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ABSTRACT
The Peer Sampling Service (PSS) has been proposed as a method
to initiate and maintain the set of connections between nodes in
unstructured peer to peer (P2P) networks. The PSS usually relies
on gossip-style communication where participants exchange their
links in a randomized way. However, the PSS network organization
can be easily modified by malicious nodes running a “hub attack",
in which they achieve a leading structural position. From this pres-
tigious status, the malicious nodes can severely affect the overlay
and achieve several application dependent advantages. We present
a novel method to overcome this attack and provide results from
simulation experiments that validate our claim. This method is in-
spired by a simple technique used to detect social leaders in firm’s
organizations that is based on the social (structural) “prestige" of
actors.
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1. INTRODUCTION
In large-scale distributed systems, such as P2P, there is a need

to provide some method for sampling the network. This feature is
needed, for example, to discover network properties like its topol-
ogy, or to build and maintain robust overlays [3, 6, 15]. Usually, in
such systems, each node maintains a set of so-called local cache
or view of logical links (e.g., IP address and port number) to other
nodes (neighbors). In dynamic conditions, where nodes constantly
join and leave the system, these caches must evolve to reflect the
changes triggered by the dynamism. A key requirement in this kind
of systems is that the sampling should be uniformly random to en-
sure connectivity and resilience to crashes.

In the absence of malicious behavior, the local caches can be
successfully maintained in a pseudo-random fashion using gossip-

∗The authors acknowledge financial support from the research
project FIRB 2003 n◦ RBNE03HJZZ named “The evolution of
clusters of firms: emerging technological and organizational archi-
tectures".

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

based approaches such as the Peer Sampling Service (PSS) [6], with
distinct implementations (e.g., [6, 15]).

Unfortunately, the PSS can be exploited by potentially malicious
nodes which wishes, in the worst case scenario, to defeat the over-
lay. As the status information is spread very quickly, non-malicious
nodes may be too late in detecting that the overlay have been sub-
verted and any attempt to recover could be useless. Figure 1(b) and
(c) shows the effects of the presence of just 20 attackers interested
in becoming the overlay’s structural leaders in a 1000 nodes net-
work. In the former subfigure the malicious nodes (i.e., the dark
circles in the plot) became hubs as all the other nodes have logi-
cal links to only them. In the latter subfigure, these attackers leave
the network after having achieved the structural positions, causing
the overlay to become completely disconnected. What is worse, is
that these effects can be achieved in a few gossip interactions and
independent of the network size.

To solve this problem we have designed and tested (by simula-
tion) a prestige-based Secure Peer Sampling Service (SPSS) based
on heuristics inspired by a Social Network Analysis (SNA) tech-
nique [4, 16] used to measure the structural prestige of nodes in a
network. The conceptual idea of becoming a structural leader goes
beyond the boundaries of distributed systems; in fact, it is also an
interesting research topic in firm’s reorganization processes [12].

We show how techniques from SNA can be adopted in gossip-
based distributed systems in order to solve the identified security
issues. This approach is in line with others works that exploit so-
cial networks towards building robust systems [11]. We compare
our approach with another from SPSS approach [8] and show its
improved effectiveness in dealing with a larger set of attackers.

The remainder of this paper is organized as follows: in Section
2 we first describe our scenarios and the “hub attack” model [8]
in which several colluding malicious nodes are sufficient to com-
pletely partition a network using a gossip based protocol. In Sec-
tion 3, we focus on our specific problem and present the basic ideas
behind our prestige-based solution. In Section 4, we describe the
solution algorithm and then provide the results of our experimental
evaluation in Section 5. Finally, we briefly survey related work and
conclude with a summary, open issues and possible future work.

