
Collaborative Filtering Using Random Neighbours in
Peer-to-Peer Networks

Arno Bakker
Department of Computer

Science
Vrije Universiteit

De Boelelaan 1081a
Amsterdam, The Netherlands

arno@cs.vu.nl

Elth Ogston
Department of Computer

Science
University of Warwick

Coventry CV4 7AL, United
Kingdom

elth@dcs.warwick.ac.uk

Maarten van Steen
Department of Computer

Science
Vrije Universiteit

De Boelelaan 1081a
Amsterdam, The Netherlands

steen@cs.vu.nl

ABSTRACT
Traditionally, collaborative filtering (CF) algorithms used
for recommendation operate on complete knowledge. This
makes these algorithms hard to employ in a decentralized
context where not all users’ ratings can be available at all
locations. In this paper we investigate how the well-known
neighbourhood-based CF algorithm by Herlocker et al. [5]
operates on partial knowledge; that is, how many similar
users does the algorithm actually need to produce good rec-
ommendations for a given user, and how similar must those
users be. We show for the popular MovieLens 1,000,000 and
Jester datasets that sufficiently good recommendations can
be made based on the ratings of a neighbourhood consisting
of a relatively small number of randomly selected users.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness); H.3.4 [Information Storage and Retrieval]:
Systems and Software—Distributed systems

General Terms
Algorithms, Performance, Measurement

Keywords
Collaborative Filtering, Peer-to-Peer Networking, Recom-
mender Systems, Metrics

1. INTRODUCTION
In the near future, every home will have a personal video

recorder (PVR) connected to IP(TV)-based networks that
will give its users access to more content than ever before.
The overwhelming number of movies, shows and clips creates

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CNIKM ’09 Hongkong, China
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the need for a recommendation system that helps the user
to decide what to watch. For scalability to hundreds of mil-
lions of users, this recommendation system should preferably
run autonomously on the network of PVRs. However, tra-
ditionally, collaborative filtering (CF) algorithms [13] used
for recommendation operate on complete knowledge, that
is, they assume the ratings of all users are known in one
location. This makes these algorithms hard to employ in
the decentralized PVR context. Due to the size and cost of
distributing this information, not all users’ ratings can be
available on all devices. Hence, in this paper we investigate
how CF algorithms operate on partial knowledge; that is,
how many similar users does an algorithm actually need to
produce good recommendations for a given user, and how
similar must those users be. In particular, we study a well-
known neighbourhood-based CF algorithm by Herlocker et
al. [5]. Here we present only our major results, our full
investigation on CF using partial knowledge can be found
in [1].

The main contribution of this paper is to show for the
well-known MovieLens 1,000,000 and Jester datasets [17, 4]
that the CF algorithm can make sufficiently good recom-
mendations based on the ratings of a neighbourhood con-
sisting of a relatively small number of random users. We
believe this to be an important result, as it implies that de-
centralized recommendation can be implemented using very
light-weight peer-discovery protocols, rather than complex
protocols that attempt to find the best-matching neighbours
in the network. We showed this earlier for the MovieLens
100,000 data set [9].

The remainder of the paper is organized as follows. In
Sec. 2 we present our system model and methodology. Sec-
tion 3 describes our experiments studying the effects of the
number and type of users on recommendation quality for the
MovieLens 1,000,000 dataset. The Jester dataset is analysed
in Sec. 4. We present related work in Sec. 5 and conclusions
in Sec. 6.

2. SYSTEM MODEL AND METHODOLOGY
At an abstract level the problem of collaborative filtering

considers a set of N users, U = {u1, . . . , uN} and a set of
M items X = {x1, . . . , xM}. Each user provides ratings,
taken from a set of possible values, V , the rating scale, for
a subset of the items in X. These ratings form an N ×M
user-item matrix, R, where the entry ri,j is the rating of

user ui for item xj , or empty if that rating is unknown. The
basic recommendation task is to predict a rating value for a
given empty element ri,j based on the known values in R.
This is done by means of a prediction function, f , where
f(R, i, j) 7→ V .

