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Abstract

The peer-to-peer (P2P) paradigm provides a data distribu-
tion model that may be attractive for Video on Demand (VoD)
as it allows to decrease the costs and to increase the scala-
bility of video distribution. However, VoD is more challeng-
ing for P2P technology than file sharing or live streaming, and
so, practically feasible VoD systems proposed to date rely on
a backend server infrastructure as a fail-over solution. In this
paper we investigate how the dependency on servers can be de-
creased by optimizing the video piece-selection strategy and by
allowing multiple peers to form a collaboration for obtaining
a single video. We prove analytically that the amount of band-
width provided by the servers to guarantee a certain video bi-
trate can be reduced to arbitrarily low values by increasing the
collaboration size if only the number of peers in the system is
sufficiently large. In a set of simulations of a trace-based sys-
tem model we show that for systems as YouTube the proposed
optimizations would result in saving of as much as 70% of the
server bandwidth.

1. Introduction

With the increase of the link capacity offered to Inter-
net users, Video on Demand (VoD) services are rapidly
gaining popularity. Services such as YouTube [1] that al-
low their users to post video files on-line are visited by
millions of people on a daily basis. Providing VoD to
a large population of users requires a significant amount
of bandwidth, which effectively becomes the scalability
bottleneck of VoD infrastructures. For instance, the band-
width provisioning costs of YouTube servers are estimated
at $6M per month [1].

The peer-to-peer (P2P) resource sharing model pro-
vides an attractive architectural solution for bandwidth-
limited applications. Peers employ their upload band-
width to redistribute the downloaded content, decreasing
the dependency and the load on the servers [7]. The con-
tent redistribution capability of a P2P network is, how-

ever, conditioned on the willingness of the peers to con-
tribute their bandwidth. Relying on the altruism of the
users eager to donate their bandwidth does not suffice to
guarantee service of high quality [10], and so, econom-
ically rational incentives are needed to stimulate band-
width contributions of the peers.

The most feasible in practice incentive mechanisms
proposed up to date for file sharing [4] and live stream-
ing [11, 8] P2P networks establish bartering relationships
between peers that exchange data pieces. In this paper we
investigate the applicability of bartering incentives to VoD
systems. We measure the efficiency of bartering in a par-
ticular P2P system in terms of the system entropy which
quantifies the probability of establishing a bartering rela-
tionship between two randomly selected peers. In a VoD
system the entropy and thus also the bartering possibilities
are negatively affected by the fact that peers at different
playback positions are interested in different pieces of the
video file. Addressing this problem we propose a biased
random piece selection strategy which optimizes the order
in which pieces are downloaded by a VoD application.

The results of performed analytical study suggest that
the piece selection strategy affects the number of barter-
ing possibilities in a VoD system only to a certain extent.
A further improvement in the number of bartering possi-
bilities can be achieved only by decreasing the playback
bitrate or by increasing the bandwidth available for a peer.
Since the playback rate determines the video quality, only
the improvements in the amount of available bandwidth
are reasonable. To this end, we propose a collaborative
VoD protocol that increases the bandwidth available for a
peer by using the idle bandwidth of multiple peers collab-
orating in obtaining a single video file rather than request-
ing the bandwidth from servers.

In an analytical study we investigate the impact of
the peer bandwidth capacities, video playback bitrate, the
number of video pieces, and the collaboration size on the
server bandwidth consumption. The study indicates that
the amount of server bandwidth spared by the collabora-
tive VoD protocol increases rapidly with the collaboration
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Figure 1. Piece exchange possibilities between two
peers for different types of P2P applications. Black and
white rectangles represent pieces already obtained by a
peer and still missing pieces, respectively. An arrow indi-
cates a possible transfer of a piece between peers. Piece
exchange is possible only if there is at least one arrow
from peer A to peer B and at least one arrow in the oppo-
site direction.

size. The conclusions of the formal analysis are confirmed
in a series of simulations using traces of the YouTube
community. The results of the simulations suggest that the
biased random piece strategy and the collaborative VoD
protocol could reduce the server bandwidth consumption
by more than 70%.

