
Prestige-based Peer Sampling Service: Interdisciplinary
Approach to Secure Gossip ∗

Gian Paolo Jesi , Edoardo Mollona
Dept. of Computer Science
University of Bologna - Italy

E-mail: {jesi | mollona}@cs.unibo.it

Srijith K. Nair, Maarten van Steen
Dept. of Computer Science

Vrije Universiteit Amsterdam (The Netherlands)
E-mail: {steen | srijith}@cs.vu.nl

ABSTRACT
The Peer Sampling Service (PSS) has been proposed as a method
to initiate and maintain the set of connections between nodes in
unstructured peer to peer (P2P) networks. The PSS usually relies
on gossip-style communication where participants exchange their
links in a randomized way. However, the PSS network organization
can be easily modified by malicious nodes running a “hub attack",
in which they achieve a leading structural position. From this pres-
tigious status, the malicious nodes can severely affect the overlay
and achieve several application dependent advantages. We present
a novel method to overcome this attack and provide results from
simulation experiments that validate our claim. This method is in-
spired by a simple technique used to detect social leaders in firm’s
organizations that is based on the social (structural) “prestige" of
actors.

Keywords
Gossip, peer sampling, security, SNA

1. INTRODUCTION
In large-scale distributed systems, such as P2P, there is a need

to provide some method for sampling the network. This feature is
needed, for example, to discover network properties like its topol-
ogy, or to build and maintain robust overlays [3, 6, 15]. Usually, in
such systems, each node maintains a set of so-called local cache
or view of logical links (e.g., IP address and port number) to other
nodes (neighbors). In dynamic conditions, where nodes constantly
join and leave the system, these caches must evolve to reflect the
changes triggered by the dynamism. A key requirement in this kind
of systems is that the sampling should be uniformly random to en-
sure connectivity and resilience to crashes.

In the absence of malicious behavior, the local caches can be
successfully maintained in a pseudo-random fashion using gossip-

∗The authors acknowledge financial support from the research
project FIRB 2003 n◦ RBNE03HJZZ named “The evolution of
clusters of firms: emerging technological and organizational archi-
tectures".

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

based approaches such as the Peer Sampling Service (PSS) [6], with
distinct implementations (e.g., [6, 15]).

Unfortunately, the PSS can be exploited by potentially malicious
nodes which wishes, in the worst case scenario, to defeat the over-
lay. As the status information is spread very quickly, non-malicious
nodes may be too late in detecting that the overlay have been sub-
verted and any attempt to recover could be useless. Figure 1(b) and
(c) shows the effects of the presence of just 20 attackers interested
in becoming the overlay’s structural leaders in a 1000 nodes net-
work. In the former subfigure the malicious nodes (i.e., the dark
circles in the plot) became hubs as all the other nodes have logi-
cal links to only them. In the latter subfigure, these attackers leave
the network after having achieved the structural positions, causing
the overlay to become completely disconnected. What is worse, is
that these effects can be achieved in a few gossip interactions and
independent of the network size.

To solve this problem we have designed and tested (by simula-
tion) a prestige-based Secure Peer Sampling Service (SPSS) based
on heuristics inspired by a Social Network Analysis (SNA) tech-
nique [4, 16] used to measure the structural prestige of nodes in a
network. The conceptual idea of becoming a structural leader goes
beyond the boundaries of distributed systems; in fact, it is also an
interesting research topic in firm’s reorganization processes [12].

We show how techniques from SNA can be adopted in gossip-
based distributed systems in order to solve the identified security
issues. This approach is in line with others works that exploit so-
cial networks towards building robust systems [11]. We compare
our approach with another from SPSS approach [8] and show its
improved effectiveness in dealing with a larger set of attackers.

The remainder of this paper is organized as follows: in Section
2 we first describe our scenarios and the “hub attack” model [8]
in which several colluding malicious nodes are sufficient to com-
pletely partition a network using a gossip based protocol. In Sec-
tion 3, we focus on our specific problem and present the basic ideas
behind our prestige-based solution. In Section 4, we describe the
solution algorithm and then provide the results of our experimental
evaluation in Section 5. Finally, we briefly survey related work and
conclude with a summary, open issues and possible future work.

2. GOSSIP AND ATTACK MODEL
We consider a network consisting of a large collection of nodes

that can join or leave at any time. Leaving the network can be vol-
untary or due to a crash. We assume the presence of an underlying
routed network (e.g., the Internet) in which any node can, in prin-
ciple, contact any other node. It is required that any node must
be addressable by a unique node identifier (ID), such as an 〈IP-
address, port〉 pair. We do not address the presence of firewalls and
NAT routing among peers since it has been demonstrated that they