In our system model each user has a personal networked
video recorder by which he or she rates content. These per-
sonal devices can exchange gathered ratings with the devices
of other users via the network, and use them to make per-
sonal predictions to their respective users. As the network
grows, it becomes infeasible to distribute all ratings, i.e. the
full matrix R, to all recorders. The prediction function f in
the video recorder for user ui must therefore base its pre-
dictions on a submatrix of R denoted Ri. In this paper,
this submatrix Ri will consist of ui’s own ratings and the
ratings of a specific set of c other users he received ratings
from, called ui’s peer group. We refer to a PVR storing a
particular user’s ratings as a node in the system.

As prediction function f we use a function that was de-
signed by Herlocker et al. [5, 11] to optimize user-based pre-
diction accuracy, which we refer to as f1. The f1 function
creates a prediction for a new item xj for user ui as follows.
It first selects from the submatrix Ri supplied by the peer
group the ratings of the z users most similar to ui that have
rated item xj . Note that these z users may not be the Top-z
most similar users, as some of those may not have rated xj .
f1 then determines the relative importance of the ratings
chosen by assigning weights to the selected input ratings,
based on user similarity. To calculate the similarity between
users ui and uk it uses Pearson’s correlation using signifi-
cance weighting [5], denoted di,k. The significance weight-
ing is controlled by two parameters, minCommonItems and
maxCommonItems. Finally, from the weighted input it cal-
culates a new prediction ri,j for the given user and item.

There are three things to observe in this model. First,
there are two mechanisms for selecting which users’ ratings
are used in the prediction. The mechanism that constructs
the peer group, which we call network user preselection and
the selection of users from the submatrix Ri by prediction
function f , which we call local user selection. We are partic-
ularly interested in the relative importance of these mech-
anisms: (1) how many users must the network user pres-
election select and how similar must they be, and (2) can
the local user selection perhaps compensate for less strict
network preselection?

The reason we are interested is because there are differ-
ent costs associated with each mechanism. To construct a
peer group that consists of the most similar users, a network
protocol needs to be run that discovers these peers in the
network of video recorders, and it needs to be run contin-
uously to accommodate for changes in a user’s taste. Such
a protocol has high complexity in terms of the network re-
sources (bandwidth, number of messages exchanged) used.
If local user selection, which itself has zero cost in terms
of network resources, is effective, it may be possible to run
a less complex protocol to construct the peer group. We
will show that this is indeed the case, and sufficiently good
quality recommendations can be made with less strict re-
quirements on the peer group.

The second observation to make is that in this model the
quality of the predictions made depends on three factors.
First, the size and, second, the composition of the user’s
peer group, as these determine the content of submatrix Ri.

Thirdly, the quality depends on the prediction function f
that is used, and how it selects and aggregates the informa-
tion in Ri into a new prediction. The prediction function
is fixed at f1 in this paper, and we will focus on the two
remaining factors which represent the amount and type of
partial knowledge required for good recommendations, re-
spectively.

Finally, note that peer-group size c and the parameter
z that selects the number of similar users that rated the
item xj are related. If there are c < z peers in the peer
group, f1 cannot select the desired number of neighbours.
If c > z, the f1 function will select at most z users from
the peer group. However, this selection is not necessarily
the Top-z most similar users in the group because some of
the most similar users may have not rated the item. Hence,
the recommendation process benefits from considering c > z
peers. The benefit ends once c is large enough such that f1
will find z similar users that rated the item (or whichever is
the maximum number of suitable raters that exist given ui

and xj).

Methodology
To test the influence of the size and composition factors
and the effects of the two mechanisms for user selection we
organize the nodes into a virtual peer-to-peer overlay. Each
node (PVR) is linked to a set of c other nodes via the peer
group. We assume neighbourhood links are uni-directional,
implying that a user can have only c neighbours in its peer
group, but he or she can appear in the peer group of more
than c other nodes.

