
When the system runs correctly, a random topology is
formed, as illustrated in Fig. 1a.

Now assume that a small number f of colluding attack-
ers join the system. Note that f can be as small as the par-
tial view size, which is around 20-30 for most PS services.

Instead of running the regular protocol, the attackers
completely ignore the descriptors they receive and keep
sending the descriptors of the malicious group members.
The partial views in the entire system are progressively
polluted by the attackers’ descriptors, which keep being
generated by malicious nodes and propagated by correct
ones. As the percentage of malicious-node descriptors in
a partial view grows, the probability of contacting mali-
cious nodes grows proportionally, facilitating their job:

(b) Hub topology, f = 20

(f) After the attack: f = 14

Fig. 1. Overlay topology before (a), during (b) and after (c-f) the attack. The healthy random graph (a) is mutated in a hub-based overlay (b). The graphs (c),
(d), (e) and (f) show what happens if the hubs leave the system (with f={20,18,16,14} colluding attackers). Only 3 links per node are displayed for clarity.

Network size is 1000 nodes.
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they can just “sit down” and wait for requests, which are
always replied with malicious-node descriptors. Eventu-
ally, the situation looks like Fig. 1b: all the partial views
of correct nodes point to malicious ones, which then have
become hubs.

Once the hub topology is completed, a massive DoS at-
tack can be struck by simply leaving the overlay. The result
is shown in Fig. 1c: all correct nodes are completely discon-
nected with no hope for recovery.

Due to drawing limitations, Fig. 1 has been generated in
a small system (1000 nodes). Clearly the same issue applies
to larger ones. The number of attackers, f=20, has been
chosen equal to the partial view size. However, even a
smaller number of malicious nodes is sufficient to cause
havoc to the system: the second line of Fig. 1 shows the fi-
nal state when 18, 16, 14 attackers are involved, with sev-
eral partitions showing around.

Unfortunately, there is no way to detect if a particular
message comes from an attacker, as the message format
is very simple: just a list of descriptors. So, the only way
to identify and ban “bad guys” is to perform a structural
analysis of the network, and react opportunely when a
node gains a unmotivated prominent role.

This work extends existing PS protocols in this sense. We
have designed and experimentally tested a prestige-based
secure peer sampling service (SPS) based on heuristics in-
spired by social network analysis (SNA) techniques [9] used
to measure the structural prestige of nodes in a network. We
show how techniques from SNA can be adopted in gossip-
based distributed systems in order to solve the identified
security issues. This approach is in line with works that ex-
ploit social networks towards building robust systems [10].

The rest of the paper is organized as follows. Section 2
describes our scenario, while the attack model is explained
in 3. In Section 4 we introduce the SPS algorithm. Experi-
mental results are presented in Section 5. Finally, Sections
6 and 7 survey related work and conclude the paper.

2. Background
2.1. System model

We consider a network consisting of a large collection
of nodes that communicate through message exchanges.
Each node is uniquely identified by an identifier id, re-
quired to communicate with the node. We consider the
simplest form of id: the pair (ip address, port). The network
is highly dynamic; new nodes may join at any time, and
existing nodes may voluntarily leave. Nodes may be cor-
rect, in which case they obey the given protocol but may
crash unexpectedly, or maliciously, if they behave arbi-
trarily because of a bug, misconfiguration, or ill-will. Mali-
cious nodes, sometimes called attackers in this paper, may
know each other and collude together.

Communication may incur unpredictable delays and is
subject to failures. Single messages may be lost, links be-
tween pairs of nodes may break; but we assume that the
integrity of messages is not at risk, and thanks to crypto-
graphic techniques (see Section 2.3), malicious nodes can-
not impersonate correct ones.

2.2. Peer sampling

As the network size can grow to millions, no PS service
can maintain a complete and up-to-date view of the entire
system. Instead, current PS services store, at each node, a
partial view of the network, i.e., a short list of logical links
to other nodes. As nodes voluntarily join and leave, or
abruptly disappear due to crashes, the PS service updates
the partial views, removing old members and spreading
the news about new ones.

Nodes and their logical links form a dynamic overlay
topology. An important requirement is that such a topology
should remain connected in spite of failures (even cata-
strophic ones), otherwise separate overlay partitions
would not be able to sample each other. If local views con-
tain random nodes, the resulting topology is a random
graph, which has proven to be extremely robust and
capable of maintaining connectivity even after the crash
of 70% of the nodes [6]. This is the reason why the peer
sampling focuses only on random overlays; therefore, we
do not consider other kinds of networks such as DHT or
super-peer overlays.

Although the approach described here is generic en-
ough to be applied to other protocols, the SPS service con-
sidered in this paper is based on Newscast [6]. In NEwscasT,
each partial view contains ¢ descriptors, i.e., pairs (id,ts),
where id is the node identifier and ts is the timestamp.
Periodically, each node p randomly selects a gossip partner
q from its local sample, and sends its partial view to g, plus
a fresh descriptor of itself. Node g replies in the same way.
After the gossip exchange, p stores in its partial view the ¢
freshest descriptors out of the 2c + 1 available (c descrip-
tors in its old partial view, c descriptors received from g,
and the fresh descriptor of q). ¢ behaves symmetrically.
This mechanism is depicted in Fig. 2.