547

370
910

827

13049

89

524

408

843

666

784

553

830

776

618
128

290

363

768383

917

371

990

345
414

365

99

975

752

932

578

333

456

761

839

21

54

220
443

879

900

764

72

238

73

372
565

709

173 104

388

701

778

577 120

978

982

348

972

149

90

133

5

177

727

773

688

6264 213

447

141

38

710

321

725

458

29

534

289

781

659

381
689

142
492

621
739

504

209

525

56

396

314387

271

303

938

694

77
980

536

586

129
948

189

427

309

623

614

878

212

373

474

346

100

153

974

245

409

866

916

354

794479

915
669

594

357

171

98

304

527

573

748

890

921
611

632

740

712

259

195

798865

533

499

887

480

907

751 850

658

937

237

287
786

519 273

847

258

244

364

493
361

400546

716

930

572

57

556 243

270

103

275

422

633

250

83
596

152

908

419

875

953

344

963

610

807

107

538

603
612

844

494

682

66

125

46

564

52

200

506

293

936
265

732

941

655

68

67

367

609

441

22

581

680

923

590

765

800

299

971

518

227

356

97

377

183

255

389

315

192

737

181

678

966

913

959

302
672

551

828

251

168

512

164

249

23

334
115

490

163

622
697

407
957

559

920

962

418
510

355

453
442 967

566
775

185

705
956

691

515

50

964

639 338417

584

699

40

360

466
804

497
979

242

204

946

13

246

766

174
840

523

783

256

86

80
543

444

898

624

922
286

507

508

127

415
102

36

760

198

909

501

750

393

451

119

465

616

858

294 166
11

704

150

812
731

207167
482

754

638

599

692

513

651219

715

434

530

351

390818

730

481

555
17

9

829

74

598

832

653

79
592

863

159

726

744

700

582
392

151

885

882

347

60

310

772

402

808

824

114

542

92

514

326

206

352

208

134

398
521

782

690856

576

254926

664

188

116
529

852

835

240

999

457
604

620

955

747

998

509

335

272

861

182

896

876

221
789

34

450

677

113

330

853

884

231

75

76

296

353

432

991
849 184

121

823

96

7

433
729

420

27

841

230

528 292

895

42

925

37

619
431

291 587

969 708317

914

146

855

368
403

217

719

851 676

395

187

864

341

630

877

223

791

375
574

820

369

608

24

819

449
992

717

12

813

71

268

269583

541

359

652
397

723
416

631 30115

84

485

713

308

893

439

55

905

503

476

463

362
976

252

477

70

897

606 253

430

939

318

643

805

707

193

429

236

790

384

833

232

539

549

836

311

675

322

473

997

505

196

48

455

746

288

218
496

488

226

809

526

806

627

695

131

597

940

425

460

394

199

78

665

459

792

306
411

814
436

854

313

110

711

118
745

681

780

734

821

822

380

500

949

19

85

994

379

945

160

25

774

158

91939

35

165

693

452

319

157

629

502

647

554

793

426
267

756

233

810

924

862

673
903

28

235

870

179

511

859

648

210

126

197

649

489

94 109

0
958

880

58

811

454

698

472

544

831

461
960 257

911

486
721

636

607

795

995

475

640

274

1

965

906

10

487

136

888

901

224

685
284

815
545

135

194

588

837

82

205

993

983

8

277
484

138

391

867

758

91331

300
796

2

211

239
18

654

51

327

316

703

203
645

132

873

569

175

328
117

904

139
799

413

662

228

201

668

580

147

625

589

386

65

404

176

495

297

661

61

899
323

650

950

568

401

560802
742

438
860

412

399

81
343

144

943
762

871

696

307

591
180 595

635

702

468

567

170

26
247

145
644

469

349

931

45

548
984

869

464

891

108

262

137

570

593

445

803

684

106

531

88

970

491

944

43

93

663

657

706

424

69

169 757

462

101

95

350

264

428770
985

935

339

753

558
602

16

628

947 376

686

6

743

817

759

320

769

996

961

728

797

285

263

838

446

266

825

248

516

378

324

298

561

440

928

374

122
667

952

535

846
683

579

749

563155

738

889

470
892

779 600

202

276

222

724

722

735

933

382

626
656

325

934

358

406

550

532

886

951

929

848

670

140

537

894

467

881
872

340

435
332

30

641

575

927

942

687

33674

714

954

63

522

20

295

987
154

557

214

329

337

423

520

280

241

571

178

601

47

123 771

216

111

767

53

225

918

483 617

14

720
874

410

190

59

562

968

585

44

845

973

281

755

736

552

902

312

124

336

981

883

161

172

385148 785

816

718

156642

989

87

777

278

283

4 801

613

229

234

634

31

342

105

517

733

191

437

215

3

605

637

679

32

421
842

478

868

282

143

763

986

857

162

671

615
977

405

834

112186

279

260

787

498
540

988

912

41

646

261

366

471

305
741

660

448

788

826

411

925

298

392

615

234

53357 281

934

961

849

453

625

725

313

177

602

778
829

124

749

375

394 978

893

786

279

449

291

424

276

800

584

635

172

824

562

991

382
597

396
256

444

652

650

610

262

561

126

119

6
592

66

292

273

14
607

853

413

514

90

429

965

169

582

180

439

945

289

993
747 966

983

117

139

476

334

576

803

1
793

974

848

340

973

567

745

679

976

865

423

646

441

773

78 519

409

29

850 403

156

452

548

792

964

97

732
813

802

332

863776

372

402

673

252

837

655

426

675

11

830 70
206