In addition to varying the peer-group size c, we consider
two contrasting peer-to-peer overlay topologies. In the first
topology, the random overlay, the peer group consists of
randomly selected nodes. In the second topology, the best-
neighbours overlay, the peer group consists of the users to
which the user is most similar, given the similarity func-
tion di,k that compares the users’ past ratings. Given that
ratings from similar users should provide the best quality
recommendations, these two topologies, that is, methods
of network user preselection, represent a sub-optimal and
a best-case scenario, respectively.

In the past, decentralized recommendation systems have
constructed this best-neighbours overlay in various ways [3,
16, 10, 2, 12, 7, 14]. Generalizing, the nodes exchange their
rating data and compute the similarity to the other peers
using a similarity function. By remembering the best can-
didates so far, while continuing to exchange past ratings
with other peers, it has been shown that each node will
eventually fill its peer group with the nodes most similar
to it. Our main point for this paper is that, in general,
discovering these similar peers, in whatever way, is more ex-
pensive in terms of network usage than just finding some
random peers. Hence, the best-neighbour overlay represents
the heavy-weight solution that should be avoided and the
random overlay the light-weight solution that is to be pre-
ferred.

In summary, in our model, computing a prediction ri,j

consists of the following steps:

1. Construct an overlay that connects each node ui to its
peer group of c users; either random users or the users
most similar to ui according to di,k.

2. Create matrix Ri from connected peer group’s ratings.

3. From Ri, select the set K (|K| ≤ z) of users most
similar to ui that (a) have rated xj and that (b) have
rated at least minCommonItems of the same items.

4. Subsequently calculate the prediction using Herlocker
et al.’s formulae (from [11]):

ri,j = r̄i +

P|K|
k=1(rk,j − r̄k) · di,kPz

k=1 di,k
(1)

di,k = α ·
P|S|

s=1(ri,s − r̂i,S)(rk,s − r̂k,S)P|S|
s=1(ri,s − r̂i,S)2(rk,s − r̂k,S)2

(2)

S = Xi∩Xk; the set of items rated by both ui and uk

(3)

α =

8<:
|S|

maxCommonItems
if |S| < maxCommonItems;

1 otherwise.

(4)

r̄i = average rating of ui over all items he rated (5)

r̂i,S = average rating of ui over all items in S (6)

3. MOVIELENS 1 MILLION EXPERIMENTS
In this section we analyse the MovieLens 1 million ratings

dataset (ML1M) [17]. It consists of 1,000,209 ratings on
a scale of 1 to 5 stars of 3593 movies by 6040 users. For
evaluating the performance we partition this data into a
training set and a test set. We use the same procedure
as was used to create the ua training and test sets for the
smaller MovieLens 100,000 (ML100K) dataset [11]. This is
to ensure that these experiments are comparable to the ones
we did earlier with this smaller dataset, described in [9].

This means the test set consists of 10 randomly chosen
movies per user. The resulting remaining training set forms
the matrix R, constituting the users’ ratings used to popu-
late the nodes in the overlay. Because ML1M has a different
number of users, the procedure leads to a division where 94%
of the ratings is used for training and just 6% for testing,
as opposed to 90%, respectively, 10% for the ua division of
ML100K. As a result, the outcomes in this section may be
biased towards best-neighbours overlays, as more informa-
tion is available about users.

Each experiment consists of constructing the two peer-to-
peer overlays for a given peer-group size c using the training
set. Each node will then attempt to predict the rating its
user ui would give to the 10 withheld items based on its Ri

matrix. The resulting predictions are compared to the 60400
actual ratings in the test set using (initially) the mean abso-
lute error (MAE) metric [15]. Associated with MAE is the
coverage metric which measures what fraction of the predic-
tions attempted actually returned a result. Predictions for
user ui and movie xj may fail because, for example, none of
the user’s neighbours actually rated xj .