2. P2P VoD with incentives

Each byte of video content served by a peer saves
one byte of server bandwidth. Assuming rational behav-
ior [10], peers are willing to contribute their bandwidth
only when clear incentives to do so are provided. The in-
centive models in P2P networks that are arguably the most
feasible in practice, establish bartering relationships [4]
between pairs of peers. Data transfer between bartering
peers is possible only on an exchange basis. More pre-
cisely, peer A can obtain a piece of data from peer B only
if peer A can give peer B some other piece in return.

2.1. Entropy as a measure of bartering
efficiency

The number of bartering possibilities can be expressed
in terms of the system entropy, which is defined as the
probability that two randomly selected peers do not have
any pieces of data to exchange. For instance, if all peers
have the same set of pieces, no exchange can occur, and
the entropy is maximal (equal to 1). If pieces are dis-
tributed randomly across all peers, the entropy is low.
P2P protocols based on the bartering concept can im-
prove the efficiency of data dissemination by optimizing
(decreasing) the entropy. However, the possibility of de-
creasing the entropy depends on the properties of the data
dissemination protocol. We now discuss the entropy in
each of the three models of video distribution.

Entropy in offline file-sharing systems. It is easy to
achieve a low entropy in file-sharing systems where the
data pieces can be downloaded in a random order (see Fig-
ure 1(a)). Assuming that every piece has the same chance
of being selected for download and that pieces have the
same number of replicas in the system, we can compute
the entropy in a file sharing system following a reason-
ing similar to one introduced in [9]. The entropy in a file
sharing system can be found from Eq.(7) in [9] as being
roughly equal to lnN/N , where N is the number of file
pieces.

Entropy in live streaming systems. Live streaming is
similar to file sharing in the sense that at a given time, all
peers are interested in the same content pieces (see Fig-
ure 1(b)). Streaming peers usually start the playback with
a certain delay, which allows peers to buffer pieces ahead
of the initial playback position. Pieces in the buffers of
different peers can be exchanged in a bartering fashion.
As shown in [11], if all peers have buffers of the same
size N , then the entropy in a live streaming system can be
approximated by 1/N .

Entropy in VoD systems. In VoD systems the buffer
overlap may be not sufficient to establish a bartering re-
lationship between peers (see Figure 1(c)). In particular,
if the size of the buffer is smaller than the distance be-
tween the playback positions of any two peers, the entropy
equals 1, which means that bartering is not possible at all.

The entropy in a VoD system is directly correlated with
the amount of server bandwidth required to guarantee a
video playback with a low data loss. If each peer is bar-
tering for video fragments with k other peers at a time
then the probability that none of those peers has any data
to exchange equals Ek, where E denotes the system en-
tropy. Hence the fraction of the bandwidth coming from
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the servers in a VoD system equals to Ek. The conducted
measurements of the YouTube community, described in
more detail in Section 5, indicate that the number of users
watching the same video at a given point in time is small,
even in a flashcrowd [2] on average equal to 5. Although
this issue is vastly ignored by other VoD P2P systems,
any protocol assuming that the number of bartering part-
ners k can be arbitrary large is unrealistic. Reduction in
the server bandwidth consumption can be thus achieved
only by decreasing the value of the entropy.

A reduction of the entropy can be accomplished by
optimizing the strategy determining the order in which
pieces are downloaded and by increasing the amount of
bandwidth available in the system. In this paper we pro-
pose mechanisms facilitating improvements on those two
fields. Before presenting those mechanisms we introduce
a model of a VoD system which we use in the analysis of
the presented mechanisms.

2.2. System model

For the purpose of the analysis we assume that all peers
have the same upload and download bandwidth capacities
denoted µ and c, respectively. The video playback rate is
denoted by s. The values of µ, c and s are expressed in
units representing the number of video pieces transferred
per second. This way we avoid introducing a parameter
defining the size of a piece. We assume that µ ≤ c and
s ≤ c.

It seems natural to assume that each peer maintains a
buffer of pieces directly after the playback position. The
size of this buffer is negligible compared to the length
of the video. We integrate bartering incentives into our
model by assuming that a peer can download data at the
rate not higher than the upload link capacity, which im-
poses the constraint s ≤ µ. While selecting a piece to
download, a peer chooses a piece in the buffer with prob-
ability s/µ and a piece beyond the buffer with probability
1−s/µ. Under the assumption that a peer receives data at
a rate equal to its upload link capacity, the selected prob-
abilities guarantee the buffer filling rate to be equal to the
playback rate.