267

312

450

328
881

269

261

879

461

480

557

928

270

318

337

9

202

387

636

660

525

628
162

969

34

943

929

944

740

233
418

175

33

699

841

590

146

467

647

301

654

681

400

316

61

282

41

417

47

13
739

891

287

940

361

521

208

158

308

95

898

522

248

105

634

613

733

723

505
286

785

720

692

520

463

408

36

116

555

535

686

174

648

663

7

721

860

239689

606107

171

619

176

432

710

459

950

259

101

751

433

727
783

31

154

690

912

815

757

904

65

17

659

52

88

87 55

507
226

658

164
12

589

651

819

100

68

575

185

901

726

502

954

847

465

362

871

827

201

323

971

931

220

621

106

150

253

388

772

811

73

458

526

250

801

111

205

908

213

539588

949

148

605

391

918

814

163

412

885

753

935

406

317

715

906

155

806

277

96

258

554

859

544

310

638

722

764

767

534

508 37

212

902

485

371

688

415

858

311

545

255

167

69

845

26

60

364

477

72

579

271

804

693

140

67

322

2

542

886

495

336

661

302

478

948

657

896

975

207

295

765

134
662

821

214

593
611

531

637

141

230

920

219

560

344

552
644

341

16

709
775

752

345

822

986

80

755
643

144

517

834

759

665

405

546

909

79

981

195

510

895

784

645

777

587

125

536

947

798

608

370

668

684604

866

20

170

307
471

353

315

278
482

309

566

354

998

329

113

314

616

22

641

742

700

598

620

878

98

137

128

346

422

182

897

713

963

869

622

401

499

916

327

880

280

23

861

187

537

236

227

304

198

390

877

5

430

504

74

306

889

691

933

960

118

738

356199

678

515

617

711

200

890

284

434

32

758

428

541

494

669

503
455

707

980

922

683

149

483

805

222

867

246

924

377

18

102

48

89

321

71

299

225

787

746

410

719

810
30

997
91

565

599

4

216

0

386

809

883

999

379

378
839

38

794

457

685

706

671 509

330

39
724

486

530

103

735

49

653

247

484

543

414

770

982

704

129

288

712

120

914

266

393

469

472

290

190 466

63

448

237

240

460

194

677

670760

228

211

799

431

77

427

591

83

191

694

551

355

84

907

326

399

324

538

523

656

577

609

109

855

62
676

939

873774

790

627

244

242

275

51

840

186

911

937

204

166

438

358

348
135

420

470

456

331

844

493

152

249
294

600

666

581

967

972

737

674

903

173

15

842989

828

447
112

142

748

826

506
687

741

44

305

500

872

875

384

936

884

832

235

578

782

574

913

533

672

701

462

343

957

489

184

852

28

532

632

440
547

614

437

874

887

297

50

952

730

136

696

596 24

962
846

583

263

894

265

368

868

192

59

347

181

57

188

731

160

133

586

698728

251

58

743

385

612
380

750

854

445

210
642

241

454

56

178

436

335

193

797

781

968

189

221

416

389

716

75

791

464

419

245

325

862

215

779

768

352

35

254

807

443

338

623

196

992

425

984

987

131

127

349

397

229

108

512

639

996
365

296

838

260

876

381

930

27

899

818

540

92

959

820
369

351

833

553

851

946

243

363

360

468

475
900

994

498

763

744
161

398

518

339

714

988

624

556
285702

491

864

407

921

474

3

376

754

573
572

919

224

123

780

130

817

272571

564

680

179
203

629

25

762

197

977

40

823

157

421

43

94

147

788

496

771

630

183

618

580

958

942

115

836

110

831

138

46 209

816

293

232

366

808

513

268

835

168

367

300

703

333

45

104

524

953

274

734

359990

923

492

905
857

705

549

217

446

951

350

917

563

631

729

231

383

970

21

932

82

626

718

870

603

667

451

488

812

569

114

86

511

435

497

223

132
558

395

257

568

501

717

927

54

76

585

550

769

649

143

926892

473

85
979

93

342

165

915

319

481

153

595

664

218

761

373

825

756

697

479

159

594

374

121

490

955

81

264

789

516

910

151

736

856
559

938

995

882
695

941

145

640

682708

528

122

795

303

888

404

64

99

796

570

633

766

442

956

527

985

238

601

320

8

10

487

283

529

843
42

19

44

43

201885

575521

190

37

254 906 802

157

295

835

249

96

901629630873

571

804

511

169 113 489 591

545

969

528

264405

451

539 128

350

953

303

199362877631206

813

152

970

134 52 936 438

404

412

943

700771552

237

674

8

701 45 538

938 698

660

317

204

540

262

93551216224792

465

339

915

973 748 607 912 349

722

343

846

52744356085537

251

626

147

104

956

554 344

863 333 763

192

127

707

875

603

253

323881194309585

820

914

351

653

859 132 759 738 89 220

495

843

285

583

108840453159305222984

166

586

272

73

345

105

55 578

341 827 667 112

797

86

354

656

879

726

989

42889639447299

312

645

618

311

777

746 890 957 46 751 680 627

727

49

766

68

563

94806283444394272873336

209

395

811

513

780

960

718

470 971

391

939 503 785 233

754

677

768

518

613

460

164

83753148412568367

324

682

65

796

82

383

92 326 332 905 252 294 406 762

310

397

900

689

913

372

77215869966389584156731461636

25

185

80

548

717

841

57

21 247

27 347

800

779 752 529 62

789

976

488

756

200

39

236