The continuous injection of new descriptors gradually
removes old descriptors from the network, allowing the
protocol to “repair” the overlay topology by forgetting
crashed nodes. No explicit “leave” message is required; it
is sufficient to stop executing the protocol, thus suspend-
ing the refreshment of its own descriptor.

2.3. Cryptography

We assume that each node has exactly one private/pub-
lic key pair bound to its permanent identifier id, assigned by
a certification authority. This has two purposes: to limit the
number of distinct identities that can be assumed by a node,
thus avoiding the possibility of a Sybil attack [11], and to al-
low nodes to sign their messages and their descriptors, to
avoid the possibility of impersonating other nodes and
modifying descriptors that are in transit. For this reason,
we extend the descriptor of a node p with its public key
and its signed hash; we denote it as: (id, ts, PK),. We denote
a message m signed by a node p holding c descriptors as:

(m), = ((idy, ts1, PK1)4,
<id2, l'Sz,PK2>27

(ide, tsc, PK<).), -
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Node A

Node B

Current view

GC/5| E/5| B/5| W/4| H/4D

1. Exchange

Current view

GF/5| D/5| 0/5| /s | J/4D

[Fis] ois| os[ s [ ua ] 86|

2. Update

> | Ci5] Ess] Bis| wia] ia] me]

2. Update

GB/6| E/5| C/5| /5 | 0/5| ]F/5| D/5| H/4| W/4| Jia |

GA/6| E/5| C/5| /s | 0/5| ]F/5| D/5| H/4| W/4| Jia |

New view

New view

Fig. 2. A Newscast gossip exchange between node A and B. The size of partial view is c =5. A descriptor is represented by a capital letter along with its

timestamp. The exchange time is cycle 6.

We assume that cryptographic primitives - such as dig-
ital signatures and one-way hashes - cannot be subverted.

3. Attack model

Our attack model is generic and independent of the spe-
cific PS implementation adopted. The main objective of an
attacker is to silently subvert the random overlay topology
and cause the formation of hubs, i.e., nodes with a large
number of incoming links.

Being a hub represents a leading position from a struc-
tural point of view. As soon as the attackers become hubs,
they can exploit this position according to their particular
aim. For example, they could manage the information flux
or they could just disappear, achieving a massive DoS at-
tacks as they leave the overlay topology in a partitioned
state. Any service that relies on the PS can be severely
affected.

To reach this goal, attackers must pollute the views of
other nodes by installing as many descriptors of attackers
as possible. If a view is completely polluted (i.e., all the
descriptors point to malicious nodes), the node is defeated:
it has no chance to recover to a regular situation, apart
from rebooting.

Our attack model expects attackers to operate rationally
and not allow themselves to be trivially exposed as the
source of the infection. Therefore, messages sent by attack-
ers should be indistinguishable from regular messages.
This requirement is quite easy to achieve in PS services,
as the only mandatory constraints are that messages
should not contain more than c distinct descriptors; no
other check is performed. Surprisingly, weak integrity con-
straints like this can be found, for example, in real-world
file-sharing applications [12,13], where nodes do not verify
the validity of received item advertisements.

While the goal and the principal methods of attack are
fairly generic, actual attacks may adopt features that are
specific to the underlying protocol implementation. A rea-
sonable taxonomy of possible malicious actions that may
be carried by an attacker are summarized as follows:

1. Discard: an attacker may decide to discard specific node
descriptors from its local view and its messages, irre-
spectful of their fresh timestamp. The goal could be to
“eclipse” a node from the rest of the system, removing
all the information about it from partial views.

2. Replay: attackers can avoid discarding specific node
descriptors, even when their timestamps identify them
as (really) old. The goal could be to transform a unaware
node into an hub, to have it detected and blacklisted.

3. Corrupt: attackers can corrupt in-transit descriptors, to
maliciously trigger an anomalous behavior in the spe-
cific PS implementation. Apart from the node address,
the only information that could be corrupted is the
timestamp, for example, to keep an old descriptor alive.

4, Forge: attackers can populate the messages sent to
benign nodes with descriptors which are explicitly
forged to pollute the network.

This set of actions can be performed against existing
correct or malicious nodes, or even against nonexisting
nodes that are not member of the system.

The first two actions, discard and replay, do not pose
any serious threat even to a nonsecured PS service; in fact,
the gossip paradigm provides enough redundancy to avoid
that a given node becomes completely eclipsed from other
nodes; and even if an attacker tries hard to push an old,
unmodified descriptor to other nodes, they will unilater-
ally discard it based on its timestamp.

In case of corruption or forging of descriptors pointing
to correct nodes, the solution is simple: descriptors should
be signed with the private key of the node contained in the
descriptor. In this way, no attacker can impersonate any
existing correct node. The same comment applies to the ac-
tion of forging descriptors for nonexisting nodes.

The only possible actions left is the replaying, corrup-
tion and forging of descriptors of colluding attackers. In
general, the attack algorithm works as follows. Attackers
do not pose any restriction on the size of their partial view
c and let them grow to potentially include all the correct
nodes of the network. The well-known attacker set is not
included in the partial view. The attackers run the standard
PS algorithm with the following exceptions:

e the message sent to p is populated with malicious
descriptors based on a specific attack strategy,

o the timestamps of malicious descriptors are manipu-
lated in order to postpone their droppings as late as
possible.

