
PuppetCast: A Secure Peer Sampling Protocol

Arno Bakker and Maarten van Steen
Department of Computer Science

Vrije Universiteit Amsterdam
The Netherlands

{arno,steen}@cs.vu.nl

Abstract

PuppetCast is a protocol for secure peer sampling in
large-scale distributed systems. A peer sampling protocol
continuously provides each node in the system with a uni-
form random sample of the node population, and is an im-
portant building block for gossip-based protocols for infor-
mation dissemination, aggregation, load balancing and net-
work management. Existing peer sampling protocols are ei-
ther very vulnerable to attacks by malicious nodes, do not
scale to large systems or provide only a static sample of the
population. PuppetCast continues to operate when 50% (or
more) of the nodes are acting maliciously, is shown to scale
to systems of significant size and continuously provides new
samples.

1. Introduction

Gossip-based protocols have many applications in large-
scale distributed systems. They can be used for information
dissemination [5], aggregation [9], load balancing [7], net-
work management [16] and others. A Peer Sampling Ser-
vice, identified as an important building block of gossip-
based protocols [10], continuously provides each node in
the system with a uniform random sample of all nodes in the
system. Contacting a truly randomly selected node greatly
improves the effectiveness of gossip-based protocols, mak-
ing a good peer sampling service essential to their success.

Several implementations of peer sampling services ex-
ist [10, 3, 2]. Only one of these implementations, Brahms,
can currently resist attacks by more than a few malicious
nodes and scale to large networks of nodes [3]. However,
Brahms provides each node with a static sample of the pop-
ulation, and was shown so far to resist only 20% malicious
nodes when there is churn. In this paper we present Pup-
petCast, a secure and scalable peer sampling protocol that
continues to operate when 50% (or more) of the nodes are
actively attacking their peers and provides a new sample of

the system every cycle of the protocol. This means that with
PuppetCast every node in the system will expeditiously re-
ceive the address of every other node in the system, a prop-
erty which a number of higher-level gossip-based protocols
depend on (e.g. [9]).

PuppetCast builds on the work of Jelasity et al. [10] who
propose to implement peer sampling for gossiping via a
protocol that itself is gossip-based. The basic idea is that
each node maintains a small partial view of the member-
ship of the network. Periodically, each node selects one of
the nodes in its partial view and sends that node its current
partial view. In reply, the contacted node sends its partial
view back. Both nodes then combine their own view and
the received view into a new partial view of the network
by means of a view merge function that overwrites their old
one.

It has been shown that this method of gossiping and
merging partial views leads to a situation in which each
node has a partial view that is a good random sample of the
node population (for a specific class of view merge func-
tions) [10]. Furthermore, this method is robust against fail-
ures of nodes and point-to-point connections between nodes
and thus is able to function in dynamic network conditions.

However, this implementation of peer sampling is also
extremely vulnerable to attacks by malicious nodes. For ex-
ample, it takes only a small group of malicious nodes to poi-
son the partial views of all other nodes, precisely because
of the epidemic nature of gossip protocols. If a small group
of malicious nodes continuously advocates the same par-
tial view, the partial views of all other nodes in the network
quickly converge to that view. The nodes then no longer
see a proper random sample of the network. Worse still,
the graph formed by the nodes and the links in their partial
views will have come to resemble a star topology. If the
central nodes in this topology are also malicious and jointly
leave the system, the graph disintegrates into a set of dis-
connected nodes and the peer sampling process stops [12].

The root cause of this vulnerability is that malicious
nodes control the partial view they send to others, and it

is very hard for the receiving nodes to detect their mali-
cious intent in time. PuppetCast removes the vulnerability
by denying nodes any choice in the partial view they provide
to others. In particular, PuppetCast replaces a node’s single
partial view with an internal view that is used by the node
to select which node to exchange views with, and an exter-
nal view that is sent to others. This external view of a node
is assigned by a trusted authority. During view exchanges
nodes will accept an external view from a node only when it
has been assigned to that node by this trusted authority (us-
ing public-key cryptography). As malicious nodes can no
longer choose what node addresses to include in the view
they send, fast spreading attacks such as just described are
no longer possible in PuppetCast.

