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Abstract

Nodes in wireless ad hoc networks are often limited in
terms of resources, such as storage, power, and bandwidth.
A downside of this is the fact that local storage at one
node cannot accommodate the vast amount of data con-
tained in the network. In this paper, we present Shared-
State, a scheme for storage, replication, and distribution
of common-interest data in wireless networks of resource-
constrained devices (e.g. sensor nodes or embedded de-
vices). SharedState works under the assumption that indi-
vidual nodes would greatly benefit from having access to the
wealth of information in the network, but are unable to store
it locally at once. SharedState strives to make data avail-
able to every node by providing local access to a subset of
the whole collection of data items in the network at any mo-
ment in time and ensuring that this subset is updated peri-
odically. This is accomplished by probabilistic propagation
and replication of data items, ensuring the availability and
persistence of information in the face of changing network
conditions. We evaluate the performance of SharedState by
studying the effectiveness with which nodes can gather in-
formation from the network. In addition, we optimize the
bandwidth usage of our proposed solution by minimizing
unnecessary communication based on feedback from the lo-
cal neighborhood.

1. Introduction

The usual paradigm for wireless networks consists of
wireless nodes - often laptops or smartphones - connecting
to a base station in order to access a resource (for exam-
ple, a data repository or a local printer). Wireless ad hoc
networks break away from this model by focusing on the
interaction between nodes to create a network on-the-fly,
without relying on a preexisting infrastructure. The ad hoc
model shuns the centralized approach in favor of operat-

ing in a distributed fashion. The resources and services are
therefore provided by the nodes themselves, making coop-
eration between nodes absolutely necessary.

Nodes in a wireless ad hoc network are often mobile,
portable, resource-constrained devices. In this paper, we
focus on resource-constrained embedded devices designed
with specific applications in mind (for example, a wire-
less sensor network that monitors the presence of peo-
ple in a building). Unlike phones or PDAs with wire-
less capabilities, these devices typically use low power RF
radios that provide limited bandwidth and communicate
through broadcast (Section 3 describes the target platform
for SharedState in more detail). The networks that these de-
vices create do not rely on fixed infrastructure for services,
but they self-organize to provide certain functionality.

One of the main challenges with wireless devices is that
they are inherently unreliable, as they might fall out of reach
due to mobility or leave the network unexpectedly. As a re-
sult, nodes - and the data they carry - are constantly joining
and leaving the network. While most of the data that a node
stores locally may only be relevant to the node itself, some
nodes might have information that could be of interest to
the community in general. Such information may include,
for example, configuration information, advertisements or
general announcements. Viewing these pieces of informa-
tion as community knowledge and making them available to
the general population would enhance coordination efforts
in the network and create a cohesive environment.

The goal of this project is to provide a middleware layer
capable of storing data items published by any node in the
network and make them available for all nodes. In essence,
SharedState acts as a distributed repository of shared data.
Unlike a publish/subscribe system, nodes do not subscribe
to receive certain information. In our system, all nodes are
considered to be possible subscribers. The purpose is then
not just to deliver a data item to the interested parties, but
to store the data item in the network so that any interested



node could retrieve the item presently or in the future. In
other words, the ultimate goal of SharedState is to ensure
the availability and persistence of data items of interest to
all (or most) nodes.

SharedState acts as a loosely coupled communication
platform, such that producers and consumers of data are de-
coupled in time and space. Consumers can recover a data
item from the network when they deem it necessary: pro-
ducers and consumers do not need to be present at the same
time in order to share data. Likewise, they can do so without
being within communication range of each other. Shared-
State takes care of delivering the data items to consumers,
who might be located anywhere in the network. Producers
are oblivious to any consumer’s location.

Contribution Working under the assumption that the in-
formation contained in the network greatly surpasses the
storage capacity at each node, this paper presents Shared-
State, a scheme designed to move data items through the
network and create replicas of the items at various locations.
Specifically, the contributions of this paper are:
◦ We introduce a scheme for disseminating and replicat-

ing data items through the network. This new protocol
is characterized by its low complexity and minimal state
needed at each node, making it suitable for a wide range
of wireless devices.

◦ We evaluate the efficiency of collecting data items from
the network by testing the worst case scenario: each node
discovers new items solely by querying its local store.
Additionally, we use static topologies in our experiments.
The lack of mobility means that data items can propa-
gate only through multiple hops, instead of being carried
by mobile nodes to different locations. We show that ac-
ceptable discovery rates can be achieved even under these
conditions, suggesting that mobility and queries involv-
ing surrounding nodes would only improve performance.