Several strategies are then possible, based on the num-
ber of attackers k < fthat are inserted in the messages sent
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to gossip partners, and how they are selected from the mali-
cious population (e.g., uniformly or normally at random).

Less aggressive strategies (with small f) are more
stealthy and difficult to detect, but also less effective; more
aggressive strategies (with f approaching or equal to c, the
view size) are more efficient in polluting the system, but
also easier to detect.

4. Prestige-based SPS

The secure peer sampling service (SPS) is designed to be
transparent to applications using the PS service: the API is
not modified, and the secure portion of the service runs as
an extension. In fact, the basic structure of the SPS service
is to (i) play the nonsecure PS implementation as usual,
and (ii) monitor the overlay and react to structural changes
when required.

The goal of the SPS module running at each node is to
identify and blacklist potentially malicious nodes, remov-
ing them from the local partial view and excluding them
from future interactions. The process of identification takes
inspiration from social network analysis theory; in particu-
lar, we consider the notion of prestige in directed graphs,
where the “most popular” nodes are considered presti-
gious [9]. We adopt a simple technique where the struc-
tural prestige of a node is represented by its indegree.
Intuitively, since the expected topology should be uni-
formly random, detecting a node showing a large indegree
value could mean that node is a network hub - and so it is
potentially malicious.

As the infection of a pollution attack can spread expo-
nentially fast (a property inherent to gossip-based dissem-
ination), the main concern for an SPS service is to quickly
build a suitable knowledge base about the prestige of other
nodes present in the system. Information about other
nodes is collected through gossip exchanges with random
partners; the collected information is not shared with
other nodes [12] to avoid further issues, such as the cor-
ruption of the exchanged knowledge.

In order to build this knowledge base, the SPS service
does not limit itself to one gossip exchange per cycle, as

the PS service does. Instead, multiple explorative gossip ex-
changes are performed, the goal being (i) to identify struc-
tural hubs, i.e., nodes that are over-represented in the
partial views of other nodes, and (ii) to collect “safe”
descriptors that may become useful if and when the local
partial view becomes polluted. As there is no way for a
(malicious) node to detect if a gossip partner is executing
the regular protocol or an explorative exchange, this
behavior generates a dilemma that could severely limit
the attackers’ power.

4.1. Algorithm structure and notation

The execution of the SPS algorithm is organized in cycles
of length §: periodically, each node initiates some gossip
exchanges with random partners and waits for their reply,
following a push-pull style [1]. The code is organized
around these exchanges, with the active thread that period-
ically sends messages and performs clean-up operations,
and the passive thread that waits for incoming communica-
tions and appropriately updates local data structures,
replying to the original sender when needed. The pseu-
do-code of the active and passive threads is contained in
Figs. 3 and 4, respectively, while Fig. 5 describes updateSta-
tistics( ), a support function for the passive thread.

Each node maintains three tables whose task is to asso-
ciate keys (node identifiers) to values (potentially, complex
tuples):

o PTABLE is the prestige table, which associates each node q
with prestige information in the form of a tuple
(ts, hits, ttl), where ts is the most recent timestamp
known for q, hits counts the number of times g has been
included in PS messages received from other nodes, and
ttl is a time-to-live value expressing the time validity of
the tuple.

e wuisT is a whitelist data structure, which contains nodes
that are believed to be correct. In this table, each node is
associated with just the latest timestamp known for it;
prestige information is not needed in this case. For the
same reason, nodes in wuist are removed from PTABLE.

1 repeat periodically every § time units % Code executed at each cycle of length §
2 done «— false

3 R «— sample(ViEW.keys(), size) % Explorative exchanges
4 foreach ¢ € R do

5 if ¢ & blacklist(pTABLE) then

6 L L send (REQUEST, VIEW U (myID, now(), PK) pmyip) myip t0 q

7 check «— sample(blacklist(PTABLE), 1) % False positive check
8 send (REQUEST, VIEW U (myID, now(), PK)myrp)myip to check

9 foreach ¢ € PTABLE.keys() do % Clean the pTABLE and add nodes to the whitelist
10 tuple = PTABLE.get(q)

11 tuple.ttl < tuple.ttl — 1

12 if tuple.ttl = O then

13 PTABLE.Temove(q)

14 L WLIST.put(q, tuple.ts)

Fig. 3. Prestige-based SPS algorithm - the active thread.



G.P. Jesi et al./ Computer Networks 54 (2010) 2086-2098 2091

1 on receive(type, msg) from g do
2 if type = REQUEST then % We are not the initiator; we must reply
3 send (REPLY, VIEW U (p, now(), PK ) ymyip ) myip t0 ¢
4 if ¢ & blacklist(PTABLE) then
5 | VIEW — merge(VIEW, msg)
6 else
7 if ¢ € Rand q ¢ blacklist(pTaBLE) and not done and toss(—L-) then % This is a reply to
8 done — true % an explorative exchange
9 VIEW < merge(VIEW, msg)
10 else
1 |_ updateStatistics(msg);
12 if ¢ = check then % This is a reply to a false positive check
13 if msg.keys() N blacklist(PTABLE) = () then
14 tuple «— PTABLE.get(q)
15 PTABLE.Temove(q)
16 WLIST.put(q, tuple.ts)

