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Abstract—We consider multi-resolution storage, a technique
for providing scalable adaptive data fidelity, necessary for many
applications of large wireless sensor networks (WSNs). Although
the previously proposed design of multi-resolution storage, based
on quad trees and geographic routing, is conceptually simple,
it exhibits inherent problems if applied to real-world WSNs.
To address these problems, we revisit some of the networking
assumptions and propose an alternative design that employs an
overlay combining area and landmark hierarchies. Simulations
and initial experiments with a prototype embedded implementa-
tion indicate that our solution can be scalable and can work on
real hardware, which motivates further research.

I. INTRODUCTION

Composed of tiny, low-power embedded devices, wireless
sensor networks (WSNs) enable continuous collection of data
from the surrounding environment. In many proposed applica-
tions, like habitat monitoring, precision agriculture, structural
monitoring, and asset tracking, such data collection involves
large numbers of nodes continuously sampling their sensors
and providing the obtained data samples for querying.

Such a large volume of data forces a trade-off between data
fidelity and system scalability. High fidelity requires the ability
to query the samples of every single sensor. Collecting such
samples in the common, centralized data-collection model
entails excessive multi-hop traffic, which essentially precludes
system scalability beyond tens of nodes [1]. Therefore, to
scale up, centralized systems often employ in-network tree-
based aggregation [2]. However, the data compression caused
by in-network aggregation to reduce the traffic volume ba-
sically precludes high fidelity: one can query the aggregate
sensor reading for the whole network, but not the readings of
individual sensors. Generally, the centralized data-collection
model can provide either high fidelity or scalability, but not
both of them simultaneously. This is inadequate for many of
the aforementioned application proposals.

A. Related Work and Motivation

To cope with this limitation by exploring the fidelity-
scalability trade-off, a concept of so-called multi-resolution
storage has been introduced [1], [3], [4]. Multi-resolution
storage provides scalable adaptive data fidelity by making
each sensor node participate in a distributed storage sys-
tem, effectively abandoning the centralized data-collection
model. The principal idea is that the network itself stores a
set of multi-resolution spatio-temporal aggregates of sensor

data. Nodes compute and maintain these aggregates along
a hierarchically decomposed, multi-level, recursive overlay,
optimized for efficient querying (see Fig. 1). Queries for such
data are issued in a drill-down manner (see Fig. 2). First,
they are processed on coarse, highly compressed aggregates
corresponding to larger spatio-temporal volumes. Then, the
obtained approximate result is used to focus on those regions
in the network that are most probable to contain the result
data set. This process continues recursively until an accurate
enough result is found at some level of the overlay. In this
way, the cost of processing a query is proportional to the
requested data fidelity. As a result, multi-resolution storage
facilitates scalability and simultaneously enables queries for
data of high fidelity, which makes it suitable for most of the
aforementioned large-scale WSN application proposals.

From the networking perspective, the two key components
in multi-resolution storage are: (1) the hierarchical recursive
overlay, which determines how the multi-resolution aggregates
are constructed, and (2) the accompanying point-to-point rout-
ing algorithm, which is responsible for delivering queries,
replies, and aggregates. In the proposals for multi-resolution
storage [1], [3], [4], these two components are a distributed
quad tree [5] and geographic routing [6], respectively.

Although conceptually simple, such a design poses inherent
problems when applied in real-world WSNs. The problems
stem mainly from a tension between low-power hardware
of sensor nodes and the consequences of using geographic
coordinates as the basis for the hierarchical overlay and point-
to-point routing. First, a quad tree and geographic routing
both implicitly assume that physical proximity of two nodes
implies connectivity between these nodes. However, due to the
short range of low-power sensor node radios, multipath effects,
and physical obstacles blocking radio signal, this assumption
often does not hold in practice [7], [8], [9]. In the testbed
used in our experiments, for instance, some nearby nodes
sharing an office room are unable to communicate, but they
are able to hear nodes in more distant offices [10]. As a
result, the planarization of the connectivity graph, adopted by
most geographic routing protocols to guarantee route existence
[6], must include special mechanisms that are expensive in
terms of energy and bandwidth [11], thus being of limited
applicability to resource-constrained sensor devices. Second,
geographic routing, either using planarization [6], [11] or other
techniques [12], cannot be easily ported to three dimensions.
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Fig. 1. Multi-resolution aggregation (source: Ganesan et al. [1]).