2. GOSSIP AND ATTACK MODEL
We consider a network consisting of a large collection of nodes

that can join or leave at any time. Leaving the network can be vol-
untary or due to a crash. We assume the presence of an underlying
routed network (e.g., the Internet) in which any node can, in prin-
ciple, contact any other node. It is required that any node must
be addressable by a unique node identifier (ID), such as an 〈IP-
address, port〉 pair. We do not address the presence of firewalls and
NAT routing among peers since it has been demonstrated that they
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Figure 1: Overlay topology in, respectively: (a) normal condition, when nodes are connected in a random fashion; (b) when the
attackers (i.e., dark circles) are present in the system and become the "hubs" of the network; (c) the network becomes fully discon-
nected when the attackers, after polluting the other node’s caches, have left the network. Network size is 1000 nodes.

need not pose serious problems [5].
Due to scalability constraints, a node knows about only a small

subset of other participants. This subset, which may change, is
stored in a local cache of size c, while the node IDs it holds are
called neighbors. This set provides the connectivity for a node in
the overlay; the relation “who knows whom" induced by the neigh-
borhood set defines the overlay topology. Real-world P2P applica-
tions provide a set of well-known, highly available nodes in order
to provide a bootstrap facility which constitute the initial neighbor-
hood set. In general, a timestamp is associated with each distinct ID
stored in the cache to eventually purge “old” ID references accord-
ing to an aging policy. This model does not rely on time synchro-
nization, the time being measured in generic time units or cycles
during which each node has the possibility to initiate a gossip ex-
change with another (randomly selected) neighbor.

When the content of the cache is corrupted by the presence of
bogus IDs (i.e., polluted cache), the ability to communicate with
the rest of the network can be severely compromised. In this case,
a new initialization or bootstrap is required.

In our attack model, we consider a practical scenario in which a
small set of colluding malicious nodes or attackers play in the sys-
tem. The size k of this set is equal to the cache size (k = c). The
goal of an attacker is to subvert the network in order to achieve a
leading structural position i.e., become a hub. The attack method
involves the spreading of fabricated data through the messages gos-
siped among the participants in such as way as to affect the logical
links of the overlay. We suppose the attackers are “clever", in the
sense that they operate to avoid being easily discovered [10].

The attack algorithm, called the hub attack [8], can run any PSS
implementation like any other well-behaving node, but the content
of its malicious messages is filled with the IDs of other malicious
nodes in the system. In addition, the ts for each ID is manipulated
to ensure that it will not be dropped by a neighbor. This behavior
is perfectly valid from a PSS point of view, as the only mandatory
constraint is that cache entries be distinct. Surprisingly, this intrin-
sic weak integrity constraint complies to reality; in real-world P2P
file-sharing systems (see [9,10,13]), when a peer receives an adver-
tisement for an item, it does not usually verify its validity. Another
kind of malicious cache attack have been proposed [7] but, in this
work, we restrict to this one; however, the presented SPSS approach
is also suited for this other cache attack.

In this paper, we consider a specific implementation of the PSS
called NEWSCAST. However, our approach is generic and imple-
mentation independent. NEWSCAST is a gossip-based topology man-
ager that builds and maintains a dynamic random graph. In this
protocol, a node randomly selects one of its neighbors in order to
subsequently exchange links from their respective caches. Note
that such an exchange implies that (usually) the neighbor set of
each node changes. Details can be found in [6].

3. PROBLEM AND SOLUTION
GUIDELINES

The effect of gossiping malicious information is to mutate the
randomly organized PSS overlay into a network having a com-
pletely different kind of organization that suits the attackers’ aim.
Our goal is to preserve the original organization of the PSS to avoid
severe performance issues or the disruption of the overlay.

The main challenge is represented by the exponential growth of
the infection which leads to a situation where each well-behaving
node ends up with no neighbors other than the attackers. As a con-
sequence, when a node is infected, it has no way to recover, espe-
cially in a fully distributed environment where there are no trusted
parties to ask for help [8]. What is worse, is that just a single gossip
exchange (initiated by a malicious node) may be sufficient to fully
pollute a node’s cache.