The trusted authority introduces a central component in
the system, responsible for handing out random samples of
the population to nodes. We show that this central compo-
nent is neither a performance bottleneck nor a single point
of failure, unless targeted specifically by denial-of-service
attacks. During other attacks, PuppetCast puts only a light
load on the trusted authority, even in dynamic network con-
ditions. In particular, even when 50% of the nodes is ma-
licious and churn is high, a single trusted authority server
can support a system of 100,000+ nodes. Furthermore, the
functionality of the trusted authority can be partitioned over
multiple servers which can, in turn, be replicated to im-
prove fault tolerance. PuppetCast can also operate without
a trusted authority in a degenerative state.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the PuppetCast protocol. In Section 3 we
present the threat model we assume, identify the attacks it
enables, and discuss how PuppetCast withstands these as-
saults. Section 4 analyzes the performance of our solution
in two experiments. In Section 5 we discuss related work
and we conclude in Section 6.

2. PuppetCast

To maintain the properties of a peer sampling service,
the trusted authority must assign external views that are
uniform random samples of the node population. To this
extent, the trusted authority securely maintains a (more or
less) complete membership of the network. When a node
joins the system it registers at the trusted authority and gets
assigned an external view. With this external view the node
bootstraps its internal view and commences gossiping. As
the external views are random samples of the node popula-
tion, the peer sampling process with PuppetCast works as
before.

In the case where few nodes join and leave the system the
external views remain usable for a long time. As a result,
other nodes need not refresh their assigned external view,
implying there is only a light load on the trusted authority.

To support dynamic network conditions where nodes fre-
quently leave, PuppetCast introduces the concept of a death
certificate (DC), which is a statement by a node, say A, that
it is leaving the system. A sends its DC to the trusted author-
ity, and to each publishing node Pj that has A in its external
view. Each Pj will subsequently extend its external view
with A’s DC when sending that view to others. The death
certificates mechanism thus extends the lifetime of external
views, which therefore do not need to be refreshed by the
trusted authority, thus reducing its load in changing condi-
tions.

The death certificates mechanism does not cover the
cases where nodes crash unexpectedly, or where malicious
nodes refuse to send death certificates themselves when
leaving, or malicious nodes not sending them along with
their external views. To handle these cases PuppetCast uses
mandatory periodic reregistration, requiring a node to re-
fresh its external view periodically.

2.1. The protocol

We consider a collection of nodes where every node can
communicate with every other node via a network such as
the Internet. Each node has a unique public/private key pair
that has been certified by a certification authority [14]. The
public key (or secure hash thereof) of this pair acts as a
unique node ID for the node.

When a node A wants to participate in the peer sam-
pling service it contacts the PuppetCast bootstrap service
(BS) which acts as the trusted authority, as shown in Fig-
ure 1. The node authenticates itself to the BS using its key
pair and a standard identification protocol [14] and sends it
a register message. If the node’s key has been certi-
fied by an accepted certification authority, the BS registers
the node as a member of the peer sampling service. Reg-
istration of node A consists of storing its node ID, network
address and an expiration time TX in the BS database. From
this membership database, the BS then takes a random sam-
ple of d (node ID,network address) pairs (d is typically 20).
To this list it adds the node ID and expiration time TX of
node A and digitally signs this structure to create an exter-
nal view for A. If the BS encounters expired entries in the
database, it removes them. A node never appears in its own
external view.

Once A has received its external view, it contacts all of
the nodes Ci(i = 1. . .d) listed in the view to register itself
as a publishing node for Ci. Node A and its so-called client
node Ci run the identification protocol to authenticate each
other, and A sends an I-am-publisher message con-
taining its external view to prove it has been assigned to be
publishing node for Ci. Ci verifies that A’s external view is
valid; that is, it is signed by the bootstrap service, the con-
tained node ID is that of A, and that the expiration time TX

Publishing

nodes

Random

node

 = deregister = external−view
 = I−am−dead = I−am−publisher

Client nodes

P

P

P

C C C

B

 = register

A

1

2

m

1 2 d

Bootstrap Service

. . .

. . .

Figure 1. Overview of PuppetCast

has not yet passed. If the received view is valid, Ci records
A as one of its publishing nodes by storing its node ID, net-
work address and the expiration time TX of the view.

After A has contacted its client nodes, it copies the list
of (node ID, network address) pairs to its internal view.
Next, it selects a random pair from this internal view, for
example, the pair identifying node B. Node A then con-
tacts node B and they authenticate each other, after which
A sends its external view to node B and vice versa in an
external-view message. Both nodes verify that the ex-
ternal view is valid. If the received view proves correct,
each node merges the external view with its internal view
using a view merge function called Zipper+View0Init
to create a new internal view. If A fails to contact B, it
removes B’s address from its internal view. Subsequently,
node A waits TC seconds (the cycle time) and randomly se-
lects another peer from its internal view to exchange views
with, starting a new cycle of the protocol.