609617788891180371466

927

714

946

594

865

934

67

242

967 482 773 435 838 145 110 427 189

851

696

229

845

77

228

715

917

530593238462605923695767457551

504

60

550

576

174

278

260

815 948

534 302 430

692

496

292

783 822 447 409

320

709

570

659

282

893

392

11987649354486449918390

590

358

670

402

1

761

697

543

186

757

564

165 381 250 125 574 816 88 368 729

231

123

330

276

224

932

173

313

5161930421454958256778138293

266

66

269

740

331

433

315

363 743 688

64 72 691 301

380

102

267

654

7875

681 118 650 319

210

921

464

686

719

306

828

949870577103181143720649423

782

342

450

384

834

509

745

420

581

16

130

553

974 951 713 671 716 280 448 502 426

7

259

61

322

775

724

544

848

80134661222380987884736029175

353

126

146

993

919

106

638

737

644 864 556 101

299 904 76 823 884

997

288

375

764

388

606

485198246

59 109 335 979

188

532

753

522

38

842

966

4213855257515160526557812542

98

87

596

963

137

191

79

407

588

419

662

364

911

986 799 90 273 637 514 710 909 221

248

498

579

413

824

826

297

661

95998821345267861426814365734

541

501

524

497

255

480

684

463

28

316 929 40 270 675

226 990 446 888 321 154

987

690

770

436

261

307

325

810

328569100886

425 964 195 95

739

286

601

910

897

193

982

945142776314778702791852755271150

48

687

338

411

998

396

899

941

814

679

844

525

124

475

369 580 655 805 429 329 587 962 712

673

393

723

366

628

244

980

983

151171913015370829205387499

672

887

69

2

730

439

458

991

389

81

168 459 385 442 287 832

401 908 972 506 902 803 18

920

830

849

760

454

97

994

533

216

138

79494029386274151

694 658 139 115

56

520

74

107

277

616

790

133519589868903473408683821955711

742

415

995

148

352

965

122

83

639

664

359

992

9

483

263 774 120 907 414 602 833 431 361

468

129

769

798

623

10

931

565

6931178289977706634867996572

523

807

817

478

202

595

376

116

547

669

536

795 492 508 643 479 22 227

318 187 573 203 308 874 212 947

434

334

819

665

635

469

857

245

4

240

355

930

20875016763317685163421

337

610 47 356 510

373

217

178

219

535

882

71

239176880170657290111487924445836

161

916

225

922

926

300

0

136

370

63

32

558

818

456

958 517 621 437 599 6 232 546 505

825

758

933

808

455

15

861

400

494149144598856140858399620131

432

666

34

23

611

234

284

374

954

218

981

70

135 357 619 871 26 736 860 58

491 889 258 476 410 647 386 418 944

786

648

175

182

403

336

652

642

215

235

892

416

721

600

37850756670579318420872196999

50

121

894 732 928 35

704

937

398

952

197

839

968

183985883640211850500141179725555

440

784

676

624

327

296

467

417

703

155

622

608

471

866

33 243 441 651 641 831 646 230 853

898

377

207

869

474

559

241

31

95085437947727597574776542241

265

744

668

114

735

481

348

604

562

632

274

490

256

(a) healthy condition: no attackers (b) k = 20 attackers (c) k = 20 attackers after leaving the overlay

Figure 1: Overlay topology in, respectively: (a) normal condition, when nodes are connected in a random fashion; (b) when the
attackers (i.e., dark circles) are present in the system and become the "hubs" of the network; (c) the network becomes fully discon-
nected when the attackers, after polluting the other node’s caches, have left the network. Network size is 1000 nodes.

need not pose serious problems [5].
Due to scalability constraints, a node knows about only a small

subset of other participants. This subset, which may change, is
stored in a local cache of size c, while the node IDs it holds are
called neighbors. This set provides the connectivity for a node in
the overlay; the relation “who knows whom" induced by the neigh-
borhood set defines the overlay topology. Real-world P2P applica-
tions provide a set of well-known, highly available nodes in order
to provide a bootstrap facility which constitute the initial neighbor-
hood set. In general, a timestamp is associated with each distinct ID
stored in the cache to eventually purge “old” ID references accord-
ing to an aging policy. This model does not rely on time synchro-
nization, the time being measured in generic time units or cycles
during which each node has the possibility to initiate a gossip ex-
change with another (randomly selected) neighbor.

When the content of the cache is corrupted by the presence of
bogus IDs (i.e., polluted cache), the ability to communicate with
the rest of the network can be severely compromised. In this case,
a new initialization or bootstrap is required.

In our attack model, we consider a practical scenario in which a
small set of colluding malicious nodes or attackers play in the sys-
tem. The size k of this set is equal to the cache size (k = c). The
goal of an attacker is to subvert the network in order to achieve a
leading structural position i.e., become a hub. The attack method
involves the spreading of fabricated data through the messages gos-
siped among the participants in such as way as to affect the logical
links of the overlay. We suppose the attackers are “clever", in the
sense that they operate to avoid being easily discovered [10].