The basic idea and the main contribution of this work is to fit the
PSS into a higher level framework which allows to: (a) play a PSS
implementation as usual and (b) monitor the overlay and react to
structure changes when required. The key point is that the presence
of the new framework is transparent to the PSS and there is no way
for a node to know how the information provided will be used by
a receiving neighbor. In fact, a stochastic proportion of the gossip
interactions could just be “explorative", while the others lead to
standard PSS interactions. The task of the exploration is two-fold:
on one hand it builds a particular sample of the current neighbor’s
surroundings, while on the other hand it collects node IDs that may
become useful if and when the PSS cache becomes polluted by the
spreading infection.

As there is no way to detect if a neighbor has actually played the
PSS or not, this behavior generates a dilemma that could tremen-
dously limit the attacker’s power. As the attackers aim to mutate
the overlay organization, they have to artificially promote them-



forever do
PSS_done ← FALSE
size ← [0 ... degree()]
rndNSet ← RNDNEIGHBORSUBSET(size)
wait(∆t)
∀ neighbor ∈ rndNSet do
SENDSTATE(neighbor)
n_state ← RECEIVESTATE()
with prob. 1

size et !PSS_done do
if CHECKIDS(n_state) do
PSS_done ← TRUE
apply PSS update.

otherwise GETSTATISTICS(n_state)
RECOVERSTATE()

forever do
n_state ← RECEIVESTATE()
SENDSTATE(n_state.sender)
if CHECKIDS(n_state) do
apply PSS update.

RECOVERSTATE()

(a) Active Thread (b) Passive Thread

Figure 2: SPSS pseudo-code algorithm.

selves by aggressively diffusing their IDs and they cannot hide this
behavior.

Monitoring the overlay requires collecting statistics about the
overlay structure, therefore a suitable property must be identified;
this property has to be selected according to the particular nature of
the overlay we address - random nature, in our case. The nature of
the property we choose and the way we check it are the key points
of our solution (see [10]).

For our solution we draw inspiration from social network anal-
ysis (SNA) and in particular we consider the notion of prestige of
nodes in a directed network, where the nodes that receive more
positive choices are considered prestigious [4]. In SNA, prestige is
expressed as a particular pattern of social links. We adopt a (sim-
ple) technique to compute the structural prestige of a node in terms
of popularity (or in-degree). The information about a node’s in-
degree is collected during a gossip exchange among neighbors, by
looking at each entry in the received caches.

Since the network should be random, we expect that the average
value of popularity is almost the same for each node. Detecting a
node showing a popularity value far grater than the average means
that it could represent a network hub. Each node builds its own
knowledge about its surroundings and it does not share this infor-
mation with its neighbors [10].

While in a firm’s social context prestige is a desirable status
(e.g., usually associated with higher respect, responsibilities and
income), in our particular environment the prestige feature is an
undesirable property. In a random overlay, the “egalitarian" nature
of a P2P system is even more emphasized as it includes the homo-
geneity in terms of structural network position.

4. PRESTIGE-BASED SPSS ALGORITHM
As the main problem in preventing the hub attack is the exponen-

tial speed of infection, the main challenge is to let each node build
a suitable knowledge base (KB) to possibly recover its local cache.
Another SPSS approach [8] was based on building a KB according
to a quality rate performed at each exchange. In such an approach,
during each gossip, a node collects information regarding a single
neighbor; it is a slow process mitigated by the fact that the proba-
bility of the actual state update is proportional to the quality value.