The different parameters of the similarity function di,k

and prediction function f1 for all experiments are set follow-
ing Herlocker et al.’s conclusions [5] for the MovieLens 100K
dataset, which we confirmed. Using these parameters again

allows comparison with our earlier work. We set the signifi-
cance weighting parameters of di,k to minCommonItems=2
and maxCommonItems=100. Negative correlations are not
considered. For the parameter z, the number of users to
select using local user selection, we use 60. These parame-
ters resulted in the lowest MAE for the MovieLens 100K ua

sets when using complete knowledge. The experiments are
conducted using the CoFE collaborative filtering engine [11].

Figure 1(a) shows the MAE performance of f1 on a best-
neighbours and random overlay on the ML1M dataset. In
general, the random overlay performs worse than the best-
neighbours one. The reason is that with a random overlay, f1
bases predictions only on the more similar users in the ran-
dom input set, i.e., uses only local user selection. For small
group sizes this results in very little data with which to make
predictions, but it is very effective for larger group sizes.
Doing network user preselection by using a best-neighbours
overlay provides f1 with higher quality input thus improving
recommendation, especially for smaller groups.

Looking in more detail, however, several important ob-
servations can be made. The first observation to make is
that knowing the ratings of 3% of the user population yields
practically the same results as knowing the whole popula-
tion. In particular, the performance of both overlays for a
group size of 200 is at most 0.05 stars worse on average than
with the maximum group size of 6039.

The second (even more significant) observation is that the
difference between using a best-neighbours overlay and a
random overlay is also very small for small group sizes. The
absolute MAE difference between 200 best or random neigh-
bours is just 0.04 stars. In other words, selecting the 200
best out of 6039 candidates or 200 random ones has little
influence on prediction quality.

These surprising results are not due to low coverage. MAE
is calculated over just the made predictions, which would
benefit an algorithm that made just a few, but correct pre-
dictions. However, coverage is good at 90% or more for
group sizes over 100 for all algorithms, as shown in Fig. 1(b).
This behavior is also not explained by the value of the pa-
rameter z in these experiments. As in the ML100K experi-
ments, z was set to 60, which means that even when group
sizes are large, the algorithm will use the opinion of just 60
users. This parameter could therefore prohibit performance
improvements at larger group sizes. This is not the case,
however, as rerunning the experiment with z = 120 and
up to 1000 peers gave hardly any improvement in terms of
MAE, or precision and recall, as described in [1].

So the MAE results indicate that even relatively small
groups of randomly chosen neighbours produce sufficiently
good recommendations. In other words, it appears that local
user selection from a small random sample of the user popu-
lation are a match for network user preselection, as already
shown for the smaller ML100K dataset in [9].

Unfortunately, the MAE metric has several problems [6].
First, small differences in MAE can indicate huge differences
in recommendation quality. Second, it considers errors in
any part of the ratings scale to be equal. However, errors
at the extremes of the scale are more important than er-
rors elsewhere, as users are “most interested in suggestions
of items they would love or hate, not of items about which
they would be ambivalent” [15]. To more accurately measure
how the different overlays affect the quality of recommenda-
tion for these extremes we turn to the standard information-

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 100 1000 10000

m
a
e

number of peers

1m-f1-user-random
1m-f1-user-best

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

c
o
v
e
ra

g
e

Number of peers

1m-f1-user-random
1m-f1-user-best

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

p
re

c
is

io
n

number of peers

1m-f1-user-best-1star
1m-f1-user-best-2star
1m-f1-user-best-3star
1m-f1-user-best-4star
1m-f1-user-best-5star

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

re
c
a
ll

number of peers

1m-f1-user-best-1star
1m-f1-user-best-2star
1m-f1-user-best-3star
1m-f1-user-best-4star
1m-f1-user-best-5star