2.2. View refreshes and nodes leaving

Node A continues to do so until either its external view
expires or it decides to leave the peer sampling service.
When its external view expires, node A recontacts the boot-
strap service, and sends its old external view. The BS then
verifies that the external view has expired and creates a new
external view for A. When node A decides to leave the peer
sampling service, it first creates a death certificate for each
of its publishing nodes Pj(j = 1. . .m). A death certificate

for Pj consist of A’s public key, Pj’s node ID and the ex-
piry time TX of Pj’s external view (to limit the DC’s life-
time). It is digitally signed by node A using its key pair.
Second, A sends the relevant death certificate to each pub-
lishing node in a I-am-deadmessage. When a publishing
node receives the DC, the node checks if it is valid and, if
so, stores it. A death certificate is valid from the perspec-
tive of a publishing node when it contains its node ID and
the correct expiry time of its current external view. Finally,
the leaving node A deregisters from the bootstrap service
with a deregister message.

The next time a publishing node Pj of A sends its exter-
nal view to another node B it includes A’s death certificate.
Upon receipt, B checks that the external view and the death
certificate are valid. A death certificate for A is valid if it is
signed by A, sent by Pj and the timestamp TX equals that of
Pj’s external view. If valid, B removes the entry for A from
the external view before merging it with its internal view.
If Pj sends along death certificates which are not valid its
external view is ignored.

When publishing nodes have received death certificates
from more than half of the nodes in their external view,
they need to recontact the bootstrap service. Before do-
ing so, they wait a random amount of time to negate a cer-
tain denial-of-service attack, as we explain below. After this
time has expired, they contact the BS and pass their external
view and associated death certificates. The BS checks if it
was time to refresh and if so, creates a new external view
for the publishing node.

If at one point in time, node A discovers that none of
the nodes in its internal view are responding, it recopies its
external view to its internal view. If afterwards it still cannot
reach any node it contacts the BS to obtain a fresh external
view. The BS creates one, but records that node A made an
unwarranted request in this new external view. A is allowed
to make only a few such requests in a certain period.

2.3. View merging

The Zipper+View0Init view merge function
merges the internal view of node A with the external view
of node B as follows. The first entry in the new view of A
is filled with the address of B, if and only if A initiated the
view exchange with B. The subsequent entries are copied
from the internal view or external view alternatingly, what
we refer to as a zipping method. Whether the merge starts
with the first entry from the internal view or external view
is chosen randomly. If one view contains too few entries,
the new view is completed with entries from the longer one.
If B initiated the exchange of views, A does not use B’s
address but merges the views via a pure zipping method.
Finally, the new view becomes the new internal view for
A. Note that the node sending the external view cannot

control the contents of the receiving node’s internal view
other than through the external view it sends, which is
composed by the trusted bootstrap service, making this a
safe view-merge function.

2.4. Bootstrap service implementation

The bootstrap service can be implemented by one or
multiple servers depending on the number of nodes partic-
ipating and the fault-tolerance requirements. The workload
can be partitioned securely over multiple servers by using
the certified keys of the nodes. Each server is then made re-
sponsible for an equal part of the key space, and a node must
contact the server in whose partition its certified key falls.
The server can check whether a node contacted it rightfully
after the authentication protocol has run, ignoring illegal re-
quests.

To ensure that nodes in different partitions meet each
other, a bootstrap server exchanges samples from its
database with the bootstrap servers of the other partitions.
It then merges these samples into its so-called trusted view.
When creating external views, it takes one part from its own
database and one part from its current trusted view. Server
replication can be used to make the bootstrap service more
robust.

The membership database that the BS maintains needs to
be more or less complete to be able to draw proper random
samples of the population. It does not have to be completely
accurate. If a node is no longer registered due to an error,
it can still function. As long as its external view is valid
it can initiate exchanges with other nodes, and as long as it
appears in external views others will initiate exchanges with
it. Hence, the system can also operate without the BS for a
period of time.

3. Threat model and attacks

We assume the following threat model: Malicious nodes
will attempt to interfere with peer sampling by (1) send-
ing valid protocol messages but with malicious contents or
(2) refusing to send required protocol messages, feigning a
crash. We do not consider network-level denial-of-service
attacks against other nodes or the bootstrap service. We ini-
tially assume that at most 50% of the nodes that can join the
peer sampling service are malicious.