The approach we propose in this work can build a suitable KB in
a much faster manner. In the following, we distinguish two distinct
aspects:

Dilemma mechanism: Figure 2 shows the prestige-based SPSS
algorithm using a pseudo-code language. The first important dif-
ference compared to the prototypical gossip scheme (see [3]) is
the absence of the SELECTPEER() function which selects a ran-
dom peer from the local cache. Here instead, a node can gossip
with multiple neighbors in the same time unit (cycle); a sub-set
of random neighbors, rndNSet, is selected from the cache by the
RNDNEIGHBORSUBSET() function. This feature is similar to

the behavior of cellular automata, which in turn can be considered
as gossip systems as well [3]. In normal conditions - i.e., when
the number of attackers is equal to the cache size (k = c) - just two
gossips per cycle are sufficient to prevent the hub attack as, on av-
erage, one gossip cycle is dedicated to the PSS interaction and the
other collects statistics about the overlay organization. The process
of detecting the network organization is faster than the diffusion of
malicious IDs.

Regardless of the number of neighbors selected by RNDNEIGH-
BORSUBSET(), the PSS state update policy can be executed only
once (by the active thread) and with a probability of 1

rndNSet.size() .
The interactions with the other neighbors on the other hand, are
used to collect prestige related information about the node’s neigh-
borhood. The presence of the 1

rndNSet.size() probability is the rea-
son why a single gossip is not sufficient to prevent the attack, as it
would disable both the dilemma and prestige mechanisms.

The proposed mechanism produces the dilemma in which a po-
tentially malicious node A never knows how another neighbor B is
going to use the information the malicious node provided. In fact,
the more they pollute, serving malicious IDs during the exchanges,
the more is the possibility of appearing as “suspect" in terms of
popularity (prestige).

Prestige mechanism: The information collected during the gos-
sip exchanges is used to build the KB required to detect with good
accuracy the malicious nodes and to eventually repair the node’s
cache when it becomes polluted by the presence of malicious IDs.
A table structure - the Prestige Table (PTABLE) - holds the follow-
ing kind of tuple: [ node ID, #hits, TTL ], where each node ID
detected is associated to a frequency value (#hits) and to a time-
to-live (TTL) value expressing the time validity of the table entry.
Essentially, each node explores its neighborhood and collects data
about the popularity (or frequency expressed in #hits) with which
the same node ID has been reported by the received caches. In just
a single gossip, each node can collect a number of items equal to
the current cache size (c items). Though we do not pose any size re-
striction to the PTABLE, which can hence eventually grow up to the
size of the network; this is very unlikely, as the entries are purged
according to an aging policy, which decrements by 1 each entry’s
TTL at each cycle. An entry’s TTL value is incremented (by 1)
each time the same entry is detected.

As the attackers tend to acquire a network centric position, their
prestige is likely to dominate over the other node’s entries and its
value will be far more than the average node’s prestige. According
to this simple idea, the PTABLE object maintains the average hits
value: #hitsavg; this value is used as a threshold to distinguish be-
tween potential attackers (i.e., #hitsA ≥ #hitsavg for a node A) and
well-behaving nodes. When an entry expires (i.e., TTL=0), its ID
is collected in a WHITELIST, as it can be (with high probability)
considered a well-behaving node. If the same ID is detected in a
neighbor’s cache in a subsequent gossip, it is not removed from the
WHITELIST until its #hits value has eventually reached the PTABLE

#hitsavg value. These calculations and the management of the KB
are handled by the GETSTATISTICS() function.

Any well-behaving node could play the PSS with an attacker that
has not been detected yet, as its KB is not established enough or is
even empty. The risk of having the cache polluted is always present
and therefore a method to recover the node’s cache is required. In
Figure 2, the function RECOVERSTATE() represents this require-
ment. If the KB is not empty, it does not matter if not all the attack-
ers are known. In the average case, it is sufficient to have a set of
node IDs in the WHITELIST that are present in the PTABLE, but have
a lower #hits value than the #hitsavg value, or that are not present at
all in the PTABLE. When the KB is empty instead, the node’s cache



could be completely polluted by an attacker. This would happen
in the early stages of the protocol when a node has just joined the
overlay. The only chance to recover, from such scenario, is to be
contacted by another well-behaving and non polluted node. As the
overlay is pseudo-random, on average, this can happen quite often.