The scope of the analysis is limited to the set of peers
playing a single video file. We denote by N the number
of video file pieces. We assume a uniform distribution
of the peer playback positions over the video length, so
the probability that a randomly selected peer has i pieces
equals 1/N regardless of i. We consider the least altru-
istic scenario where a peer that has downloaded all video
pieces refuses to upload any more pieces to other peers in

the system.
In addition to the peers, the system contains a num-

ber of servers, i.e., content injectors that possess the en-
tire video file and serve it to the peers without asking any
data in return. The bandwidth at the servers is a scarce
resource and its consumption should be minimized while
making sure that there is enough server bandwidth avail-
able to guarantee close-to-zero data loss (which means a
piece arrives too late for playback, or not at all). Peers
are competing for the server bandwidth. Ideally the band-
width allocation algorithm at the server should treat all
peers evenly giving each peer access to the same amount
of server bandwidth.

3. Piece selection strategy for VoD

A piece selection strategy determines the next video
piece selected for download by the peer downloading VoD
and its helpers. Obviously, the next piece to be down-
loaded by a peer has to be selected from among the pieces
that are possessed by at least one of the bartering part-
ners of the peer. A piece selection strategy is a function
that computes the piece number based on the information
available locally at the peer.

3.1. The biased random strategy

An obvious candidate for a piece selection strategy is to
select first pieces closest to the current playback position.
We will further refer to this strategy as earliest first. The
earliest first strategy leads, however, to a strong bias in the
number of piece replicas in the system. Namely, pieces
with small numbers are highly replicated while pieces
close to the end of the video are possessed by only a few
peers. Consequently, earliest first leads to a bottleneck in
obtaining the tail pieces of the video file.

Another possibility for piece selection is the rarest first
strategy adopted directly from file sharing networks [4].
Rarest first increases the entropy in the system, but it also
results in an effect opposite to the one produced by the
earliest first strategy. Namely, a peer using the rarest first
strategy will concentrate on pieces closer to the end of the
video file ignoring the pieces closer to the playback posi-
tion. To better understand that phenomenon, let’s observe
that the number of replicas of a piece depends on the posi-
tion of that piece in the video file with earlier pieces hav-
ing more replicas. The rarest first strategy will try to bal-
ance the number of replicas across the pieces by request-
ing pieces closer to the end of the video file. Pieces im-
mediately following the playback position are disregarded
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which affects the playback reliability and smoothness.
We propose the biased random strategy that opti-

mizes for the entropy by taking into account piece rarity
but at the same time not excluding for selection pieces
close to the playback position. According to the bi-
ased random strategy, each peer selecting the next piece
to prefetch, chooses a piece randomly with a probabil-
ity that is inversely proportional to the number of repli-
cas of that piece. The number of piece replicas is com-
puted by each peer from the locally collected informa-
tion about the pieces possessed by other peers. The
probabilities of selecting individual pieces are normal-
ized across the set of pieces available to download for a
peer to guarantee that the peer will always select one of
the pieces. More formally, if {i1, i2, . . . , ik} is the set
of numbers of the pieces that a peer could prefetch and
r(i1), r(i2), . . . , r(ik) are the numbers of piece replicas
as discovered by the peer, then the peer will select piece il
with probability r(il)−1/

∑k
m=1 r(im)−1.

Note that according to the biased random piece selec-
tion strategy, pieces with fewer replicas will be selected
more frequently. At the same time, the introduced nonde-
terminism gives any piece, so also pieces directly after the
playback position, a chance of being selected, even if this
piece has more replicas than some other pieces.

A possible extension of the biased random strategy is
to include in the piece selection probability the distance
between the piece and the current playback position, giv-
ing priority to closer pieces. However, piece rarity and the
distance from the current playback position are correlated
in the sense that pieces further away usually have fewer
replicas. Therefore, optimizing rarity will have a nega-
tive impact on distance from the playback position and
vice versa — minimizing distance will negatively affect
the rarity. Striking a balance between these two conflict-
ing objectives would require a piece selection probability
function much more complex than the one that we pro-
pose here. In this paper we concentrate on the basic bi-
ased random function which is more intuitive and easier
to analyze. In future work we will address possible im-
provements to this basic function.