◦ We evaluate our protocol through simulations using
TOSSIM. We test the effect of node density on the per-
formance of the system, first using uniform topologies
of various densities and then with a non-uniform topol-
ogy where nodes concentrate at a central point. We show
that by allowing individual nodes to decide when to com-
municate based on neighborhood information, we can
take advantage of node density to decrease the number
of transmissions by individual nodes. Global knowledge
of the network topology and its properties is not required.
By relying solely on local information, our algorithm re-
mains effective in larger networks.

2. Related Work
The problem of improving data access and availability

in wireless environments has been approached in various
ways. One approach is to encode [2, 1] the data into a
number of pieces in such a way that the original item can

be reconstructed by collecting a subset of the pieces. By
distributing the pieces through the network, ubiquitous ac-
cess is provided. In our case, we assume that the data items
we propagate are small read-only data files and we achieve
availability by replicating the items. The number of replicas
and their location is determined probabilistically.

Cooperative caching for ad hoc networks is another re-
lated area. Its aim is to share cached data among multi-
ple nodes by having some nodes host the data and han-
dle requests from other interested nodes [9, 12]. Popular
data items are cached at various locations leading to re-
sources being saved by requesting the item from a nearby
node. Additionally, access can be obtained even when the
original source is unavailable. While cooperative caching
also makes use of data replication, it differs from our work
in that its aim is to improve the experience of being con-
nected to the infrastructure (Internet). Conversely, Shared-
State focuses on sharing lightweight data items created by
nodes in the network that can be disseminated in the back-
ground using a limited amount of resources. Instead of a
request/forward model, nodes using SharedState discover
data items by periodically exchanging them.

Projects focused on data dissemination for ad hoc net-
works are also relevant to our work. 7DS[8] focuses on
allowing access to data available on the Internet, so that
when a node’s access fails it can get the data from its
peers. The types of networks 7DS addresses are differ-
ent from ours. The authors consider that the network is
rarely connected (sparse) and that nodes do not necessarily
cooperate. The nodes themselves are more powerful than
the ones we consider. While 7DS does implement policies
for power management, storage space is not a major con-
cern, as it is for us. In PeopleNet[7], users forward data
to pre-defined geographic regions (according to topic) and
within each region the system tries to match queries and re-
sponses. The nodes in each region become a database for a
particular topic, with items being replicated in many nodes.
Within each region, data dissemination/replication occurs in
a p2p fashion, whenever two devices encounter each other.
In RANDI[11], nodes also communicate when they en-
counter each other, but also proactively if a certain amount
of time has passed since the last broadcast. These two sys-
tems rely on p2p communication and neighborhood discov-
ery/awareness. SharedState intends to be as lightweight as
possible, relying solely on broadcast. There is no need to
keep track of the identities of neighboring nodes.

In the realm of wireless sensor networks, data-centric
storage (DCS [10]) addresses the storage problem by stor-
ing data by type at designated nodes, making data retrieval
more efficient. Replication of data at strategic locations has
been proposed to improve scalability and robustness [4].
Unlike our work, these approaches require a routing layer
and replication is done in a deterministic fashion.



Closer to our work are probabilistic protocols for data
dissemination, where the decision to broadcast a piece of
data is made locally based on a probabilistic algorithm. Due
to their simplicity, these types of protocols are appealing
for small devices lacking in computing power. They are
also resilient to failures and mobility, which makes them
attractive for wireless environments. Probabilistic protocols
have been used as an alternative to flooding [5, 3] and for
concrete applications like code dissemination [6].

3. System Model
The system we envision consists of a collection of nodes

with wireless communication capabilities. Participating
nodes are required to contribute resources to the system in
the form of storage space. Every node contributes a lim-
ited amount of storage space to maintain a local data store
of shared information. Nodes access their local data stores
to discover previously unseen or interesting items. We will
refer to the local data store as the node’s cache in the re-
mainder of the paper.

The caches are updated periodically with data items
broadcast by nodes in the local neighborhood. Items have
unique ids and are time stamped when created, allowing the
system to keep the latest version of an item by overwriting
older versions. Since all data exchanges occur within one
hop, routing is not necessary. By relying purely on broad-
cast, we intend to make the system suitable for a wide range
of wireless platforms, including simple and inexpensive de-
vices that use broadcast at the physical layer. Moreover,
nodes do not need to keep track of their neighbors.

Communication is limited to periodic updates that are
broadcast by each node. Each update message contains a
set of data items selected by each node. The frequency with
which nodes can broadcast updates is a network-wide pa-
rameter, which should be set considering the workload and
bandwidth that we desire to allocate for the service.