Consequently, the proposed multi-resolution storage cannot
be implemented for many applications, such as structural
monitoring or volumetric indoor networks. Finally, obtaining
geographic coordinates necessitates special hardware (e.g., a
GPS receiver) or localization algorithms. Again, these solu-
tions consume additional energy or bandwidth, introduce lo-
calization errors with disruptive effects on geographic routing
[11], and often cannot be applied in many environments, like
cities with skyscrapers, canyons, or underground parking lots.

B. Contributions and Roadmap

To address the above limitations, in this paper we revisit the
networking aspects of large-scale multi-resolution storage. We
observe that in real deployments although node proximity of-
ten does not imply connectivity, the reverse holds: connectivity
usually implies proximity. Based on this observation, we pro-
pose an alternative design of a multi-resolution storage system.
Our design abandons artificially imposed geographic coordi-
nates, and instead, uses a hierarchical overlay based on actual
physical internode connectivity, namely an overlay being a
combination of landmark [13] and area hierarchy [14]. We
present multi-resolution aggregation and drill-down queries
on this overlay and introduce a self-organizing algorithm for
bootstrapping and maintaining the overlay. Therefore, our
design not only combines various known concepts, but also
introduces new ideas and solutions for the occurring problems.
We evaluate our design through simulations and preliminary
experiments with a prototype embedded implementation.

The rest of the paper is organized as follows. We first
discuss our system in Section II. Then, in Section III, we
evaluate its performance. Finally, in Section IV we conclude
and set directions for future work.

II. SYSTEM OVERVIEW

Our solution is based on a recursive overlay in which sensor
nodes, depending on radio connectivity, are grouped into a
multi-level hierarchy of nested areas. We assume that the
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Fig. 2. Drill-down querying (source: Ganesan et al. [1]).

nodes constituting the overlay are immobile. This is a valid
assumption in the considered applications, such as habitat
monitoring, precision agriculture, structural monitoring, and
asset tracking, in which the main task of the nodes is to
monitor a given physical region. However, the connectivity and
the population of the nodes can change over time, for instance,
if a node runs out of battery power or a communication
obstacle emerges. Therefore, the protocol for maintaining the
overlay must be able to account for such changes.

Note that the static overlay nodes do not preclude mobile
clients. Handling client mobility, however, is beyond the scope
of this paper, and thus, the term node in the remainder of the
paper always refers to an immobile sensor node.

A. Hierarchical Naming

The overlay consists of multiple levels and is formed by
grouping connected nodes into areas at level 0, grouping such
areas into superareas at level 1, and so on at higher levels. To
enable reasonable granularity of multi-resolution aggregates
the number of levels should be at least logarithmic with
respect to the node population size [1], [3], [4]. Therefore,
the diameter of an area at level i (in terms of wireless hops)
should be a multiple of the diameter of an area at level i−1,
for instance, the diameter can double at each level.

The nodes and their areas/groups are labeled based on their
membership in the hierarchy. The labels are synthesized by the
hierarchy maintenance algorithm and enable scalable, efficient
routing. The labeling and routing provide multi-resolution
aggregation and drill-down querying.

An example of a recursive hierarchical overlay is shown in
Fig. 3a. Each node has a unique identifier and each group has
a dynamically appointed aggregator node. The label of a node
is composed by concatenating identifiers of the aggregator
nodes for the groups the node is member of at each level. For
instance, the label of node J is J.Q.P, because node J: at level
0, is its own aggregator (of singleton group G0

J), at level 1,
belongs to a group with aggregator Q (group G1

Q), and at level
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Fig. 3. Basic system concepts and principal operation.