The attack algorithm, called the hub attack [8], can run any PSS
implementation like any other well-behaving node, but the content
of its malicious messages is filled with the IDs of other malicious
nodes in the system. In addition, the ts for each ID is manipulated
to ensure that it will not be dropped by a neighbor. This behavior
is perfectly valid from a PSS point of view, as the only mandatory
constraint is that cache entries be distinct. Surprisingly, this intrin-
sic weak integrity constraint complies to reality; in real-world P2P
file-sharing systems (see [9,10,13]), when a peer receives an adver-
tisement for an item, it does not usually verify its validity. Another
kind of malicious cache attack have been proposed [7] but, in this
work, we restrict to this one; however, the presented SPSS approach
is also suited for this other cache attack.

In this paper, we consider a specific implementation of the PSS
called NEWSCAST. However, our approach is generic and imple-
mentation independent. NEWSCAST is a gossip-based topology man-
ager that builds and maintains a dynamic random graph. In this
protocol, a node randomly selects one of its neighbors in order to
subsequently exchange links from their respective caches. Note
that such an exchange implies that (usually) the neighbor set of
each node changes. Details can be found in [6].

3. PROBLEM AND SOLUTION
GUIDELINES

The effect of gossiping malicious information is to mutate the
randomly organized PSS overlay into a network having a com-
pletely different kind of organization that suits the attackers’ aim.
Our goal is to preserve the original organization of the PSS to avoid
severe performance issues or the disruption of the overlay.

The main challenge is represented by the exponential growth of
the infection which leads to a situation where each well-behaving
node ends up with no neighbors other than the attackers. As a con-
sequence, when a node is infected, it has no way to recover, espe-
cially in a fully distributed environment where there are no trusted
parties to ask for help [8]. What is worse, is that just a single gossip
exchange (initiated by a malicious node) may be sufficient to fully
pollute a node’s cache.

The basic idea and the main contribution of this work is to fit the
PSS into a higher level framework which allows to: (a) play a PSS
implementation as usual and (b) monitor the overlay and react to
structure changes when required. The key point is that the presence
of the new framework is transparent to the PSS and there is no way
for a node to know how the information provided will be used by
a receiving neighbor. In fact, a stochastic proportion of the gossip
interactions could just be “explorative", while the others lead to
standard PSS interactions. The task of the exploration is two-fold:
on one hand it builds a particular sample of the current neighbor’s
surroundings, while on the other hand it collects node IDs that may
become useful if and when the PSS cache becomes polluted by the
spreading infection.

As there is no way to detect if a neighbor has actually played the
PSS or not, this behavior generates a dilemma that could tremen-
dously limit the attacker’s power. As the attackers aim to mutate
the overlay organization, they have to artificially promote them-

forever do
PSS_done ← FALSE
size ← [0 ... degree()]
rndNSet ← RNDNEIGHBORSUBSET(size)
wait(∆t)
∀ neighbor ∈ rndNSet do
SENDSTATE(neighbor)
n_state ← RECEIVESTATE()
with prob. 1

size et !PSS_done do
if CHECKIDS(n_state) do
PSS_done ← TRUE
apply PSS update.

otherwise GETSTATISTICS(n_state)
RECOVERSTATE()

forever do
n_state ← RECEIVESTATE()
SENDSTATE(n_state.sender)
if CHECKIDS(n_state) do
apply PSS update.

RECOVERSTATE()

(a) Active Thread (b) Passive Thread

Figure 2: SPSS pseudo-code algorithm.

selves by aggressively diffusing their IDs and they cannot hide this
behavior.

Monitoring the overlay requires collecting statistics about the
overlay structure, therefore a suitable property must be identified;
this property has to be selected according to the particular nature of
the overlay we address - random nature, in our case. The nature of
the property we choose and the way we check it are the key points
of our solution (see [10]).

For our solution we draw inspiration from social network anal-
ysis (SNA) and in particular we consider the notion of prestige of
nodes in a directed network, where the nodes that receive more
positive choices are considered prestigious [4]. In SNA, prestige is
expressed as a particular pattern of social links. We adopt a (sim-
ple) technique to compute the structural prestige of a node in terms
of popularity (or in-degree). The information about a node’s in-
degree is collected during a gossip exchange among neighbors, by
looking at each entry in the received caches.

Since the network should be random, we expect that the average
value of popularity is almost the same for each node. Detecting a
node showing a popularity value far grater than the average means
that it could represent a network hub. Each node builds its own
knowledge about its surroundings and it does not share this infor-
mation with its neighbors [10].

While in a firm’s social context prestige is a desirable status
(e.g., usually associated with higher respect, responsibilities and
income), in our particular environment the prestige feature is an
undesirable property. In a random overlay, the “egalitarian" nature
of a P2P system is even more emphasized as it includes the homo-
geneity in terms of structural network position.

4. PRESTIGE-BASED SPSS ALGORITHM
As the main problem in preventing the hub attack is the exponen-

tial speed of infection, the main challenge is to let each node build
a suitable knowledge base (KB) to possibly recover its local cache.
Another SPSS approach [8] was based on building a KB according
to a quality rate performed at each exchange. In such an approach,
during each gossip, a node collects information regarding a single
neighbor; it is a slow process mitigated by the fact that the proba-
bility of the actual state update is proportional to the quality value.