In addition to the cache, nodes allocate space for an input
buffer to receive update messages from neighboring nodes
and an output buffer for the entries to be broadcast. Each
node uses the input buffer (which should be, at most, as big
as the cache) to accumulate data items received during a
fixed period of time, which we call a round. At the end of
a round, the node updates its cache with the items from the
input buffer and broadcasts the set of data items in its output
buffer to update its neighbors. We say that a node alternates
between two modes: active or passive. Each node takes an
active role once per round, when it updates its local cache
and decides which items to broadcast. After taking care of
these tasks, it falls into a passive mode, where it silently
awaits for updates from its neighbors.

We abstract a framework to describe the core structure of
a replication and storage protocol like SharedState. There
are three main operations (see Figure 1) that a node needs

receive
broadcasts

input buffer cache output buffer

update 
input buffer

update 
cache

select entries 
to broadcast

broadcast

passive thread active thread

Figure 1. Visual representation.

to execute: a) handle incoming items (passive mode), b)
update its cache (active mode) and c) select which items to
broadcast (active mode). The specific way in which these
three events are implemented has a direct impact on the
characteristics of the propagation and replication of items.
In Section 4 we describe the implementation details of
SharedState which is one particular instance of this frame-
work. Although several alternatives were explored, due to
lack of space we will focus on the one that gave the best
results during our evaluation.

Target Platform The experimental platform for which
SharedState was specifically developed consists of very
simple, inexpensive units that integrate a radio, an antenna
and an embedded processor in one module. These nodes
are meant to be expendable and, as such, they have modest
features. Nodes operate on a fixed duty cycle and communi-
cation is based purely on the broadcast of small data packets
of a fixed size (in the order of tens of bytes). In other words,
nodes wake up periodically to communicate and process in-
formation and then go to sleep for the rest of the cycle.

The reason for choosing to operate by broadcast-
ing/processing periodically is to have a predictable use of
resources, enabling us to taylor the duty cycle and packet
size according to the requirements of our applications and
the desired lifetime of the network. We imagine that a sen-
sor application (sending an alarm whenever high tempera-
tures are measured, for example) needs to be long-lived and
has very small data packets. For this application, the broad-
cast interval can be set to a value that allows the batteries to
last for the desired period (two years, for example). By op-
erating periodically, we eliminate the risk of having nodes
run out of energy prematurely due to being located at busy
spots, as can occur in event-triggered systems. Of course,
this comes at a price. The tradeoff is that nodes are required
to communicate even when there are no new events to re-
port. This is an acceptable compromise, considering that
we aim to deploy very large networks where having clear
expectations of the lifetime of nodes is important.

Applications Application areas for SharedState include
dissemination of topological information, membership
management and service discovery. An example applica-



tion could be asset management, where active tags attached
to objects keep track of each other so that logical groups
stay together (e.g. a set of boxes in a warehouse or a collec-
tion of documents).

4. SharedState
The key to ensuring the availability and persistence of

items in the network lies in a strategy of massive replication
and relocation of replicas. The replication of items is a nat-
ural consequence of the probabilistic methods used for the
selection of items to be stored and propagated. As items are
propagated, they become available to the nodes who stored
them locally. The periodic update of caches ensures that
nodes can discover items as they flow through. Discovery is
gradual, however, as nodes can only store a limited amount
of items in their caches.

The issue of data persistence is critical in a wireless ad
hoc network, since nodes may come and go on a regular
basis. Whenever a node leaves, the data items it carries dis-
appear with it. For this reason, maintaining a set of replicas
per item is necessary. We refer to each replica of an item as
an entry. While a data item is a piece of information, an en-
try is the representation of the data item in the network and
for each data item several entries may exist. Instead of ex-
plicitly trying to maintain a particular number of entries per
item, we allow competition between entries to determine
the number of entries per item in the network.

Whenever a node broadcasts an entry, there is a chance
that it might be replicated if more than one of the node’s
neighbors decides to keep it. Likewise, whenever a node
updates its cache, some entries are discarded due to lack
of space. Because of this, the number of entries per item
is constantly experiencing variations and, since there is no
preference for any particular data item, competition for
space in a node’s cache is fair. This ensures that each data
item has on average the same number of replicas in the net-
work and that the number of replicas adjusts dynamically
according to the number of different items published. That
is, when there is a large number of different items in the net-
work, each item has few entries. Conversely, when there are
few different items present, each item has several entries.