(c) (d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

p
re

c
is

io
n

number of peers

1m-f1-user-random-1star
1m-f1-user-random-2star
1m-f1-user-random-3star
1m-f1-user-random-4star
1m-f1-user-random-5star

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

re
c
a
ll

number of peers

1m-f1-user-random-1star
1m-f1-user-random-2star
1m-f1-user-random-3star
1m-f1-user-random-4star
1m-f1-user-random-5star

(e) (f)

Figure 1: Measurements for MovieLens 1,000,000 with z = 60. For random peers the values are averaged over
three runs. The vertical errorbars show the minimum and maximum value obtained in these three runs. The
x-axis is on a logarithmic scale. (a) Mean Absolute Error (note that the y-axis starts at 0.72) (b) Coverage
(note that the y-axis starts at 0.2) (c) The 1–5 star precision of f1 for differing numbers of similar peers. (d)
The associated 1–5 star recall. (e) The 1–5 star precision of f1 for differing numbers of random peers. (f)
The associated 1–5 star recall.

retrieval metrics precision and recall.

Visualizing Recommendation Behaviour
We employ the standard information-retrieval metrics preci-
sion and recall as follows. For the user-item pairs in the test
set, we separate the list of returned predictions P , accord-
ing to prediction value, into the sublists P1∗ , P2∗ , P3∗ , P4∗

and P5∗ . We also divide the actual ratings of the test set in
a similar manner into A1∗ , A2∗ , A3∗ , A4∗ and A5∗ . Thus,
P5∗ , for instance, contains all of the five-star predictions
(r∗ikjk

= 5) and A5∗ contains all the actual five-star ratings
in the test set (rikjk = 5). The user-item pairs (uik , xjk)
that correspond to the predictions and ratings in P5∗ and
A5∗ can be viewed as a selected-items set S5∗ and a relevant-
items set T5∗ , respectively, for the query “find all five-star
movies for each user”. This allows us to calculate precision
and recall per rating value. Note that precision and recall
are computed only over the predictions that could actually
be made.

We use these new metrics to analyze the performance of
the best-neighbours overlay in Fig. 1(c,d). As with MAE,
precision and recall values vary little beyond group sizes of
200 neighbours, only one-star precision still rises 3 percent-
age points. Figure 1(e,f) shows precision and recall for the
random overlay. Again there is little change as the group
sizes grow. The exceptions are one-star precision that con-
tinues to increase by 23 percentage points, and one-star re-
call that grows 10 percentage points.

Comparing the two overlays we see that they have similar
five-star precision. For the other extreme, one-star ratings,
the best-neighbours overlay yields better precision: 17 per-
centage points on average, at most 31 for a peer group of
20. It also has slightly better two and three star precision
(3 resp. 4 percentage points on average). Recall for the
five stars extreme is better, up to 12 percentage points and
8 percentage points on average. Recall for four stars is on
average 2 percentage points worse, at most 8 for the smallest
groups.

In sum, the best-neighbours overlay has the best recom-
mendation quality, especially at the extremes of the scale,
but the results for the random overlay are not consider-
ably worse, as MAE already indicated. And, as noted in
the beginning, the experiment may be biased towards best-
neighbours overlays. Hence, we conclude that using the rat-
ings from a small group of random users to make predictions
already leads to sufficiently good quality for this dataset.

4. JESTER EXPERIMENTS
The Jester dataset is the largest dataset we analysed and

consists of 4,136,360 ratings of 100 jokes by 73,421 users on a
continuous scale of -10 to 10 [4]. So apart from the domain,
this dataset differs in most aspects from the two MovieLens
datasets. First, the dataset is much less sparse, only 44% of
the user-item space is not rated, as opposed to approx. 95%
for MovieLens. Second, the number of items is much smaller
(100 vs. 1682 or 3593 for MovieLens). Third, the number of
users is much larger with 73,421 as opposed to 943 or 6040.
Finally, the rating scale is much more fine-grained than just
five discrete values [4]. We refer to Jester ratings as the
number of smiles assigned to a joke.