2, belongs to a group with aggregator P (group G2
P). Likewise,

the label of node Q is Q.Q.P, while the label of node P is
P.P.P. In general, the label of a level-i aggregator node has the
identifier of this node at positions from 0 to i. Importantly, to
ensure that from a label of an individual node we can identify
the multi-resolution aggregates the node contributes to, the
group hierarchy is recursive, that is, each non-top-level group
is completely nested in precisely one higher-level group. This
implies that if the labels of two nodes are equal at level i, they
must also be equal at all levels above i.

B. Point-to-Point Routing

Based on its label, each node maintains a routing table that
enables hierarchical routing [14], [13], [15]. The structure of
the table allows for maintaining O(logN) rather than O(N)
entries, which ensures scalability and facilitates deployment on
memory-constrained sensor devices. The routing table consists
of rows corresponding to the hierarchy levels. The level-i row
of a node’s routing table contains pointers to the sibling groups
of the node’s level-i group. Consider the routing table of node
J.Q.P from Fig. 3a: row 0 contains entries for G0

H , G0
I , G0

N ,
G0

O, and G0
Q; row 1 contains entries for G1

E , G1
M , and G1

P; and
row 2 has no entries as no other level-2 group exists.

The routing is performed hierarchically by resolving longer
suffixes of the destination label [14], [13]. The organization
of the node routing tables guarantees that at each routing step,
every node finds the next-hop neighbor. In the example from
Fig. 3b, when routing to C.P.P, the level-2 element of the
destination label, P, already matches the level-2 element of the
present node’s label, J.Q.P. Hence, J.Q.P resolves the level-1
element from Q to P, by first routing toward group G1

P. As
soon as the message reaches a node in G1

P, node G.P.P in the
figure, this node resolves the level-0 element of the destination
label from G to C by routing toward G0

C. The pseudo-code of
the algorithm, which we omit for brevity, can be found, for
instance, in Appendix B of our technical report [16].

Note that although in our example the shortest path from
J.Q.P to C.P.P was used, due to keeping only O(logN) rather
than O(N) routing entries, the routes taken may not be optimal.
The path overhead was extensively studied in the past [14],
[13], and we also evaluate it in our experiments.

C. Multi-Resolution Aggregation and Drill-Down Queries

We use hierarchical naming and routing to provide multi-
resolution aggregation and drill-down queries. Multi-resolution
aggregation is performed similarly as when using geographic
coordinates (see Fig. 1). However, when computing the multi-
resolution aggregates, instead of a quad tree, our system
exploits the group hierarchy (see Fig. 3c). Likewise, instead
of geographic routing, hierarchical routing is used. For this
reason, no additional mechanisms, like geographic hashing or
periodic multi-hop beaconing, are necessary to allow a level-i
aggregator node to obtain the routing address of the parent
level-i+1 aggregator to whom the computed aggregates are
forwarded. To get the label of a parent level-i+1 aggregator,
a level-i aggregator node simply substitutes all elements at
levels [0 . . . i] of its label with the i+1-st element of its label.
For instance, the parent aggregator of node J.Q.P from Fig. 3
is a level-1 aggregator node, Q.Q.P; the parent aggregator of
node Q.Q.P, in turn, is a level-2 aggregator node, P.P.P.

Similarly, drill-down queries follow the same scheme as
with quad trees and geographic routing (see Fig. 2). Again, no
special mechanisms for obtaining the routing address of the
top-level aggregator are needed. All elements of the top-level
aggregator’s label are simply equal to the last label element
of any node. In Fig. 3, for instance, the top-level aggregator
is P.P.P. Since the hierarchical routing algorithm is point-to-
point, queries can be issued from any place in the network.
Thus, when augmented with some hand-off functionality, the
system can support mobile clients querying the static network.

D. Label and Route Maintenance

An important component in our design is the protocol for
maintaining the hierarchical overlay. Such a protocol must
be scalable and robust to failures and message loss, while
consuming little bandwidth. Scalability of the protocol is
important as it determines the scalability of the whole system.
For the same reason, the protocol must gracefully handle
node failures and message loss, which are inherent in WSN
deployments. Finally, low bandwidth utilization implies low
consumption of energy, the scarcest resource in WSNs.