The function CHECKIDS() is designed to perform basic crypto-
graphic checks over the received IDs. The SPSS system requires
a central Certification Authority (CA) which is not part of the pro-
tocol, but is required to provide the nodes the credentials to join
the network. We cryptographically secure each ID structure using
[IDA, tscreation, tsexpiration,PKA,σ], where IDA is A’s ID, the ts are
time-stamps, PKA is A’s public key and σ is the digital signature on
the message.

5. EXPERIMENTAL EVALUATION
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Figure 3: The avg. pollution level in the caches is shown over
time. Each plot represents a distinct number of gossips (i.e.,
1, 2, 4, 8 respectively); k = 20 = c malicious nodes are present.
Network size is 10000.

The prestige-based SPSS’s evaluation reported in this section has
the following goals: (a) how much time is required to achieve a
stable and tolerable proportion of pollution in the node’s cache and
how the number of gossips per cycles influence this performance,
(b) performance in a dynamic scenario and finally (c) compari-
son of the prestige-based SPSS with another fully distributed SPSS,
based on a different approach [8], in terms of performance in ex-
treme conditions. In the following evaluation, we consider that the
pollution level is “tolerable" if the overlay graph does not split into
clusters when the malicious nodes leave the network (see [8]). If
not stated otherwise, the hub attack is performed by a set of k col-
luding malicious nodes k = c = 20, where c is the cache size the
actual PSS implementation adopted (NEWSCAST). Due to the space
constraints, only the results for the 10000 nodes overlay scenario
will be reported, but the results are quite similar for smaller over-
lay sizes (e.g., 1000 and 5000 nodes).

Figure 3 shows the average pollution proportion in the node’s
caches. Each plot represents a protocol setup adopting a distinct
number of gossips: 1, 2, 4 and 8. In this scenario, the overlay
is static; in other words, we guarantee that during the life-span of
the experiments no nodes will leave or join the network for any
reason. When the nodes perform just a single gossip per cycle, the
prestige SPSS is indistinguishable from the ordinary PSS, where
no defense is available. Starting from the two gossips setup, the
situation changes dramatically. The average pollution drops to a
very low (and safe) 1-2%. Increasing the number of gossips further
to 4 or 8 has a very marginal benefit, if any. It was seen that the
communication cost, in terms of messages exchanged, grows much
faster than the achieved pollution suppression benefit and 2 gossips

are good enough to manage the attack.
In Figure 4, we consider the performance of the prestige-based

SPSS in a dynamic setup, where at each cycle a set of nodes leaves
the network and it is substituted by an equal amount of new nodes.
However, this process involves only the well-behaving participants,
while the malicious nodes are not affected and they pursue their
malicious intent for the whole duration of the experiment. Three
distinct churn rates are shown: 1%, 5% and 10% respectively. Two
gossips per cycle are adopted.
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Figure 4: Dynamic scenario: the avg. pollution level is shown
over time according to distinct churn ratios. 2 gossips per cycle
and k = 20 malicious nodes are adopted. Network size is 10000.

It is interesting to see that the dynamism of the network actu-
ally helps the prestige mechanism to keep the cache pollution low.
While it may seem counter-intuitive, the reason of this behavior
is easily explained. As in the static scenario the attackers cannot
subvert the system, in addition to that, well-behaving nodes are
substituted at a constant rate and their caches are randomly initial-
ized, minimizing the chance of joining the network with a polluted
cache and neutralizing any previous success in polluting the previ-
ous ones. In fact, as the churn rate increases, the average pollution
in the system decreases proportionally.
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The set of attackers is expressed as a percentage of the network
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sents the maximum tolerable pollution level.