4.1. The Protocol
The way nodes manage their entries depends on the ac-

tions they take in their active and passive modes. Figure 2
gives a detailed account of the steps involved in the execu-
tion of a node’s active and passive thread. Before giving a
more thorough explanation of the events that take place in
each thread, one distinction between nodes should be noted.
Of all the nodes that participate in the system, only a subset
acts as a source of data items. That is, at any point in time,
only some nodes take the role of producers of information.
The only difference between a producer and a consumer is
the fact that the producer makes an effort to insert its own

/*** Active thread ***/
// Runs periodically every T time units

1: PHASE I : Update cache
2: for all entry in inputBuffer do
3: if cache.contains(entry) then
4: cache.remove(entry)
5: inputBuffer.remove(entry)
6: while cache.slotsAvailable() < inputBuffer.size() do
7: randomEntry = cache.removeRandomEntry()
8: if outputBuffer.slotsAvailable() then
9: outputBuffer.add(randomEntry)

10: cache.addAll(inputBuffer)
11: inputBuffer.clear()
12:
13: PHASE II : Select entries to broadcast
14: if outputBuffer.slotsAvailable() then
15: if !outputBuffer.contains(localEntry) then
16: outputBuffer.add(localEntry)
17: while outputBuffer.slotsAvailable() do
18: randomEntry = cache.copyOfRandomEntry()
19: if !outputBuffer.contains(randomEntry) then
20: outputBuffer.add(randomEntry)
21:
22: broadcast(outputBuffer)
23: outputBuffer.clear()

/*** Passive thread ***/
// Runs when receiving a transmission

1: for all received entries do
2: if inputBuffer.slotsAvailable() then
3: if inputBuffer.contains(entry) then
4: inputBuffer.keepMostRecent(entry)
5: else
6: inputBuffer.add(entry)

Figure 2. SharedState pseudocode.

item (represented in Figure 2 as localEntry) in the network
whenever possible. Other than that, they execute the same
algorithm. Moreover, at any point a consumer may take the
role of producer if it has some information to add to the
collective knowledge base.

4.2. Active Thread

Each node in the network executes the active thread once
per round. The algorithm executed by the active thread is di-
vided in two phases: a) updating the cache and b) selecting
which entries to broadcast.

Phase I - Update Cache: In this phase, the node has to
decide what to do with the entries accumulated in the input
buffer. The result should be an updated cache with as little
correlation as possible to the previous one. The reason for
this is that applications that access the cache have already
seen the entries in the previous version. Showing the same
entries again does not provide any value for the application
layer. In the majority of cases, the cache will already be
full forcing the node to decide which entries from the input
buffer should be placed in the cache and which entries from
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the cache should be removed.
The strategy for updating a node’s cache is the following.

First, if an entry has already been seen (it is in the cache)
and also appears in the input buffer, it is discarded from
both. This helps make space for new entries in the cache.
Second, all remaining entries in the input buffer should be
placed in the cache. If there are not enough empty slots
available in the cache, random entries from the cache are
removed to make space for all the entries from the input
buffer. The entries removed from the cache are placed in
the output buffer until it reaches its maximum capacity. The
ones that do not fit into the output buffer are discarded.

Phase II - Select Entries to Broadcast: In Phase I, some
entries were already placed in the output buffer. These en-
tries, having been removed from the cache in Phase I, have
preference to be broadcast. The motivation for this is to
lower the risk of items disappearing entirely from the net-
work. If there are not enough entries to fill the output buffer,
the local entry (which is available if the node is a producer)
is added. If this is not enough, random entries are selected
from the cache and a copy of each is placed in the output
buffer. Once the selection of entries has finalized, the node
broadcasts the chosen entries and clears the output buffer
for the next round.

4.3. Passive Thread

Each node executes the passive thread whenever a broad-
cast is received. Therefore, the passive thread may execute
several times in one round (depending on the number of
neighbors a node has). Whenever a node receives a broad-
cast, the entries received are put into the input buffer. No
duplicates (entries with the same id) are allowed. If a du-
plicate is received, the version with the freshest timestamp
is kept. The input buffer has a limited capacity, therefore,
entries have to be discarded once the buffer is full.

5. Basic Properties
Discovery Rate The ultimate goal of SharedState is to
make data available to all nodes by storing it in the network.
Since nodes themselves do not have enough storage space
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to store all of the available data items, they can “discover”
data items from the network when required by the applica-
tion layer. Discovering items can be done by inspecting the
local cache (0-hop query), consulting immediate neighbors
(1-hop query) or recruiting the help of neighbors to inspect
caches n-hops away (n-hop query). In this paper, we con-
sider only 0-hop queries.

We evaluate the performance of the protocol by observ-
ing the discovery rate of items. The discovery rate is defined
as the number of items that a node discovers by examining
its cache over a period of time versus the total number of
items in the network. The discovery of items is gradual,
as nodes update their caches once per round. The discov-
ery rate, therefore is measured over a number of rounds and
with every passing round it increases or stays the same.