Fig. 4. Prestige-based SPS algorithm - the passive thread.
1 method updateStatistics(msg)
2 foreach (¢, ts) € msg do % Updates statistics based on msg
3 tuple < PTABLE.get(q)
4 if tuple = null then
5 | PTABLE.put(q, (ts, 1, ttlo))
6 else
7 |_ PTABLE.put(q, (max(ts, tuple.ts), tuple.hits + 1, tuple.ttl + 1))
8 hits,, — m Z(q,tuple)EPTABLE tuple.hits

uple. hits—hits,, )2

. hitsy — Z(q.mpze)gPTA“]i%E](;IiL;lé-Mts hits )
10 foreach g € blacklist(PTABLE) N WLIST.keys() do % Remove new suspected nodes from WLIST
1 | wrist.remove(q)
12 foreach (id, ts) € viEw do % Remove new suspected nodes from VIEW
13 if id € blacklist(PTABLE) then
14 if 3 ¢ € wrist.keys() — viEw.keys() then
15 VIEW.remove(id)
16 ts < WLIST.get(q)
17 VIEW.put(q, ts)

Fig. 5. Prestige-based SPS algorithm - support function.

e VIEw is the partial view managed by the selected PS pro-
tocol (NEwscasT); as wiisT, it associates nodes with time-
stamps; note that view has a fixed size c.

These data structures are managed by methods put(id, -
tuple) which associates the tuple tuple with the node iden-
tifier id; get(id) which returns the tuple associated with id,
or null if none is present; remove(id) which removes exist-
ing associations of identifier id. Finally, method keys( ) re-
turns the collection of the node identifiers that are
currently associated to tuples in the data structure. In the
pseudo-code, tuples are conveniently composed using the
() notation.

A small collection of “predefined” functions are used in
our algorithm without showing their pseudo-code. Func-
tions now( ) and merge( ) represent basic actions of a stan-
dard PS. The former returns an up-to-date timestamp, used
to create fresh descriptors of itself; while the latter fuses to-
gether a local partial view and a standard PS message, keep-
ing the c freshest descriptors. Function sample(S, k) returns k
random objects from the set S. Function toss(p) tosses a ran-
dom coin, returning the value “true” with probability p.

Predefined function blacklist(prasie) returns the subset
of identifiers contained in praBLe that are currently sus-
pected to be faulty. A precise definition of its behavior is
postponed to Section 4.3.
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4.2. The dilemma mechanism

As described above, each node periodically initiates
multiple explorative gossip exchanges (Fig. 3, lines 2-6):
a set of size random partners are selected from the partial
view by the sample(size) function. A standard PS message
is sent to all of them (unless they are included in black-
list(pTABLE), i.e., are suspected to be malicious). These mes-
sages are tagged with ReQuEsT, meaning that they are the
first part of a request-reply interaction.

The passive thread handles such messages (Fig. 4). If the
received message is tagged with request (Fig. 4, lines 2-5),
the node immediately replies to it (tagging the message
with repry); furthermore, if the node is not blacklisted,
the message is treated as a normal PS message and the par-
tial view is updated through function merge.

If the received message is tagged with repLy (Fig. 4, lines
7-16), there are two cases: either the message is a reply to
an explorative gossip exchange (lines 7-11), or it is a reply
to a false positive check (lines 12-16); the latter is de-
scribed in Section 4.4.

Regardless of the number size partners selected by sam-
ple(), the PS state update is executed at most once; this is
implemented by the “if” condition at line 7 of Fig. 4, with
the help of the variable done (which can be set only once
per cycle). Function toss(1/size) is used here to select a ran-
dom node among those which reply. If the “if” condition is
not satisfied, function updateStatistics is called.

This mechanism produces the dilemma discussed
above: a malicious node p sending a message to a partner
q (either in reply to a ReQuEsT message received from g, or
when initiating an exchange with g) never knows how g
is going to use the information contained in the message.
The dilemma is the following: if p includes malicious
descriptors in the message, it is possible that they will
not actually be inserted into the partial view, but instead
used to collect statistical information about the prestige
of nodes. In fact, the more they pollute, the larger is the
probability of appearing as “suspect” in terms of prestige.
The other possible choice is to run the protocol correctly,
but in this case no pollution will be performed.

4.3. Prestige mechanism

The information collected during explorative gossip ex-
changes is used to build the knowledge base required to
detect, with high accuracy, attackers and to eventually re-
pair the partial view when it becomes polluted by the pres-
ence of malicious descriptors.

This functionality is enclosed in function updateStatis-
tics(msg), described in Fig. 5. Here, praBLE is updated based
on the list of descriptors contained in msg. For each node
q contained in msg, we first check whether the node is al-
ready included in praBLE or not; in the former case, the
existing tuple is updated, while in the latter a new one is
created (lines 3-7). An update is performed as follows:
the timestamp is substituted with the most recent one,
while both hits and ttl are incremented by 1. A new tuple
is created by taking the timestamp included in the mes-
sage, setting hits to 1 and setting an initial ttl.