3.2. The entropy in a VoD system

Having defined a piece selection strategy, we can now
compute the value of the entropy in a VoD system. Due
to space limitations we present here only the key results
of the elaborate analytical study which is included in an
extended version of this paper [5].

Assuming the system model introduced in Section 2.2,

E

m/s

Figure 2. The entropy as a function of the ratio
of the uplink capacity and the playback rate.

for large enough values of N , the entropy E in a VoD sys-
tem employing the biased random piece selection strategy
can be estimated as

E = 1−
(µ

s
− 1

)
ln

µ
s

µ
s − 1

+ O

(
lnN

N

)
. (1)

The component O(lnN/N) of Eq. (1) encapsulates the
probability that the peer cannot obtain a piece from out-
side of its buffer. Note that this probability exhibits a sim-
ilar trend as the entropy in file sharing P2P systems (see
Section 2.1), which is intuitive as pieces from outside of
the buffer are exchanged in a fashion similar to piece ex-
change in file sharing systems.

Note that contrary to file sharing and live streaming sys-
tems, the entropy in a VoD system cannot be reduced to an
arbitrarily low value by increasing the number of pieces
N into which the (video) file is divided. For large val-
ues of N , the last term in Eq. (1) is small, and the value
of the entropy is determined by the ratio µ/s. Figure 2
presents the decreasing trend of the entropy value as the
ratio µ/s increases ignoring the component O(lnN/N)
in Eq. (1). Note that the entropy converges to 1 when s is
close to µ. This is intuitive as a peer that plays the video
at its download rate does not have any bandwidth to spend
on obtaining pieces ahead of its playback position, which
would result in more piece selection options.

Obviously, the entropy can be decreased by reducing
the playback rate s, which would have a direct impact on
the video quality. In the next section we propose a proto-
col that increases the amount of upload bandwidth µ avail-
able for a peer, resulting in a decrease of the entropy while
preserving the current playback rate.
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4. Collaborative video on demand

In this section we introduce a protocol that supplements
the VoD system with bandwidth shared by idle peers, ef-
fectively decreasing the entropy without sacrificing the
video playback quality.

4.1. Idle bandwidth sharing

In our previous research [6] we have shown that the
performance of file sharing P2P networks can be signifi-
cantly improved by allowing peers to form collaborations
with idle peers having excess bandwidth, the so called
helpers. Formally, a helper is a peer that is not directly
interested in the content it is downloading but that em-
ploys its idle bandwidth to fetch content pieces for a peer
requesting the content. Helpers forming a collaboration
with a peer downloading data act on behalf of that peer
and use their bandwidth to barter with peers in other col-
laborations. Helpers may be attached exclusively to a sin-
gle peer and download pieces that are not present at that
peer [6], or they can act as microseeds and be shared by
all interested peers in the system [12]. In this paper we
assume the former model in which a helper acts on behalf
of a single peer at a time.

VoD systems open a new area of application for the
collaborative bandwidth sharing concept. VoD imposes
stricter service quality requirements than file sharing as
each video fragment has to be obtained before the play-
back reaches its position. The high instability of P2P ar-
chitectures caused by their dynamics has a negative im-
pact on the probability that a piece will be obtained from
the P2P network on time. This probability obviously de-
pends on the amount of bandwidth available for a peer to
download its pieces, which in turn is a direct consequence
of the number of helpers.

4.2. The impact of helpers on the entropy

Each additional helper increases the total upload band-
width capacity of a collaboration, which is defined as the
aggregate upload bandwidth of all peers in the collabo-
ration that can be used for bartering with peers in other
collaborations. We denote the upload bandwidth capac-
ity of a collaboration by µh, where h is the number of
helpers in the collaboration. Of course, a helper has to
divide its upload bandwidth between obtaining data from
other peers (by bartering) and forwarding the downloaded
data to the peer playing the video. A helper cannot send
data to the peer playing the video faster than it is down-
loading the data (so, in particular, not faster than half of

its upload link capacity) and the peer playing the video
cannot receive data faster than its download bandwidth c.
This gives us the following formula for µh:

µh = µ + hµ−min(c, h
µ

2
), (2)

where h is the number of helpers.
Replacing µ with µh in Eq. (1) gives us the following

formula for the value of the entropy in a collaborative VoD
system when each peer uses h helpers

Eh = 1−
(µh

s
− 1

)
ln

µh
s

µh
s − 1

+ O

(
lnN

N

)
. (3)

Since the value of µh increases linearly with h for h large
enough (when hµ/2 > c, or when h > 2c/µ), the shape
of the entropy as a function of h is similar to the shape
presented in Figure 2.