The speed at which nodes discover items is directly re-
lated to the fraction of all items that they can store locally.
In other words, for a collection of nodes with a cache size
of c and d different items in the network, the fraction c

d
determines the discovery rate. Figure 3 presents the dis-
covery rate over time for three different experiments. 900
nodes, each with a cache size of c = 18 were arranged in
a 30 × 30 grid. The nodes can reach only their neighbors
to the North, South, East and West. After the network has
been running for 300 rounds, a number of test nodes start
measuring their discovery rates. The graphs show the aver-
age discovery rate and standard deviation. For each experi-
ment, a different number of items in the network d was used
(d = 180, 360, 720). A higher value of d means that a node
can store a smaller percentage of the d items locally. As
Figure 3 illustrates, the discovery rate slows down when the
fraction of items that a node can store in its cache decreases.

Fairness in Replication Given that our network has a
fixed storage capacity (the sum of the space available at
each node), the number of replicas that an item can have
is limited. Items have to compete for the limited space in a
node’s cache. When there is a large number of items in the
network, this competition is intense. When there are few



items, the competition is less fierce. Nevertheless, the pro-
tocol does not favor any particular item, resulting in every
item having the same chance of creating or losing a replica.

Figure 4 presents a histogram of the number of replicas
per item over a period of 50 rounds. The results correspond
to the experiment in Figure 3 where d = 180. Our 900-node
network, with c = 18, has 900 × 18 available slots. With
180 different items in the network, each item should have
90 replicas. Figure 4 shows that this is the mean value of
the distribution. Due to the constant competition for space,
the number of replicas for a particular item is always fluc-
tuating.

6. Density Awareness
An important characteristic of wireless networks is that

neighborhoods are defined by the proximity between nodes.
If a given area is densely populated, one node’s broadcast
will be overheard by a large number of nodes. On the flip-
side, if the area is sparsely populated, the broadcast will be
received just by a few nodes in the sender’s range.

The protocol introduced in Section 4 does not take den-
sity information into account. Nodes blindly broadcast
update messages every round, regardless of whether their
neighbors would be able to handle the traffic or not. While
this may not be a problem in sparse networks, in densely
populated areas excessive communication could be detri-
mental due to collisions. It should also be noted that the
size of the input buffer limits the amount of updates that
a node can effectively make use of in one round. Once a
node’s input buffer is full, the subsequent updates have no
effect on the outcome. With this in mind, we propose a
slight modification of the original SharedState protocol to
optimize the use of bandwidth by reducing the amount of
ineffective communication.

The key to reducing the number of ineffective broad-
casts is identifying when a node becomes “overloaded” by
transmissions from its neighbors. If that is the case, the
node cannot derive any benefit from receiving more broad-
casts. It would be desirable, then, to decrease the chances
that its neighbors send more broadcasts in the remainder of
the round. This can be accomplished if nodes inform their
neighbors of their “overload level,” defined as the fraction
of ineffective broadcasts received in one round. Nodes can
use the overload levels of their neighbors to decide if they
should broadcast in the next round or not.

We say that a node is overloaded if its input buffer is al-
ready full when it receives a broadcast. Since several broad-
casts are often received in one round, each node can calcu-
late its own overload level by keeping track of the number
of broadcasts received in a round and of how many of those
were received when the input buffer was already full. Let
Ri(x) represent the sources of broadcasts received by node
x during round i and let Ui(x) represent the number of inef-

fective broadcasts. The calculation of the overload level is
based on the observations made during the previous round
and takes place in the active thread, once per round, in the
following way:

Oi(x) =
Ui−1(x)
|Ri−1(x)|

Ideally, a node’s overload level should be close to 0, in-
dicating that the node rarely receives ineffective broadcasts.
However, the node itself does not have direct control over
its own overload level. The local overload level is deter-
mined by the behavior of the node’s neighbors. For this rea-
son, we propose an improved version of the protocol where
nodes are required to append their own overload level when
broadcasting a message. Each node can then accumulate
these reported overload levels to get a sense of the over-
all overload level in its neighborhood. With this informa-
tion, each node can determine if it should skip a broadcast
based on whether the broadcast would benefit its neighbors
or not. Let ProbSkipi(x) be the probability used by node
x to decide whether to skip a broadcast or not at round i.
ProbSkip is calculated in the active thread as follows:

ProbSkipi(x) =

 ∑
y∈Ri−1(x)

Oi−1(y)

 + Oi(x)

|Ri−1(x)| + 1

The probability of skipping a broadcast, ProbSkip, is an
estimate of the overload level in node x’s neighborhood cal-
culated based on the overload levels reported by x’s neigh-
bors (y) that communicated in the previous round and x’s
own overload level. It is important to note that this estimate
may not always be very precise. The reason for this is that
if a node decides not to broadcast, its neighbors will not be
updated on the node’s overload level. Therefore, the cal-
culation of the overload level in the neighborhood is done
with only partial information. The inclusion of the node’s
own overload level helps make up for the missing reports of
some neighbors. In any case, as will be shown later on, an
estimate - even if it is not very precise - is good enough to
result in considerable resource savings.