We split this dataset into a training and test set as before.
To achieve the same approximate division as in the previous
experiments, we withhold 6 ratings as opposed to 10 in the

MovieLens datasets, which results in 89% of the ratings be-
ing used for training and 11% for testing. The training and
test sets are summarized in [1], Fig. 27.

We measure the performance of the f1 prediction function
for the two overlays on the Jester dataset with two differ-
ent parameter settings. First, we use the same parameters
that were shown to be optimal for MovieLens 100,000; in
particular, the number of opinions considered for each pre-
diction, the parameter z, is set to 60. Second, we measure
performance for z = 80000, which means that the opinions
of all peers in a peer group on an item are taken into account
when making a prediction.

Mean Absolute Error
We measured the recommendation performance of the two
overlays in terms of Mean Absolute Error up to the max-
imum peer group size of 73,420 peers (with z = 60). The
first significant result is that the MAE performance hardly
changes after 10,000 peers. At 10,000 peers the MAE is 3.29
for the best-neighbours and 3.32 for the random overlay. At
the maximum of 73,420 peers for both overlays the MAE is
3.29 smiles.

Even more importantly, if we look at the MAE results
for up to 10,000 peers shown in Fig. 2(a), the MAE per-
formance hardly changes after 200 peers. The (absolute)
difference in performance between 200 and 73,420 peers is
0.00 for the best-neighbours overlay and 0.15 for the random
overlay. As MAE is in terms of the rating scale, this means
the average prediction is at most 0.15 smiles off if we use
only 200 neighbours. Given the large (-10.0. . . 10.0 smiles)
rating scale, this difference is negligible.

Most significantly, the difference between a random peer
group and a best-neighbours peer groups is small at 200
peers. Consequently, we conclude that knowing a 0.27%
random sample of the user population yields basically the
same results on MAE as using the most similar users in
taste from the whole user population. This conclusion can
also be drawn when parameter z is set to 80000 instead 60,
as described in [1], Fig. 29. The only noticeable changes
compared to z = 60 are that the overall performance of f1
gets slightly worse for groups of more than 300 peers.

Virtual 1–5-star Precision and Recall
As the Jester rating scale is continuous the precision and
recall metrics cannot be applied directly. For easy analysis,
we translate the continuous rating scale into a discrete, vir-
tual 1–5 star rating scale as follows. The interval [-10.0,-6.5]
is mapped to a rating of 1 virtual star (vstar), the interval
(-6.5,-2.5] is mapped to 2 virtual stars, (-2.5,2.5) is mapped
to 3 virtual stars, [2,5 to 6.5) is mapped to 4 virtual stars
and [6.5,10] is mapped to a rating of 5 virtual stars. Note
that the (-2.5,2.5) interval is larger than the others, so this
translation is biased towards 3 virtual stars.

The precision and recall for the two overlays on Jester
is shown in Fig. 2(c,d) and 2(e,f), respectively. First, the
performance of both overlays changes particularly little as
peer-group size increases. Second, the differences between
using a best-neighbours overlay and a random overlay are
also small. For precision, they differ marginally only be-
low approx. group sizes of 500 peers. For recall, the best-
neighbours has slightly better recall across the whole range.
For both overlays precision is high at the extremes of the
scale and recall is relatively low. Also for z = 80000 rec-

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 10 100 1000 10000

m
a
e

number of peers

j-f1-user-random
j-f1-user-best

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

c
o
v
e
ra

g
e

number of peers

j-f1-user-random
j-f1-user-best

(a) (b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

p
re

c
is

io
n

number of peers

j-f1-user-best-v1star
j-f1-user-best-v2star
j-f1-user-best-v3star
j-f1-user-best-v4star
j-f1-user-best-v5star

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

re
c
a
ll

number of peers

j-f1-user-best-v1star
j-f1-user-best-v2star
j-f1-user-best-v3star
j-f1-user-best-v4star
j-f1-user-best-v5star