The approach we propose in this work can build a suitable KB in
a much faster manner. In the following, we distinguish two distinct
aspects:

Dilemma mechanism: Figure 2 shows the prestige-based SPSS
algorithm using a pseudo-code language. The first important dif-
ference compared to the prototypical gossip scheme (see [3]) is
the absence of the SELECTPEER() function which selects a ran-
dom peer from the local cache. Here instead, a node can gossip
with multiple neighbors in the same time unit (cycle); a sub-set
of random neighbors, rndNSet, is selected from the cache by the
RNDNEIGHBORSUBSET() function. This feature is similar to

the behavior of cellular automata, which in turn can be considered
as gossip systems as well [3]. In normal conditions - i.e., when
the number of attackers is equal to the cache size (k = c) - just two
gossips per cycle are sufficient to prevent the hub attack as, on av-
erage, one gossip cycle is dedicated to the PSS interaction and the
other collects statistics about the overlay organization. The process
of detecting the network organization is faster than the diffusion of
malicious IDs.

Regardless of the number of neighbors selected by RNDNEIGH-
BORSUBSET(), the PSS state update policy can be executed only
once (by the active thread) and with a probability of 1

rndNSet.size() .
The interactions with the other neighbors on the other hand, are
used to collect prestige related information about the node’s neigh-
borhood. The presence of the 1

rndNSet.size() probability is the rea-
son why a single gossip is not sufficient to prevent the attack, as it
would disable both the dilemma and prestige mechanisms.

The proposed mechanism produces the dilemma in which a po-
tentially malicious node A never knows how another neighbor B is
going to use the information the malicious node provided. In fact,
the more they pollute, serving malicious IDs during the exchanges,
the more is the possibility of appearing as “suspect" in terms of
popularity (prestige).

Prestige mechanism: The information collected during the gos-
sip exchanges is used to build the KB required to detect with good
accuracy the malicious nodes and to eventually repair the node’s
cache when it becomes polluted by the presence of malicious IDs.
A table structure - the Prestige Table (PTABLE) - holds the follow-
ing kind of tuple: [node ID, #hits, TTL], where each node ID
detected is associated to a frequency value (#hits) and to a time-
to-live (TTL) value expressing the time validity of the table entry.
Essentially, each node explores its neighborhood and collects data
about the popularity (or frequency expressed in #hits) with which
the same node ID has been reported by the received caches. In just
a single gossip, each node can collect a number of items equal to
the current cache size (c items). Though we do not pose any size re-
striction to the PTABLE, which can hence eventually grow up to the
size of the network; this is very unlikely, as the entries are purged
according to an aging policy, which decrements by 1 each entry’s
TTL at each cycle. An entry’s TTL value is incremented (by 1)
each time the same entry is detected.

As the attackers tend to acquire a network centric position, their
prestige is likely to dominate over the other node’s entries and its
value will be far more than the average node’s prestige. According
to this simple idea, the PTABLE object maintains the average hits
value: #hitsavg; this value is used as a threshold to distinguish be-
tween potential attackers (i.e., #hitsA ≥ #hitsavg for a node A) and
well-behaving nodes. When an entry expires (i.e., TTL=0), its ID
is collected in a WHITELIST, as it can be (with high probability)
considered a well-behaving node. If the same ID is detected in a
neighbor’s cache in a subsequent gossip, it is not removed from the
WHITELIST until its #hits value has eventually reached the PTABLE

#hitsavg value. These calculations and the management of the KB
are handled by the GETSTATISTICS() function.

Any well-behaving node could play the PSS with an attacker that
has not been detected yet, as its KB is not established enough or is
even empty. The risk of having the cache polluted is always present
and therefore a method to recover the node’s cache is required. In
Figure 2, the function RECOVERSTATE() represents this require-
ment. If the KB is not empty, it does not matter if not all the attack-
ers are known. In the average case, it is sufficient to have a set of
node IDs in the WHITELIST that are present in the PTABLE, but have
a lower #hits value than the #hitsavg value, or that are not present at
all in the PTABLE. When the KB is empty instead, the node’s cache

could be completely polluted by an attacker. This would happen
in the early stages of the protocol when a node has just joined the
overlay. The only chance to recover, from such scenario, is to be
contacted by another well-behaving and non polluted node. As the
overlay is pseudo-random, on average, this can happen quite often.

The function CHECKIDS() is designed to perform basic crypto-
graphic checks over the received IDs. The SPSS system requires
a central Certification Authority (CA) which is not part of the pro-
tocol, but is required to provide the nodes the credentials to join
the network. We cryptographically secure each ID structure using
[IDA, tscreation, tsexpiration,PKA,σ], where IDA is A’s ID, the ts are
time-stamps, PKA is A’s public key and σ is the digital signature on
the message.

5. EXPERIMENTAL EVALUATION

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300

A
vg

. p
ro

po
rt

io
n

of
 c

ac
he

 p
ol

lu
tio

n

Cycles

1 gossip
2 gossips

4 gossips
8 gossips

Figure 3: The avg. pollution level in the caches is shown over
time. Each plot represents a distinct number of gossips (i.e.,
1, 2, 4, 8 respectively); k = 20 = c malicious nodes are present.
Network size is 10000.