Before moving on, it should be noted that since each
node can calculate its overload level locally, an alternative
optimization could be proposed where ProbSkip is sim-
ply calculated based on the local overload level (under the
assumption that it accurately reflects the overload levels in
the neighborhood). While this strategy would work in ho-
mogeneous topologies where nodes have roughly the same
number of neighbors, it does not perform as well in more
complex scenarios. For example, take a situation where a
node is surrounded by obstacles and as a result only has
one neighbor. The neighbor, however, is surrounded by
many other nodes and is often overloaded. In this case,



the first node will never be overloaded and will always
broadcast, contributing to the overload of its only neigh-
bor. The second node, meanwhile, experiences higher over-
load levels, meaning that it will skip some rounds. The re-
sults are detrimental to both nodes: the first receives broad-
casts only sporadically, as its only neighbor tends to skip
broadcasts, while the second node becomes even more over-
loaded. Under the scheme that we proposed earlier, the first
node would be aware that its neighbor is often overloaded
and would skip some rounds to relieve its neighbor’s load.
At the same time, the second node measures less overload
in its neighborhood and would tend to broadcast more of-
ten, benefitting the first node. Through experimentation, we
observed that the method proposed earlier performs better
overall. We compare its performance against the original
SharedState in the remainder of the paper.

7. Performance Evaluation
We evaluate the effectiveness of the SharedState system

by observing i) the discovery rate of items (as defined in
Section 5) and ii) the number of broadcasts generated. Sec-
tion 6 introduced a modified version of the original algo-
rithm aimed at reducing resource consumption by letting
nodes skip broadcasts according to the overload levels in
their neighborhoods. In order to quantify the improvements
introduced by the modified algorithm, we gathered statistics
(over a test interval of 50 rounds) on: a) Broadcasts sent in
the whole network per round and b) Broadcasts received by
a node per round. These statistics give us some insight into
the usage of the communication medium and the workload
of the nodes, both of which we aim to reduce.

We tested our storage system by implementing it as a
TinyOS application and using TOSSIM to run experiments
under different scenarios. In order to observe the effect of
varying node densities in the performance of the protocol,
various topologies with different node densities were used.
The topologies were generated with the LinkLayerModel
tool that comes bundled with TinyOS. This tool generates
network topologies using a theoretical propagation model.
Within a 100×100 meter terrain, we explored the following
simulation scenarios:

Uniform Node Distribution For the “uniform” setting,
the physical terrain is divided into a number of cells (based
on the number of nodes) and a node is randomly placed
within each cell. Since the tool requires that the number of
nodes be a square, we generated topologies with the follow-
ing numbers of nodes: 100, 144, 196, ...900, or (10 + 2n)2

for n = 0...10.

“Center of attraction” Distribution This scenario emu-
lates a more realistic situation where nodes gather around
a point of interest. We crafted a topology with 576 nodes
where the highest concentration of nodes occurs at the cen-
ter of the terrain (50, 50). The position of the nodes was
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Figure 5. Discovery rate over time for net-
works of different sizes.

determined by selecting a random angle between 0 and 360
degrees and a distance from the center according to a normal
distribution. The minimum distance between nodes was set
to 1 meter.

Besides the distribution of nodes, system-wide parame-
ters and the role of nodes had to be defined. For all experi-
ments, the following settings were used:
• Of all nodes in the network, 80 nodes were chosen at ran-

dom to be publishers. These 80 nodes produce 80 items
that are disseminated through the network.

• 20 nodes selected at random are chosen as “test nodes.”
These nodes measure their discovery rates and numbers
of broadcasts sent and received.

• For all nodes, the cache and the input buffer can hold only
8 entries. The output buffer can hold 4 entries.

• All nodes execute the active thread once per second.

8. Uniform Node Distribution
In this section, we will focus on the behavior of the sys-

tem when the collection of participating nodes is spread uni-
formly over an area of 100×100 meters.