The hierarchical overlay used in our system is a hybrid
of area [14] and landmark [13] hierarchies. From an area



hierarchy, it borrows the recursive nesting of areas. From a
landmark hierarchy, it borrows appointing nodes as landmarks
and aggregators. Therefore, to maintain such a hierarchy in
a scalable, robust, and energy-efficient manner, we devised a
custom protocol, PL-GOSSIP.

Due to space limitations, in this paper, we are unable to
present the details of PL-GOSSIP, and instead we give an
overview of its most important features. The detailed descrip-
tion of the protocol, its mathematical foundations, experimen-
tal evaluation, and comparison against existing solutions can
be found in an earlier paper [17] and a technical report [16].

PL-GOSSIP is based on asynchronous gossiping, which is
simple, robust to failures and message loss, and consumes little
bandwidth and energy [16], [17]. Asynchronous gossiping
makes PL-GOSSIP nodes operate in logical rounds. In every
round, each node broadcasts its state (the label, the routing
table, and additional consistency information) in a heartbeat
message. It also receives similar heartbeats from neighboring
nodes. The state of the neighbors, as received in their heart-
beats, is merged with the node’s own local state so that when
the node broadcasts its next heartbeat, other neighbors can also
update their state. In this way, information can be propagated
to any node in the system.

Such gossip-based information propagation through peri-
odic state merging is used to advertise hierarchy groups and
disseminate changes to the hierarchy membership. The goal
of group advertisements is to populate and maintain routing
tables. An advertisement of a group is always created at the
aggregator node of the group and added to the aggregator’s
routing table. When the aggregator broadcasts its heartbeat,
the aggregator’s neighbors can add the group advertisement to
their routing tables. When they broadcast their heartbeats, their
neighbors can update their routing tables as well, and so on.
In the end, all members of a supergroup containing the group
will record the advertisement for the group, which ensures that
the node’s routing tables are correct. Similarly, any change to
the membership of the group in the hierarchy is performed by
the aggregator node, which updates its label locally to reflect
the change. When the aggregator broadcasts its heartbeat, its
neighbors also update their labels to adopt the membership
change, and so on. To enable consistent label update adoption
in the presence of failures, we introduced a special consistency
mechanism: update vectors [16], [17]. The details of update
vectors, however, are beyond the scope of this paper.

Appointing nodes as aggregators is done in a bottom-up
fashion using probabilistic election heuristics and exploiting
the round-based pattern of gossiping. Initially, each node is
a level-0 aggregator node and belongs to its own singleton
level-0 group. When an aggregator node discovers that there
exists another group at the same or a higher level, it has
to either spawn its own higher-level group or join its group
to the higher-level group of the other aggregator. To ensure
that there exists only a single top-level group, the aggregators
must be prevented from spawning their higher-level groups
simultaneously. To this end, an aggregator probabilistically
defers spawning its group. In this way, only a fraction of

aggregators spawn higher-level groups and other aggregators
join their groups to those groups, so that the number of groups
at consecutive levels decreases exponentially. The details of
this mechanism can be found in our technical report [16].

The usage of asynchronous gossiping differentiates
PL-GOSSIP from other related protocols for maintaining hier-
archical overlays [18], [19], [20], [21]. The round-based com-
munication minimizes energy and bandwidth consumption:
broadcasting one message per round (e.g., every 5 minutes)
generates little traffic, which in addition can be efficiently
scheduled by the MAC layer to save energy. Moreover, since
the heartbeat-based state exchange is asynchronous and the
only means of coordination is the local round-based pattern,
the algorithm tolerates message loss and handles node failures
without all the drawbacks of synchronous communication
in the presence of faults (e.g., timeout setting, acknowledg-
ments, retransmissions). For these reasons, PL-GOSSIP can
outperform the existing state-of-the-art hierarchy maintenance
protocols [17], and thus is a reasonable choice for our system.