5. Experimental evaluation

We assess the impact of the optimizations proposed in
this paper on the server bandwidth consumption in a se-
ries of simulations. Before presenting the results of the
simulations we discuss the experimental setup.

5.1. Experimental setup

For the purpose of the simulations we have crawled the
YouTube site collecting statistics about over almost 1.4
million randomly selected videos. The statistics contain
the video duration, date and time when the video was
added, and the total number of views. We simulate dis-
tribution of a single video file with a running time qual
to an average duration of a YouTube video which is 265
seconds.

The collected YouTube statistics do not include the ex-
act times when each video has been viewed. Since the
content popularity in on-line communities usually follows
a flashcrowd pattern, we use a flashcrowd model proposed
in [2] to generate peer arrivals. The average number of
concurrent views computed from the statistics by divid-
ing the total number of views by the video age results in
a flashcrowd model that peaks at 8 views, exhibits an av-
erage of 5 views during the flashcrowd and 0.4 views out-
side of the flashcrowd. The peer bandwidth model uses
uniform values for all peers in the system with 1500 kbps
download and 384 kbps upload link capacity. The specific
link capacity values describe the most common Internet
connection type of a P2P network user [3]. The number
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Figure 3. The fraction of the bandwidth provided
by the servers.

of helpers is the same for all peers in a single simulation
but it varies across different simulations.

Each of the simulated peers maintains a list of ran-
domly selected bartering partners. The number of barter-
ing partners is set to 4 which is the default value in Bit-
Torrent [4] — the most popular P2P data bartering pro-
tocol. A peer always gives priority as a data source to its
bartering partner and downloads the a piece from a server
only if this piece cannot be downloaded on time from the
P2P network. Each video piece has a size of 100 kB.

5.2. Results of the experiments

In the first series of experiments we evaluate how the
idle bandwidth provided by the helpers influences the
server bandwidth consumption. Figure 3 shows the frac-
tion of bandwidth required to satisfy all peers that is pro-
vided by the servers. The results are presented for dif-
ferent numbers of helpers in a collaboration and different
playback bitrates. All peers in this experiment use the ran-
dom biased piece selection strategy.

Obviously, the server bandwidth consumption is lower
for higher bitrates and lower numbers of helpers involved
in the data distribution. Starting with no helpers and up
to a breaking point in which the number of helpers is
sufficient to guarantee that the total upload capacity of a
collaboration is not lower than the playback bitrate, the
server bandwidth consumption decreases slowly. Before
reaching the breaking point peers concentrate on obtain-
ing the next piece to be played, generally ignoring pieces
further away from the playback position and thus limit-
ing the bartering possibilities. Only after the number of
helpers passes over the breaking point, the biased random
strategy can start selecting pieces leading to a rapid im-
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Figure 4. Server bandwidth usage for different
piece selection strategies and playback bitrate
equal to 1500 kbps.

provement in bartering. The server bandwidth consump-
tion cannot drop to zero as the servers have to constantly
inject pieces to compensate for the peers that leave the net-
work. Observing that the average number of peers watch-
ing the video at a given time is 5, the fraction of bandwidth
contributed by the server (slightly lower than 0.3) is only
two times higher than the fraction of bandwidth consumed
by each peer watching the video (equal to 0.14).

In the second set of experiments we investigate the im-
pact of the piece selection strategy on the server band-
width consumption. Figure 4 presents the fraction of
bandwidth provided by the servers for the three strategies
described in Section 3. We keep a constant playback bi-
trate of 1500 kbps and vary the number of helpers.

Similarly as in the first set of experiments, for all three
strategies, the reduction in server bandwidth consumption
is small until the system reaches the breaking point. Af-
ter this point the differences between the strategies clearly
emerge. The earliest first strategy with its fixed prefer-
ence of pieces closer to the playback position is the least
efficient of the three. The rarest first and the random bi-
ased strategies exhibit at similar trent although the latter
strategy leads to higher savings in the server bandwidth
consumption.
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