8.1. Discovery Rate and Node Density

Figure 5 shows the discovery rate measured over time
for the different topologies, starting from a sparse 100-node
network and increasing in density up to 900 nodes in the
same 100×100 meter terrain. Notice how the increase in
density leads to higher discovery rates. It can be clearly ob-
served that for a sparse network of 100 nodes the discovery
rate after 50 rounds is considerably low (about 11%) and
does not improve substantially over time. This is due to the
low connectivity between nodes. With only 100 nodes in
the 100×100 meter terrain, the network is too sparse. How-
ever, even a slight increase in density (144 nodes) already
yields much better results.

To better understand the discovery rate results, it is nec-
essary to have more insight into the connectivity of the dif-
ferent topologies. Figure 6 shows the average number of
transmissions received by a node in one round for the dif-
ferent topologies used in Figure 5. A linear relationship be-
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Figure 6. Av. number of broadcasts received
per node for networks of different sizes.

tween the number of nodes in the network and the number
of received transmissions can be distinctly observed. Tak-
ing a closer look at Figure 6, we can see why the discovery
rate for the 100-node network was so low. With an average
number of receptions per node of 1.6, it is not uncommon
for nodes to be unreachable or for the network to become
partitioned at times. At the other end of the spectrum, we
have the 900-node network with an average of 19.23 trans-
missions received per node in one round.

The linear increase in receptions with the number of
nodes does not translate to a linear increase in performance
(measured by the discovery rate), as shown in Figure 5.
After a considerable improvement in discovery rate when
going from the sparse 100-node network to the more pop-
ulated 144, 196 and 256-node networks, further increases
in density fail to have a substantial effect in the discovery
rate. The reason for this can be traced back to the limited
size of the input buffer. With the input buffer being twice
the size of the output buffer for our experiments, the first
transmission received fills up half of the input buffer. The
subsequent transmissions gradually fill up the rest. Since
the input buffer becomes full after receiving a few transmis-
sions, the higher number of transmissions received in the
denser topologies do not provide much additional benefit.

We can model the way the input buffer fills up under
the assumptions that: a) each entry received is selected ran-
domly from the collection of d different items in the net-
work, b) each transmission from a neighbor consists of s
randomly selected entries and c) the input buffer is infinite.
Let nk represent the number of entries in the input buffer
after k transmissions.

For k = 1, all entries are kept, resulting in n1 = s.
For the second transmission, some of the s received entries
might already exist in the input buffer. Therefore, n2 only
increases by s ·

(
1 − n1

d

)
entries, where n1

d is the probabil-
ity that an entry is already in the input buffer. Likewise, n3

increases by s ·
(
1 − n2

d

)
entries over n2. A general expres-

sion for nk can be derived in terms of s, d and nk−1:

nk = nk−1 + s ·
(
1 − nk−1

d

)
, n0 = 0
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Figure 7. Number of entries in the input buffer
after receiving k transmissions (s = 4, d = 80).

The second term of the equation represents the increase
in entries for each additional transmission. Since the prob-
ability of receiving an entry that is already in the input
buffer, nk−1

d , increases as the input buffer accumulates more
entries, the second term becomes smaller with every new
transmission.

Using the same parameters as our TOSSIM simulations
(number of items d = 80 and output buffer size s = 4),
nk is plotted in Figure 7. The graph illustrates how later
transmissions have less impact on filling up the input buffer
by comparing nk with a curve depicting a linear increase
in number of entries with each transmission received. We
can also observe from this graph that, under this model, our
input buffer (which can hold only 8 entries) would be full by
the third transmission. This helps explain why the 100-node
network underperforms: the input buffers are rarely used to
their full capacity.

On the other hand, the 256-node network, where the av-
erage number of broadcasts received is 4.8 with a standard
deviation of 1.5, makes full use of the input buffers and per-
forms considerably better. Notice, however, how the ex-
periments with more than 256 nodes show slightly better
discovery rates. We speculate that this is due to the fact that
when nodes have more neighbors, the s entries broadcast
by each node are more likely to be truly random selections
from the d possible items in the network. For more sparse
networks where nodes have only a few neighbors, the en-
tries at neighboring nodes are more likely to be correlated,
slowing down the discovery of new items.