The prestige-based SPSS’s evaluation reported in this section has
the following goals: (a) how much time is required to achieve a
stable and tolerable proportion of pollution in the node’s cache and
how the number of gossips per cycles influence this performance,
(b) performance in a dynamic scenario and finally (c) compari-
son of the prestige-based SPSS with another fully distributed SPSS,
based on a different approach [8], in terms of performance in ex-
treme conditions. In the following evaluation, we consider that the
pollution level is “tolerable" if the overlay graph does not split into
clusters when the malicious nodes leave the network (see [8]). If
not stated otherwise, the hub attack is performed by a set of k col-
luding malicious nodes k = c = 20, where c is the cache size the
actual PSS implementation adopted (NEWSCAST). Due to the space
constraints, only the results for the 10000 nodes overlay scenario
will be reported, but the results are quite similar for smaller over-
lay sizes (e.g., 1000 and 5000 nodes).

Figure 3 shows the average pollution proportion in the node’s
caches. Each plot represents a protocol setup adopting a distinct
number of gossips: 1, 2, 4 and 8. In this scenario, the overlay
is static; in other words, we guarantee that during the life-span of
the experiments no nodes will leave or join the network for any
reason. When the nodes perform just a single gossip per cycle, the
prestige SPSS is indistinguishable from the ordinary PSS, where
no defense is available. Starting from the two gossips setup, the
situation changes dramatically. The average pollution drops to a
very low (and safe) 1-2%. Increasing the number of gossips further
to 4 or 8 has a very marginal benefit, if any. It was seen that the
communication cost, in terms of messages exchanged, grows much
faster than the achieved pollution suppression benefit and 2 gossips

are good enough to manage the attack.
In Figure 4, we consider the performance of the prestige-based

SPSS in a dynamic setup, where at each cycle a set of nodes leaves
the network and it is substituted by an equal amount of new nodes.
However, this process involves only the well-behaving participants,
while the malicious nodes are not affected and they pursue their
malicious intent for the whole duration of the experiment. Three
distinct churn rates are shown: 1%, 5% and 10% respectively. Two
gossips per cycle are adopted.

 0.001

 0.01

 0.1

 0 20 40 60 80 100

A
vg

. p
ro

po
rt

io
n

of
 c

ac
he

 p
ol

lu
tio

n

Cycles

1% churn 5% churn 10% churn

Figure 4: Dynamic scenario: the avg. pollution level is shown
over time according to distinct churn ratios. 2 gossips per cycle
and k = 20 malicious nodes are adopted. Network size is 10000.

It is interesting to see that the dynamism of the network actu-
ally helps the prestige mechanism to keep the cache pollution low.
While it may seem counter-intuitive, the reason of this behavior
is easily explained. As in the static scenario the attackers cannot
subvert the system, in addition to that, well-behaving nodes are
substituted at a constant rate and their caches are randomly initial-
ized, minimizing the chance of joining the network with a polluted
cache and neutralizing any previous success in polluting the previ-
ous ones. In fact, as the churn rate increases, the average pollution
in the system decreases proportionally.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SPSS(2) PSPSS(2) SPSS(8) PSPSS(8)

A
vg

. p
ro

po
rt

io
n

of
 c

ac
he

 p
ol

lu
tio

n

1% 2,5% 5% 10%

Figure 5: Comparison among the prestige based SPSS and dis-
tinct a SPSS approach. The size of the network is 10000 nodes.
The set of attackers is expressed as a percentage of the network
size: 1%, 2,5%, 5% and 10%. The thick horizontal line repre-
sents the maximum tolerable pollution level.

Figure 5 depicts an extreme attack scenario where the number
of malicious nodes k is expressed as a percentage of the overlay
size and it is much higher than the cache size c (k >> c); in par-
ticular, the percentages we selected are: 1%, 2,5%, 5% and 10%
of the overlay size. We compared the prestige-based (SPSS) with
another SPSS algorithm based on a different mechanism [8]. Each
bar for each cluster represents a distinct percentage of attackers in

the network. The thick horizontal line represents the maximum tol-
erable pollution level over which the overlay runs the risk of being
partitioned. To allow a fair comparison among the contenders, we
adopted respectively 2 and 8 gossips setup for the former, versus 2
and 8 overlays setup for the latter SPSS. Essentially, the prestige-
based SPSS can deal with the presence of a larger set of malicious
nodes and its effectiveness is not limited to the standard k = c case.
However, the extreme scenario shows the benefit given by multiple
gossips: the first setup (2 gossips) can just deal with 1% of attack-
ers, while the second one (8 gossips) can tolerate 5% of attackers.
The other SPSS instead always fails when k >> c.

The infection can spread to the whole network only if the cache
size c (and the number of explorative gossips) are too small com-
pared to the attacker’s population. Essentially, the attackers can
successfully behave in a malicious manner if their population is
sufficiently large, otherwise the more they pollute the more is the
possibility to be discovered. When the set of attackers is too large,
from a well-behaving node point of view, its overlay neighborhood
looks random: the malicious caches it receives are fabricated from
a large set of malicious IDs and they are effectively indistinguish-
able from a non malicious one without having a deeper knowledge
of the overlay structure.