Figure 5 depicts an extreme attack scenario where the number
of malicious nodes k is expressed as a percentage of the overlay
size and it is much higher than the cache size c (k >> c); in par-
ticular, the percentages we selected are: 1%, 2,5%, 5% and 10%
of the overlay size. We compared the prestige-based (SPSS) with
another SPSS algorithm based on a different mechanism [8]. Each
bar for each cluster represents a distinct percentage of attackers in



the network. The thick horizontal line represents the maximum tol-
erable pollution level over which the overlay runs the risk of being
partitioned. To allow a fair comparison among the contenders, we
adopted respectively 2 and 8 gossips setup for the former, versus 2
and 8 overlays setup for the latter SPSS. Essentially, the prestige-
based SPSS can deal with the presence of a larger set of malicious
nodes and its effectiveness is not limited to the standard k = c case.
However, the extreme scenario shows the benefit given by multiple
gossips: the first setup (2 gossips) can just deal with 1% of attack-
ers, while the second one (8 gossips) can tolerate 5% of attackers.
The other SPSS instead always fails when k >> c.

The infection can spread to the whole network only if the cache
size c (and the number of explorative gossips) are too small com-
pared to the attacker’s population. Essentially, the attackers can
successfully behave in a malicious manner if their population is
sufficiently large, otherwise the more they pollute the more is the
possibility to be discovered. When the set of attackers is too large,
from a well-behaving node point of view, its overlay neighborhood
looks random: the malicious caches it receives are fabricated from
a large set of malicious IDs and they are effectively indistinguish-
able from a non malicious one without having a deeper knowledge
of the overlay structure.

The prestige-based approach is also effective when more sophis-
ticated malicious cache content (e.g., malicious node IDs are mixed
with crashed or non existent node IDs) is adopted. However, we
have not shown them in this work due to the space restrictions.

6. RELATED WORK
The previous SPSS approach [8], with which we made the com-

parison depicted in Figure 5, builds and manages distinct PSS over-
lays. By participating in multiple overlays, each node monitors the
received cache patterns coming from distinct sources. The emer-
gence of high frequency patterns may indicate the presence of the
attackers and may trigger a topology reconfiguration and may black-
list the potential attackers. Our novel approach instead, does not
need the extra overhead of maintaining multiple overlays, but each
node just monitors its neighborhood. However, monitoring and
playing the PSS is indistinguishable; this poses a dilemma for the
attackers: if they pollute with brute force they will be discovered
fast and with high probability; conversely, if they pollute more clev-
erly (e.g., at a lower rate) they will not be discovered, but they will
hardly accomplish their malicious task.

In [1], the authors presents a sampling membership algorithm
with which every node’s sample converges to a uniform sample and
can resists to the failure of a linear portion of the nodes. This ap-
proach defines and uses its own sampler algorithm, while we focus
on securing an already existent sampling service (i.e., the PSS).

In [14], the authors introduces a fully decentralized approach for
securing synthetic coordinate systems. They adopt a sort of social-
like, vote-based approach in which each coordinate tuple must be
checked by a (small) set of other nodes. For each node producing a
coordinate tuple, the set of nodes that have to check and eventually
approve that tuple is given by a hash function based on each node’s
unique identifier. The system is very resilient to attacks targeting
instabilities and inaccuracies to the underlying coordinate system.
However, this approach requires the presence of a DHT facility that
adds complexity and may become an extra source of issues (e.g.,
DHT attacks).

Social network principles (e.g., reciprocity and structural holes
[2]) are also adopted in JetStream [11] to optimize and build robust
gossip systems. The basic idea is to make a predictable neighbor
selection when gossiping to avoid unpredictable, excessive mes-
sage overhead. In addition, the traditional scalability and reliability

of gossip are maintained.

7. CONCLUSION
We have presented a novel SPSS mechanism which maintains

the underlying random overlay in the presence of malicious nodes
playing the hub attack. Our mechanism is based on a prestige-
based SNA technique. The comparison with another SPSS method
reveals the improved effectiveness of this approach when a larger
set of malicious nodes (k >> c) are involved in the attack.
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