8.2. Taking Advantage of Node Density

The SharedState protocol works as expected, but suffers
from a common problem in wireless networks: unnecessary
transmissions. Section 6 introduced a modified version of
the protocol aimed at optimizing the use of bandwidth by
taking node density into account. Knowing that the input
buffers have a limited capacity, it is evident that at some
point additional transmissions are not effective anymore and
resources are wasted on them. In this section, we show that
our modified algorithm can reduce the waste of resources
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Figure 8. Comparing the original algorithm
and the improved version in terms of discov-
ery rate for: a) 256 nodes and b) 784 nodes.
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Figure 9. Av. number of broadcasts received
per node for networks of different sizes.

while still delivering good performance.
We start by comparing the discovery rate over time for

the original algorithm and the density-aware version. Fig-
ure 8 shows the results for two selected topologies: a sparse
(256 nodes) and a dense (784 nodes) one. The performance
is virtually the same in the sparse topology. For the dense
topology, the discoveryrate is slower during the initial phase
of the experiment. Nevertheless, it recovers and matches the
original algorithm in the later stage of the experiment.

Given that performance has not been compromised by
the changes introduced to the original algorithm, we pro-
ceed to study the effect the changes have on the workload
of the network. First, we measure the average number of
broadcasts received per node during one round and com-
pare the results to the original ones. Figure 9 presents the
new measurements alongside the results shown in Figure 6,
clearly showing the reduction in the number of broadcasts
received per node. As a result, the nodes have less transmis-
sions to handle in each round. This is not surprising, given
that in the density-aware version of the algorithm nodes re-
frain from broadcasting based on the overload levels mea-
sured in their neighborhoods. It can be expected, then, that
nodes in denser topologies would experience higher over-
load levels and, therefore be more likely to skip broadcasts.

Figure 10 showcases the reduction in the number of
broadcasts sent per round in the whole network. Figure
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196 0.83
256 0.72
324 0.64
400 0.58
484 0.53
576 0.49
676 0.44
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Figure 10. Number of broadcasts sent per
round for networks of different sizes.

10.a) highlights the impact of density in the decrease of
broadcasts being sent. As the topologies become more
dense, and the number of neighbors per node increases,
nodes are more likely to be overloaded increasing the prob-
ability of broadcasts being skipped. The companion table
to the right gives a more detailed account of the reduction
in broadcasts, with the column titled “Broadcast Ratio” re-
ferring to the ratio of the number of broadcasts sent in one
round using the density-aware protocol versus the number
of broadcasts using the original version. While the differ-
ence is minimal in the sparse 100-node network, as the net-
works become more dense, it is clear that the new algorithm
allows the nodes to save transmissions by reducing the num-
ber of ineffective broadcasts.

9. Center of Attraction
In this section, we observe the behavior of our system

using a more realistic node distribution where nodes (576
in total) are arranged around a central point. While the uni-
form node distributions used previously may approximate
the layout of a sensor network (in a field, for example),
we think that this scenario resembles more closely a social
event, such as an outdoor barbeque, where people gather
around a central location (a bonfire, for example).

We start by comparing the original algorithm and the
modified version using the new centralized topology. In
terms of discovery rate, the results vary slightly (see Fig-
ure 11), with the original version outperforming the mod-
ified version in the initial rounds of the experiment. After
that initial period, both versions perform similarly, with the
modified version gaining an edge over the original protocol
towards the end of the experiment.

Given that the density-aware version of the protocol be-
haves as expected, we proceed to analyze the resource us-
age in the network. For this experiment, values of ProbSkip
for every node run were collected over a 400-round. The
histogram in Figure 12 shows the percentage of nodes us-
ing a value of ProbSkip that falls within a certain range.
It is clear that the graph is skewed towards high values of
ProbSkip, indicating that most nodes skip some rounds. In
fact, a large majority skips more that 50% of broadcasts. It
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Figure 12. Distribution of nodes according to
their probability of skipping a round.

should be noted, though, that a few nodes (roughly 3%) do
not skip any broadcasts. These are the nodes in the outer
regions of the terrain, which have only a few neighbors and
need to take advantage of every broadcast.

The relationship between the distance from the center
and the probability of skipping a round becomes evident
in Figure 13. During a period of 50 rounds, every node
reported its ProbSkip and distance from the center. This
graph plots each pair (distance, ProbSkip) as one point
and clearly shows a trend where nodes closer to the center
report lower values for ProbSkip.

10. Conclusions
In this paper, we have demonstrated that it is possible

to build an effective shared-storage solution based purely
on probabilistic methods. Moreover, we have shown that
by taking into account only local neighborhood information
the use of resources, namely bandwidth and energy, can
be drastically reduced without having a mayor impact on
performance. We achieve this by allowing nodes to regu-
late their output to prevent their neighbors from being over-
loaded, which in turn benefits them by saving transmission
costs. This results in resource savings according to the den-
sity of the area, without the need to explicitly disseminate
topology information. We conclude that the combination of
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a probabilistic approach and local-only decision making is
key to the scalability of systems such SharedState.
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