III. EXPERIMENTAL RESULTS

The previously proposed design of multi-resolution stor-
age, based on quad trees and geographic routing, has been
evaluated by emulation using data traces obtained from real
deployments. The main objective of those results was showing
that multi-resolution storage is well suited for many of the
proposed large-scale WSN applications. To avoid repeating the
experiments and because the query patterns and data-collection
requirements vary between applications, in our evaluation
we focus on application-independent aspects of hierarchy-
based multi-resolution storage. Moreover, in contrast to past
work, we present a summary of some preliminary small-
scale implementation-based experiments involving solely the
hierarchy maintenance algorithm. In this way, our results
complement prior work.

A. Simulation Environment

To evaluate various design decisions when prototyping our
system, we used a custom high-level event-driven simulator
that we had developed. The simulator allows for working with
very large networks, repeating experiments multiple times, and
isolating impact of various phenomena on the system behavior,
thus being a perfect tool at the early development stage of our
project. The simulator resembles other high-level simulators
for WSNs (e.g., [12]) in that it makes the following common
assumptions: a fixed circular node radio range, no network
congestion, and pessimistically fixed message loss for all links.

We have two reasons to suppose that the assumptions
made by the simulator will not necessarily impair real-world
operation of the system. First, the hierarchy is based solely
on physical links and the measured link quality, and thus,
no implicit assumptions on connectivity or message loss of
nearby nodes are made. Second, the bandwidth for hierar-
chy maintenance is small and the bandwidth for aggregation
and queries can be tuned to application requirements, which
facilitates preventing congestion. We acknowledge, however,
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that only real-world evaluation of a system prototype could
ultimately verify these hypotheses.

The simulations were conducted with various network con-
figurations: message loss rates from 1% to 20%, node popu-
lation increasing exponentially from 1 to 4096, node density
varying from ∼ 12 to ∼ 80 neighbors per node, and topologies
like grids, uniform deployments, and random distributions. As
the results were consistent in all cases, due to lack of space, we
present only a tiny albeit illustrative subset of the experiments.
In these experiments, nodes formed a square grid with at least
5 (corners) and at most 12 (center) neighbors per node. All
nodes were booted simultaneously in round 0 and operated
long enough to enable assessment of the interesting metrics.

B. Simulation Results

Fig. 4 presents the results for different network sizes. Fig. 4a
and Fig. 4b confirm that the hierarchy height and the routing
table size both grow logarithmically with the number of nodes.
This is crucial for the overall system scalability, as a short
hierarchy minimizes costs of multi-resolution aggregation and
drill-down queries while small routing tables facilitate the
implementation for resource-constrained sensors.

The time to bootstrap the hierarchy (Fig. 4c) is also short,
considering that it depends on the network diameter, and
thus, grows exponentially with the exponentially growing
node population. For instance, for a 1024-node network with
diameter 32, the hierarchy is formed within 38.4 rounds
on average and at most 70 rounds in 95% of the cases.
With 5-minute PL-GOSSIP rounds, we need 3.2 hours on
average and at most 5.8 hours in 95% of the cases. This
is insignificant compared to the expected network lifetime of
several weeks or even months, achievable with such extremely
sparing communication. Simultaneous node boot, as in the
experiments, is also a pessimistic scenario, as the group hierar-
chy must be constructed from scratch. Normally, deployments

are incremental, in which case the hierarchy is ready almost
immediately after the last node has been deployed.

The performance of drill-down queries depends mostly on
the quality of point-to-point routing. This is measured using
a standard metric, the hop stretch: the ratio of hop-length of
the route between two nodes to the hop-length of the shortest
path in the radio connectivity graph. Fig. 4d shows that the
hop stretch is small. Although those results are not directly
comparable, protocols for geographic routing report worse [6],
[11] or similar [12] hop-stretch values, which supports the
claim that our design is an attractive alternative to the multi-
resolution storage based on quad trees and geographic routing.