If an attacker tends to acquire a network-centric posi-
tion, its prestige (hits value) is likely to dominate over
the other entries and its value will be much larger than
the average prestige of nodes, which is stored in variable
hits,.. In order to discriminate how far a node’s hits value
can be from the current average, we adopted the standard
deviation of the hits value, which is stored in variable hits,;.
Function blacklist(ptasLE) uses hits,, + hits, as a threshold to
distinguish between potential attackers and correct nodes:
if hits > hits,, + hits, at node p, the node p is included in the
set returned by blacklist:

q € blacklist(ptable) < p € ptable.keys() A hits
> hits,, + hitsg,

hits, is required to improve the quality of the suspicions
and to limit the production of false positives. We verified
through experiments the effectiveness of the threshold to
achieve our goal.

Although we do not pose any size restriction to PTABLE,
which could hence eventually grow to the size of the sys-
tem, this is very unlikely, as the entries are purged according
to an aging policy, which decrements the ttl field of all nodes
in pTABLE by 1 at each cycle (lines 9-14 in the active thread,
Fig. 3). When an entry expires (i.e., ttl = 0), it is removed
from praBLE and inserted in wiist, as it can be considered (with
high probability) a correct node. Essentially, the wuist can be
considered to be a “possibly trusted” set of peers.

Once the prestige table has been updated, new nodes
may become blacklisted. These nodes need to be removed
from the whitelist (Fig. 5, lines 10 and 11) and from the
partial view (Fig. 5, lines 12-17). In the case of a partial
view, to avoid the risk of excessively reducing the size of
the partial view, removed descriptors are substituted with
descriptors taken from wuisT.

4.4. False positives check

It is possible that correct nodes are falsely blacklisted, at
which point the SPS reacts by isolating them from the sys-
tem. We introduce a mechanism that helps to recover from
this situation. Essentially, each correct node p chooses a
blacklisted node q from blacklist(ptaBLE) and makes an
explorative PS exchange with q. If the received message
contains one or more of the other suspected nodes con-
tained in blacklist(ptaBLE), the suspicion is considered cor-
rect. Otherwise, the suspicion is considered incorrect and
the node is removed from praBLe and inserted in wiisT as a
new available candidate to substitute a malicious node in
the current view when required. This strategy allows the
victims of false positive suspicions not to be relegated at
the margins of the network and to maintain a strong con-
nectivity in the (pseudo) random graph.

This mechanism is implemented in the active thread
(Fig. 3, lines 7 and 8) and in the passive one (Fig. 4, lines
12-16) and comes at the cost of an extra PS gossip ex-
change. To limit the message traffic, every node is allowed
to perform this check only once per cycle. The required ex-
tra gossip is indistinguishable from any other PS exchange;
therefore, it is impossible for a malicious node to detect the
intent of the node that has started the gossip.
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A partial solution for a malicious node would be to ran-
domly mix malicious and regular views over time, but this
would greatly reduce the aggressiveness and effectiveness
of any hub-like attack. Alternatively, an attacker may profit
by the check mechanism in the following manner: at the
beginning it plays maliciously for being blacklisted by its
neighbors and then starts playing nicely in order to be
whitelisted and hence considered a trusted peer. Then
the malicious node can restart to pollute. However, this ap-
proach will fail for the same reason of the previous one: it
will take too long to have any effect on the overlay.

4.5. Cryptography

Each node p cryptographically secures its own descrip-
tors (p,ts,) (containing the identifier and the timestamp)
by signing them with its own private key: (p,ts,)p. Partial
views and messages exchanged between nodes thus con-
tain a list of descriptors signed by the respective nodes.

Unfortunately, the adoption of cryptography consider-
ably increases the size of views. Considering a PS gossiping
views of size c = 20, the actual message size is in the range
of a few hundreds of bytes:

\(id, ts)] - 20 = (4 +2) +4) - 20 = 200;

here, id is represented by a pair (IP address, port), and the
timestamp is represented by a 32-bit integer. The SPS, in
contrast, can easily reach a few KBytes if we consider de-
fault 2048-bit RSA keys. As the small message size is one
of the strengths of the PS, a real deployment of the SPS
should consider this issue. As a possible optimization, we
could let each node collect the identities of the nodes it dis-
covers until the corresponding identity is valid; this behav-
ior would not require to send all credentials for each
descriptor in the view. The credentials could be sent along
with each descriptor at a much lower rate according to a
specific distribution function, reducing the average mes-
sage size. When a node receives a descriptor for which it
does not already know the credentials, it can ask the sen-
der for the corresponding credentials. It is assumed that
a correct node knows the credentials for all the descriptors
it has encountered, therefore failing in the request would
explicitly mean not complying to the rules.

5. Evaluation

We conducted an extensive set of experiments in a sim-
ulated environment to evaluate our SPS. We adopted Peer-
Sim [14] as our simulation platform.

The main figure of merit considered in this section is the
average level of pollution, measured as the percentage of
malicious descriptors that are present in the partial views
of the overall system. In particular, we analyze: (a) how
much time is required to achieve a stable (possibly low)
pollution in the views, (b) how the protocol’s basic param-
eters (e.g., the number of explorative gossip exchanges per
cycle, or the initial TTL value) affect its performance, (c) the
resulting organization of the PS overlay at the global and
local level, and (d) the pollution in a dynamic scenario. Fi-
nally (e), we analytically show the communication over-
head induced by our solution.

We simulate a network of 10,000 participants running
the SPS service on top of Newscast. The local view size is
¢ =20. If not stated otherwise, the hub attack is struck by
a set of f=20 malicious nodes; in other words, the set of
malicious nodes is as large as the node’s view size. Mali-
cious nodes collude in order to share their identity creden-
tials; in such a manner, they can sign forged descriptors on
behalf of each other without running the risk of being dis-
covered due to an obvious violation.