(c) (d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

p
re

c
is

io
n

number of peers

j-f1-user-random-v1star
j-f1-user-random-v2star
j-f1-user-random-v3star
j-f1-user-random-v4star
j-f1-user-random-v5star

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000

re
c
a
ll

number of peers

j-f1-user-random-v1star
j-f1-user-random-v2star
j-f1-user-random-v3star
j-f1-user-random-v4star
j-f1-user-random-v5star

(e) (f)

Figure 2: Measurements for Jester with z = 60. For the random overlays, values are averaged over three runs.
The vertical errorbars show the minimum and maximum value obtained in these three runs. The x-axis is
on a logarithmic scale, and ends at 10000 in all graphs. (a) Mean Average Error. (note that the y-axis starts
at 3.2.) For comparison, the MAE of the trivial algorithm that always predicts the average rating value
for Jester (0.74 smiles) is 4.48. (b) Coverage (note that the y-axis starts at 0.2.) (c) The virtual 1–5 star
precision of f1 for similar peers. (d) The associated virtual 1–5 star recall. (e) The virtual 1–5 star precision
of f1 for random peers. (f) The associated virtual 1–5 star recall.

ommendation quality does not change much as group sizes
become over 200 peers, as described in [1].

From these results we conclude that for the Jester dataset,
using a small, random group of users rather than a group of
similar peers of any size for recommendation has little effect
on the quality of the recommendations measured with our
precision and recall metrics. With parameter z set to 60
there is no noticeable effect and when set to 80000 the effect
is small.

5. RELATED WORK
PocketLens is an item-based prediction algorithm designed

specifically for a peer-to-peer setting. In [8], Miller et al.
evaluated the performance of PocketLens using several dif-
ferent underlying overlays: a Gnutella-based random over-
lay, a best-neighbors overlay, and two Distributed-Hash Table-
based overlays. The performance of each overlay was tested
using a non-standard version of the MovieLens 100K dataset
with twice as many items. They found the best MAE per-
formance was achieved by the random overlay and with suf-
ficient coverage (already 90% for groups of just 65 peers).
Their measurements thus support our conclusion that ran-
dom overlays can be used for decentralized CF algorithms.
In [9]) we showed it also holds for PocketLens on the stan-
dard MovieLens 100K dataset. Here we showed it holds for
an user-based algorithm and two additional datasets, and
when measured using more expressive metrics.

Our analysis focused on using Herlocker et al.’s algorithm
on partial knowledge of ratings based datasets and two rec-
ommendation tasks. First, in this paper, we looked at the
task of providing a given set of items with an accurate rating,
as is required for annotating an Electronic Program Guide
with ratings. This is called the“Annotation in Context”task
in [6]. Second, in our technical report, we also looked at the
specific task of recommending some good items, which may
be sufficient and more efficiently achievable than finding the
global Top-N best items for our PVR context [1]. In this
second task, small random overlays also perform similarly
to best-neighbours overlays.

There are many existing user-based decentralized collab-
orative filtering solutions that build a best-neighbours over-
lay [3, 16, 10, 2, 12, 7, 14]. Unfortunately, they use different
similarity functions, recommendation algorithms, data sets
and recommendation tasks. Therefore, more work is needed
to see to which of these our findings apply.

6. CONCLUSIONS AND FUTURE WORK
Our experiments with the Jester and MovieLens datasets

bring us to the conclusion that when Herlocker et al.’s algo-
rithm is used the neighbours from which a peer receives rat-
ings data may not be critical to the quality of peer-to-peer
recommendations. That is, neither the number of neigh-
bours nor selecting the most similar really matters. If a peer
has access to ratings from a few hundred, randomly chosen
other nodes, we see that reasonable recommendations can
be obtained, even irrespective of the total size of the popu-
lation. This is a notable result in light of the various efforts
to port existing centralized collaborative-filtering algorithms
to peer-to-peer networks. We conjecture that there may be
no need to incur the added costs of structuring a network
in order to get good quality recommendations. As future
work we plan to investigate why such so little and randomly

obtained partial knowledge is sufficient.