The prestige-based approach is also effective when more sophis-
ticated malicious cache content (e.g., malicious node IDs are mixed
with crashed or non existent node IDs) is adopted. However, we
have not shown them in this work due to the space restrictions.

6. RELATED WORK
The previous SPSS approach [8], with which we made the com-

parison depicted in Figure 5, builds and manages distinct PSS over-
lays. By participating in multiple overlays, each node monitors the
received cache patterns coming from distinct sources. The emer-
gence of high frequency patterns may indicate the presence of the
attackers and may trigger a topology reconfiguration and may black-
list the potential attackers. Our novel approach instead, does not
need the extra overhead of maintaining multiple overlays, but each
node just monitors its neighborhood. However, monitoring and
playing the PSS is indistinguishable; this poses a dilemma for the
attackers: if they pollute with brute force they will be discovered
fast and with high probability; conversely, if they pollute more clev-
erly (e.g., at a lower rate) they will not be discovered, but they will
hardly accomplish their malicious task.

In [1], the authors presents a sampling membership algorithm
with which every node’s sample converges to a uniform sample and
can resists to the failure of a linear portion of the nodes. This ap-
proach defines and uses its own sampler algorithm, while we focus
on securing an already existent sampling service (i.e., the PSS).

In [14], the authors introduces a fully decentralized approach for
securing synthetic coordinate systems. They adopt a sort of social-
like, vote-based approach in which each coordinate tuple must be
checked by a (small) set of other nodes. For each node producing a
coordinate tuple, the set of nodes that have to check and eventually
approve that tuple is given by a hash function based on each node’s
unique identifier. The system is very resilient to attacks targeting
instabilities and inaccuracies to the underlying coordinate system.
However, this approach requires the presence of a DHT facility that
adds complexity and may become an extra source of issues (e.g.,
DHT attacks).

Social network principles (e.g., reciprocity and structural holes
[2]) are also adopted in JetStream [11] to optimize and build robust
gossip systems. The basic idea is to make a predictable neighbor
selection when gossiping to avoid unpredictable, excessive mes-
sage overhead. In addition, the traditional scalability and reliability

of gossip are maintained.

7. CONCLUSION
We have presented a novel SPSS mechanism which maintains

the underlying random overlay in the presence of malicious nodes
playing the hub attack. Our mechanism is based on a prestige-
based SNA technique. The comparison with another SPSS method
reveals the improved effectiveness of this approach when a larger
set of malicious nodes (k >> c) are involved in the attack.

8. REFERENCES
[1] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and

A. Shraer. Brahms: Byzantine resilient random membership
sampling. In PODC, June 2008.

[2] R. Burt. Structural Holes: The Social Structure of
Competition. Harvard University Press, 1992.

[3] P. Costa, V. Gramoli, M. Jelasity, G. P. Jesi, E. Le Merrer,
A. Montresor, and L. Querzoni. Exploring the
Interdisciplinary Connections of Gossip-based Systems.
Operating System Review, 41(5):51–60, October 2007.

[4] W. de Nooy, A. Mrvar, and V. Batagelj. Exploratory Social
Network Analysis with Pajek. Cambridge, 2005.

[5] N. Drost, E. Ogston, R. V. van Nieuwpoort, and H. E. Bal.
Arrg: real-world gossiping. In HPDC, pages 147–158, New
York, NY, USA, 2007. ACM.

[6] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. van Steen. Gossip-based peer sampling. ACM Trans.
Comput. Syst., 25(3):8, 2007.

[7] G. P. Jesi, D. Gavidia, C. Gamage, and M. van Steen. A
Secure Peer Sampling Service. UBLCS 2006-17, University
of Bologna, Dept. of Computer Science, May 2006.

[8] G. P. Jesi, D. Hales, and M. van Steen. Identifying Malicious
Peers Before it’s Too Late: A Decentralized Secure Peer
Sampling Service. In IEEE SASO, Boston, MA (USA), 2007.

[9] J. Liang, N. Naoumov, and K. Ross. The Index Poisoning
Attack in P2P File Sharing Systems. In INFOCOM 2006.

[10] S. J. Nielson, S. Crosby, and D. S. Wallach. A Taxonomy of
Rational Attacks. In IPTPS, LNCS. Springer, 2005.

[11] J. A. Patel, I. Gupta, and N. Contractor. JetStream:
Achieving predictable gossip dissemination by leveraging
social network principles. In NCA, Cambridge, MA, USA,
2006.

[12] T. Rowley, D. Bherens, and D. Krackhardt. Redundant
Governance Structures: an Analysis of Structural and
Relational Embeddedness in the Steel and Semiconductor
Industries. Strategic Management Journal, 21, 2002.

[13] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems. In Middleware, Nov. 2001.

[14] M. Sherr, B. T. Loo, and M. Blaze. Veracity: A fully
decentralized service for securing network coordinate
systems. In 7th International Workshop on Peer-to-Peer
Systems (IPTPS 2008), February 2008.

[15] S. Voulgaris, D. Gavidia, and M. van Steen. CYCLON:
Inexpensive Membership Management for Unstructured P2P
Overlays. J. Network Syst. Manage., 13(2), 2005.

[16] S. Wassermann and K. Faust. Social Network Analysis.
Cambridge University Press, 1994.