We consider three distinct strategies with which the
attackers inject the malicious descriptors in their mes-
sages: (i) standard, where a constant number of malicious
descriptors (f=20) are continuously injected, (ii) random
and (iii) normal in which the number of malicious descrip-
tors is chosen at every exchange uniformly in the range
[0...c] or according to a normal distribution having
parameters u =15 and ¢ = 2, respectively.

5.1. Pollution

In Fig. 6, we show the average pollution level over time.
Each subfigure, from top to bottom, corresponds to the
standard, random and normal attack strategy. Each plot
represents a distinct number of gossip exchanges per-
formed by the SPS: 1, 2, 4 and 8. We considered a static
scenario, in which no node joins or leave the network dur-
ing the lifespan of the experiment. When a single gossip
per cycle is performed, the SPS service is indistinguishable
from the ordinary PS service in which no defense mecha-
nism is in place. In fact, about 20 cycles are sufficient to fill
all node’s views with malicious-node descriptors and
achieve an overlay organization equivalent to the one de-
picted in Fig. 1b.

Starting from the 2-gossip setup, the situation changes
dramatically. The average pollution level drops to a negli-
gible 1%. Increasing the number of gossip exchanges to 4
or 8 has a marginal benefit that probably does not justify
the extra communication costs.

When the attack strategy is random or normally distrib-
uted, the pollution level reaches 3%, higher than the previ-
ous strategy, but still low enough to not pose any serious
threat to the overlay. Again, increasing the number of gos-
sip exchanges has a marginal benefit. The higher level of
pollution achieved by these strategies proves their better
efficiency. Essentially, the knowledge base collected by
the SPS service is accurate when there is small variance
in the attack pattern; smarter patterns are more difficult
to be identified and the attackers can be more effective
with a less aggressive and more “stealthy” behavior.

However, when more attackers are involved, the effi-
ciency of the random and normal attack strategies de-
creases. Fig. 7 shows a comparison of the average
pollution levels achieved at the end of the simulation
according to the proportion of malicious nodes and the
number of gossip exchanges (i.e., 2, 4, 8). In particular,
we consider four distinct percentages of malicious nodes
in the system: 1%, 2.5%, 5% and 10% of the network size
and each attack strategy is represented in the correspond-
ing subfigure. We limited the attackers to a maximum of
10% of the population; given that we excluded the possibil-
ity of a Sybil attack, we believe that larger proportions of
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Fig. 6. The average pollution level over time. Distinct attack strategies
[i.e., (a) standard, (b) random and (c) normal] are represented in each
corresponding subfigure. Each plot represents a distinct number of gossip
exchanges (i.e., 1, 2, 4, 8, respectively); f=c=20 malicious nodes are
present. Network size is 10,000.

colluding, malicious attackers are unlikely to happen. The
thick horizontal line represents the maximum tolerable
pollution level over which the overlay runs the risk of
being partitioned if and when the malicious nodes leave
the network (see Fig. 1c and d).

Only the most aggressive strategy - the standard one -
can be a threat for the system when 10% of the network be-

0.8f

0.6}
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29 49 8g
(c) Normal attack strategy

Fig. 7. Comparison of average pollution levels at the end of the
experiment according to the proportion of malicious nodes (i.e., 1%,
2.5%, 5% and 10% of the network size) and value of size (i.e., 2, 4, 8). Each
subfigure represent a distinct attack strategy. The thick horizontal line
represents the maximum tolerable pollution level. Network size is 10,000.

haves maliciously and two gossip exchanges are adopted.
Essentially, when the number of attackers is larger than
the view size, promoting the popularity of random sets of
malicious nodes is useless as the popularity is uniformly
increased over the whole population of attackers, but too
slowly. Correct nodes have thus enough time to detect
and isolate the malicious ones.
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5.2. Parameter evaluation

Fig. 8 shows the impact over the view pollution of the
main SPS parameters, such as the initial ttly parameter
and the wuist size. Two gossip exchanges per cycle are con-
sidered. The plot refers to the standard attack strategy.
Essentially, increasing ttly has a marginal benefit; the max-
imum allowed size of wust instead has a larger impact.
According to these data, we adopted ttlo =4 and —wwLisT—
=100 as basic parameters for our evaluation.

Fig. 9 shows the average size of praBiE over time. Each
plot corresponds to a distinct number of attackers in the
system (i.e., 20% and 1%, 2.5% and 5% of the network size).
The size of the structure scales very well with the increas-
ing number of attackers and the number of items collected
is lower than 1% of the size of the overlay. This means that,
when f>> ¢, a node never gets to know every malicious
node, but only those with which it gets in touch more of-
ten. Note also that not every descriptor collected in praBLE
links to a malicious node.

5.3. Graph and structure properties

In Fig. 10, we show how the overlay structure evolves
over time due to the effect of the hub attack and with
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Fig. 10. Structural properties of the overlay. (a) The global characteristics
in terms of clustering coefficient and average path-length, while (b) the
local characteristics in terms of brokerage roles. Network size is 10,000.

the presence of the SPS. We analyze the overlay structure
both from a global and a local point of view. The global
point of view is shown in terms of clustering coefficient
and average path-length, while the local point of view is
expressed by the brokerage roles (see Fig. 11).