7. REFERENCES
[1] A. Bakker, E. Ogston, and M. van Steen. Random

Opinions in Decentralized Recommendation. Technical
report, Department of Computer Science, Vrije
Universiteit Amsterdam, Sept. 2008 (updated).

[2] E. Dı́az-Avilés, L. Schmidt-Thieme, and C.-N. Ziegler.
Emergence of Spontaneous Order Through
Neighorhood Formation in Peer-to-Peer Recommender
Systems. In Proceedings WWW ’05 International
Workshop on Innovations in Web Infrastructure (IWI
’05), Chiba, Japan, May 2005.

[3] L. Foner. A Multi-Agent Referral System for
Matchmaking. In Proceedings First International
Conference on the Practical Applications of Intelligent
Agents and Multi-Agent Technology (PAAM’96),
London, UK, Apr. 1996.

[4] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: A Constant Time Collaborative Filtering
Algorithm. Information Retrieval, 4(2):133–141, July
2001.

[5] J. Herlocker, J. Konstan, and J. Riedl. An Empirical
Analysis of Design Choices in Neighborhood-Based
Collaborative Filtering Algorithms. Information
Retrieval, 5(4):287–310, Oct. 2002.

[6] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating Collaborative Filtering Recommender
Systems. ACM Transactions on Information Systems,
22(1):5–53, Jan. 2004.

[7] B. Kim, Q. Li, and A. Howe. A Decentralized CF
Approach Based on Cooperative Agents. In
Proceedings of the 15th international conference on
World Wide Web (WWW’06), pages 973–974,
Edinburgh, Scotland, UK, May 2006.

[8] B. Miller, J. Konstan, and J. Riedl. PocketLens:
Toward a Personal Recommender System. ACM
Transactions on Information Systems, 22(3):437–476,
July 2004.

[9] E. Ogston, A. Bakker, and M. van Steen. On the
Value of Random Opinions in Decentralized
Recommendation. In Proceedings 6th IFIP WG 6.1
International Conference on Distributed Applications
and Interoperable Systems (DAIS’06), Bologna, Italy,
June 2006.

[10] T. Olsson. Bootstrapping and Decentralizing
Recommender Systems. Licentiate dissertation,
Department of Information Technology, Uppsala
University, Sweden, June 2003.

[11] Oregon State University. COllaborative Filtering
Engine version 0.4.
http://eecs.oregonstate.edu/iis/CoFE/, Sept.
2005.

[12] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker,
J. Yang, A. Iosup, D. Epema, M. Reinders, M. van
Steen, and H. Sips. Tribler: A Social-Based
Peer-to-Peer System. In Proceedings 5th International
Workshop on Peer-to-Peer Systems (IPTPS’06),
Santa Barbara, CA, USA, Feb. 2006.

[13] P. Resnick and H. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[14] G. Ruffo and R. Schifanella. A Peer-to-Peer
Recommender System Based On Spontaneous
Affinities. In ACM Transactions on Internet
Technology, volume 9, pages 4:1–4:34, Feb. 2009.

[15] U. Shardanand and P. Maes. Social Information
Filtering: Algorithms for Automating “Word of
Mouth”. In Proceedings 1995 ACM SIGCHI
Conference on Human Factors in Computing Systems,
pages 210–217, Denver, CO, USA, May 1995.

[16] A. Tveit. Peer-to-peer Based Recommendations for
Mobile Commerce. In Proceedings of the ACM Mobile
1th Workshop on Mobile Commerce, pages 27–29,
Rome, Italy, July 2001.

[17] University of Minnesota. GroupLens Home Page.
http://www.grouplens.org/, Sept. 2005.