Because the size of a raw sensor reading, the size of an
aggregate, and the sensor sampling frequency vary between
applications, we measure the cost of multi-resolution aggre-
gation in the number of messages necessary to create a full
multi-resolution snapshot of the system that involves readings
from all sensors. This metric is further motivated by the fact
that in WSNs, for the message sizes required by most of the
applications, setting up a message transmission is orders of
magnitude more costly (in terms of latency and energy) than
the actual data transmission. Fig. 4e compares this cost for our
solution with the corresponding costs of optimal centralized
approaches supporting low and high data fidelity, that is,
with and without in-network aggregation, respectively. To
achieve high fidelity, the optimal centralized approach (without
aggregation) requires a prohibitive amount of messages, which
indeed precludes scalability beyond tens of nodes. In contrast,
our approach provides scalable adaptive data fidelity with
only small overhead as compared to the optimal centralized
approach supporting solely low data fidelity (see Fig. 4f).

Finally, the bandwidth used for hierarchy maintenance is
also low and scales logarithmically with the node population
(see Fig. 4g). With the aforementioned 5-minute PL-GOSSIP
rounds, for instance, every node in a 1024-node network
generates less than 6 bits per second of outgoing traffic, which



is almost nothing for 250-kbps radios of sensor nodes.
While the above results confirm scalability of our solution

in a static network, long-term operation of a system entails
some changes in the topology and node population. To test
if our design can handle such changes, we conducted some
experiments in which the network was constantly changing,
for instance, due to node churn. Because of space constraints,
the details and the results of these experiments can be found
in our technical report [16].

C. Summary of Implementation-Based Experiments
We have also conducted preliminary implementation-based

experiments, but solely with the prototype of the hierarchy
maintenance protocol, PL-GOSSIP. The experiments were run
in TOSSIM, a low-level simulator for the TinyOS sensor node
operating system, and on our indoor testbed [10], consisting
of 50+ TelosB wireless sensor nodes spread across six office
rooms. The objective of these experiments was demonstrating
that our hierarchy maintenance protocol, one of the most
crucial and complex elements in our system, can operate in
realistic settings on real, resource-constrained hardware. In
addition, we wanted to compare it against alternative solutions.

The results of these experiments are a subject of a separate
paper [17]. In short, due to a lack of hidden assumptions,
real-world operation of PL-GOSSIP does not deviate signif-
icantly from the simulations discussed above. The protocol
quickly bootstraps the hierarchy and recovers it after failures.
Moreover, to achieve this, it uses less energy than the existing
alternative state-of-the-art protocols. These results give good
prospects for successful real-world deployment of a complete
multi-resolution storage system that follows the design pre-
sented in this paper.

IV. DISCUSSION AND FUTURE WORK

We proposed an alternative design of multi-resolution stor-
age for wireless sensor networks, which employs an overlay
that is a combination of area and landmark hierarchies. We
explained how to perform multi-resolution aggregation and
drill-down queries on this overlay and introduced a protocol
for efficient maintenance of the overlay. Through simulations,
we showed that our solution can be scalable and robust. In
addition, through preliminary experiments with a prototype
implementation, we demonstrated that our hierarchy can be
efficiently maintained on real WSN hardware.

Although these preliminary results are encouraging, much
more experimentation is necessary to verify if the proposed
design is truly practical. While we showed that we can effi-
ciently maintain the area hierarchy in the real world, it is not
yet clear if the hierarchy-based multi-resolution aggregation
and drill-down queries can also be seamlessly ported from
the controlled simulation environment to the unpredictable,
hard reality. To this end, a complete system prototype must be
implemented. Moreover, the experiments with the prototype
must be conducted with networks much larger than 50 nodes.
Otherwise, there are no benefits of multi-resolution storage, as
a simple centralized solution can probably perform better.

Finally, since multi-resolution storage displays its advan-
tages only in large networks, it is necessary to closer ex-
amine the requirements of the potential applications of such
networks. This would verify if, from the economic perspec-
tive, multi-resolution storage is the best available solution.
Nevertheless, irrespective of whether our design finds its way
to a production stage or remains an academic exercise, the
problems it introduces constitute an exciting research agenda.
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