The concept of brokers is a common tool in social net-
work analysis; the general idea is that having lots of links
within a group exposes a node to the same information
over and over again, whereas ties outside one’s group yield
more diverse information that is worth passing on or
retaining to make a profit.

A node connected to other nodes which are themselves
not directly connected has opportunities to mediate between
them and profit from its mediation. Essentially, this is the
ideal condition for a malicious node running the hub attack.

Brokerage roles are calculated over triads of nodes. A
triad in which node v mediates transactions between node
u and w can display five different patterns of group affilia-
tions. Each pattern is known as a brokerage role. The affili-
ation we consider is the malicious and nonmalicious
group of nodes. We consider just two basic brokerage roles:
the coordinator and the itinerant broker (see Fig. 11). Both
roles involve mediation between members of one group.
In the former role, the mediator node v is also a member
of the same group. While with the latter role, two members
of a group use a mediator node v from an outside group.
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Coordinator Itinerant broker

Fig. 11. Brokerage role patterns. Only the subset represented by the
coordinator and the itinerant broker pattern are shown. Links are
undirected.

In Fig. 10a, when the PS is not secured (e.g., 1 gossip ex-
change) the clustering coefficient achieves the unit value in
about 50 cycles, meaning that the overlay is extremely
dense as all the node’s views are completely polluted by
malicious descriptors (e.g., as in Fig. 1b). The average
path-length value is about 2, which is expected as the
hub topology is basically a star: roughly speaking, mali-
cious nodes are in the middle of every path between any
pair of well-behaving nodes.

When the overlay is secured by the SPS, the cluster coef-
ficient is much lower (about 0.16) and so is the tendency to
generate a dense cluster. However, this value is far away
from the clustering coefficient that a real random graph
can exhibit (which is in general lower than 0.01), but it is
about half of the clustering coefficient usually achieved
by Newscast. The overlay induced by the SPS exhibits an
average path- length of about 2.9, which is still a very low
value considering the size of the network.

In Fig. 10b, when no action is taken to counterstrike the
hub attack (1 gossip) the number of coordinators drops
dramatically and around cycle 50 the malicious nodes
(f=20) are the only coordinators in the system (i.e., attack-
ers are all connected to each other). The number of itiner-
ant broker roles instead has the opposite behavior as they
quickly increase their number; this means that correct
nodes quickly play the role of bridges between two mali-
cious nodes as they start having their views polluted with
malicious descriptors.

When the SPS is switched on, as shown by the dotted
plots in Fig. 10b, almost every node can still play the role
of coordinator; a feature that is crucial in order to maintain
the original relations of the (pseudo) random graph. The
relations among the two groups instead are quite limited
as the number of itinerant brokers is low. This fact is basi-
cally directly related to the low amount of pollution in the
views.

5.4. Dynamic scenario

Finally, Fig. 12 shows the behavior of the system in a
dynamic scenario. Two gossip exchanges per cycle are
adopted, and we show the results for two distinct concen-
trations of malicious nodes: (a) f=20 and (b) f=100 - i.e.,
1% of the network size.

We allowed three distinct churn set sizes: 1%, 5% and
10%, respectively; these percentages of nodes leave the
network at every cycle and are substituted by an equal
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Fig. 12. The average pollution level in a dynamic scenario. (a) The results
when f =20 malicious nodes are in the system, while (b) the results when
1% of the overlay is malicious. Two gossip exchanges per cycle are
adopted; each plot corresponds to a distinct churn ratio (i.e., 1% and 5% of
the network size). Network size is 10,000.

number of new participants. The malicious nodes, instead,
stay in place and try to pollute partial views for the whole
duration of the experiment. Note that these values are
actually exceptionally high [15], demonstrating the feasi-
bility of our solution under harsher conditions.

It is surprising to see that actually the network churn
helps the SPS to keep the node’s views clean. In fact, a high-
er level of dynamism leads to a lower level of view pollution
with respect to the static scenario. The reason lies in the
fact that there is a higher proportion of fresh nodes injected
in the system with a very low probability of having a mali-
cious-node descriptor in their view. The correct nodes that
stay in the overlay for a longer time will hardly diffuse the
malicious-node descriptors as they have already detected
them with high probability. Therefore, it becomes harder
and harder for the malicious nodes to diffuse the infection.

5.5. Communication overhead

In comparison to the actual underlying peer sampling
adopted, the SPS does not need any extra message. Essen-
tially, the SPS mechanisms are transparently achieved by
multiple, standard sampling interactions.
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In our particular case, as we adopted a Newscast imple-
mentation, the cost is g+ 1 times the cost of each NEwscast
interaction, where g is the number of distinct explorative
gossips per cycle, plus the extra gossip required to mini-
mize the false positive checks. As the average number of
exchanges per node can be modeled by a random variable
1+ ¢ (see [7]), where ¢ has a Poisson distribution with
parameter 1, the overall node cost is (g+1)- (1 + ¢).

However, due to the presence of cryptography, the size
of each message could be substantially larger than the
adopted peer sampling implementation as we previously
discussed in Section 4.5.

6. Related work

Poisoning attacks are closely related to the hub attack. In
particular, index poisoning [13] focuses on lowering the
quality of the indexes that map hash keys to current file
locations in file-sharing applications. A poisoned index, for
example, may contain hash keys that refer to nonexisting
or inaccessible files. It works because many P2P systems
do not check the integrity of their indexes. Index poisoning
can be applied to structured as well as unstructured over-
lays. In [16], the authors mix index poisoning with poison-
ing routing tables in distributed hash tables (DHT). This
combination leads to an effective DoS attack. In this case, a
selected victim host is referenced by many other (poisoned)
overlay participants, significantly increasing the probability
that a message will be routed through the victim.

The BAR model [17] is an interesting approach to deal
with Byzantine, Altruistic and Rational (BAR) nodes. The
BAR model has been applied to decentralized backup sys-
tems [18] and to multimedia streaming applications [19].
BAR gossip relies on two main primitives: (i) verifiable
pseudo-random node selection and (ii) fair enough ex-
change. The first feature ensures that a gossip partner can
verify that its selection is really (pseudo) random, while
the second feature promotes cooperation among selfish
nodes. In our context, we cannot let nodes verify the random
selection as partial views are continuously changing and
their size is limited. BAR gossip achieves this feature sacri-
ficing dynamic membership: each participant must register
at the broadcaster node before the streaming starts. After
the multimedia event is started, no nodes can join or leave.
Essentially this means that the BAR topology is a clique in
which every node knows every other node. Again, as each
partial view is changing every round, it is very hard, if not
impossible, to build a reliable reputation scheme in our
environment. In fact, by the time reputation estimates have
settled, attackers could already have subverted the network.

In [20], the authors propose a protocol - Fireflies — for
intrusion-tolerant overlays. Fireflies is meant as a building
block for overlays construction. It provides each node with
a complete view of the live nodes in the network. A small
portion of these nodes are used as neighbors. The neighbor-
hood relations define a mesh having a diameter logarithmic
in the number of live members and connect all reachable
members that are not Byzantine. Two possible concerns
are represented by the requirement of providing each node
with a full membership view and by dealing with the dyna-

mism of the network. However, the system can scale to
thousands of nodes. Unfortunately, when the malicious
behavior comes into play, the tradeoff between scalability
and global knowledge is a key issue and the SPS is no excep-
tion as it requires extended knowledge in the form of a
knowledge base, compared to the traditional PS. As the
malicious population grows, it is necessary to increase more
and more the communication effort (i.e., gossips) in order to
aggregate the data about the overlay graph and to build so-
lid local knowledge; essentially, this can be seen as mimick-
ing global knowledge.

In [21], the authors present Brahms, a random sampling
algorithm suitable to deal with malicious behavior. The de-
sign of Brahms is based on the following ideas: (a) to use a
gossip-based membership protocol with extra features to
deal with an adversarial environment, (b) to understand
that this kind of membership protocol induces a bias in
the view samples and (c) to correct this bias locally at each
node. The authors quantified mathematically the extent of
the bias. To achieve an unbiased sample, a specific compo-
nent is designed to achieve a uniform sample using min-
wise independent permutations. The unbiased sample is de-
rived from the biased history of gossiped descriptors.
Brahms achieves very good results in terms of reducing
the pollution of the partial views in the presence of a large
proportion of malicious nodes, while keeping sublinear
membership view and without requiring cryptography nor
a certification authority. However, the convergence to a uni-
form random sample is achieved when the churn ceases,
which is a very unlikely scenario in a real-world setting.

Social inspirations and social techniques are gaining
popularity in network protocols. In [22], the authors intro-
duce a fully decentralized approach for securing synthetic
coordinate systems. They adopt a sort of social-like,
vote-based approach in which each coordinate tuple must
be checked by a (small) set of other nodes. For each node
producing a coordinate tuple, the set of nodes that have to
check and eventually validate that tuple is given by a hash
function based on each node’s unique identifier. The system
is very resilient to attacks targeting instabilities and inaccu-
racies to the underlying coordinate system. However, this
approach relies on the presence of a working DHT facility
that adds complexity and may become an extra security
vulnerability as it can be attacked as well.

Social network principles (e.g., reciprocity and struc-
tural holes) are also adopted in JetStream [10] to optimize
and build robust gossip systems. The basic idea is to make
a predictable node selection when gossiping in order to
avoid unpredictable, excessive message overhead. In addi-
tion, the traditional scalability and reliability of gossip are
maintained.

7. Conclusions

Peer sampling is a fundamental building block for gos-
sip-based, large-scale distributed systems. The current
state-of-the-art systems, with a few exceptions, are capa-
ble of dealing with churn and crash failures, but are vulner-
able to malicious attacks. We believe that the “hub attack”



2098 G.P. Jesi et al./ Computer Networks 54 (2010) 2086-2098

is a simple, but realistic model that poses a real threat to
current peer-sampling mechanisms.

This paper proposes an extension to existing peer sam-
pling services (in particular, Newscast), which is capable of
reducing the impact that malicious nodes may have on the
quality of the sampling. An extensive experimental evalu-
ation shows that our extension is efficient in dealing with
the malicious threat, even when a large proportion of mali-
cious nodes are present. In addition, this result is achieved
with local and limited knowledge of the network.

As these result seems to point in the right direction, we
plan to test a prototype implementation of our solution in
a real distributed environment.
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