We discuss the attacks possible against PuppetCast
by considering the harm each message in the proto-
col can do when (1) sent maliciously, (2) not sent
or (3) when malicious nodes pretend they did not re-
ceive it. We consider register, I-am-publisher,
external-view, I-am-dead and deregister mes-
sages in turn.

The first attack is nodes sending malicious register
messages to the bootstrap service. The correct functioning
of PuppetCast depends on the bootstrap service containing
a largely accurate view of the node membership. In a Sybil
attack [6] malicious nodes would try to poison this member-
ship view by creating many extra node identities and reg-
istering as these nodes at the BS. As a result, all external
views handed out would eventually contain just addresses
of malicious nodes. To counter this attack, PuppetCast re-
quires that an identity is issued by a trusted certification au-
thority. This solution is generally recognized as one of the
few effective ones against a Sybil attack [4].

Not sending register messages or refusing the sent
external view has no effect. It either means the malicious
node is not registered or that the node does not receive a
new external view to communicate to others.

3.1. I-am-publisher messages

The second attack we protect against is malicious nodes
not registering themselves as publishing nodes with their
well-behaving client nodes. This attack is equivalent to the
attack where malicious nodes do not piggyback the death
certificates they received from good client nodes. The re-
sult of these attacks is that good client nodes cannot con-
vey to other nodes that they left the system. This im-
plies that nodes that receive an external view from mali-
cious nodes will merge the addresses of these client nodes
into their internal view thinking they are still alive. Conse-
quently, the recipient nodes will continue to contact these
client nodes, generating useless, but harmless network traf-
fic. The amount of traffic generated depends on how many
nodes leave the system (i.e., the churn rate) and the number
of malicious nodes. In our maximum threat model of 50%
malicious nodes, as much as 50% of the views exchanged
may contain addresses of dead nodes.

PuppetCast combats this attack by putting an expiry time
TX on external views. This expiry time requires all nodes to
periodically reregister at the bootstrap service. The new ex-
ternal views that reregistering nodes receive do not contain
addresses of benign dead nodes, thus preventing the attack
from affecting the system over long periods of time. The
expiry time can be adjusted to the churn rate (as observed
by the bootstrap service through the death certificates it re-
ceives). In this way the bootstrap service can ensure that
nodes refresh more frequently when churn is high.

Malicious I-am-publisher messages can be di-
rectly spotted as they do not contain a signed external view
that identifies the sender as an assigned publishing node.
Dropping received I-am-publisher messages is equiv-
alent to a malicious node not sending death certificates and
is discussed below.

3.2. External-view messages

The third attack that is evidently covered is malicious
nodes sending external views with malicious contents, e.g.,
containing IDs and addresses of fellow malicious nodes.
This attack is not possible because nodes accept only ex-
ternal views signed by the trusted authority.

The fourth attack that does not harm PuppetCast is ma-
licious nodes refusing to participate in the basic view ex-
change. PuppetCast handles this case by simply ignoring
nodes that fail to respond in the correct way and select a
new random candidate in the next cycle. Dropping received
external view messages has no effect.

3.3. I-am-dead/deregister messages

The fifth attack is complementary to the second attack
and entails malicious nodes not sending death certificates
when they leave. Hence, their address will continue to be
merged into the internal views of other nodes. As in the
second attack this will generate fruitless network traffic, as
the other nodes try to contact these dead nodes. This fifth
attack is a double-edged sword, however. The fruitless traf-
fic generated is directed at the hosts the malicious nodes ran
on, which have to process it, making it an unattractive attack
outside botnets [15]. PuppetCast has no special protection
against this attack, other than that its periodic reregistra-
tion will weed out the dead malicious nodes from the exter-
nal views. In a sustained attack, however, malicious nodes
could simply reregister when their registration is about to
expire and play dead the rest of the time.

The sixth attack is all malicious nodes leaving at once
and sticking to the protocol for leaving. This means that
all malicious nodes send death certificates to their publish-
ing nodes and deregister at the bootstrap service. The latter
causes a direct spike in the load on the bootstrap service.
This is equivalent to a direct network-level denial-of-service
attack by malicious nodes, as is the attack in which all mali-
cious nodes try to register at once. We do not consider these
denial-of-service attacks in this paper.

We do offer protection against some side-effects. The
malicious nodes sending death certificates at a massive
leave may cause a well-behaved publishing node’s exter-
nal view to become unusable (if more than half of its client
nodes declared itself dead). In our threat model of 50%
malicious nodes, which would all leave in this attack, it is
likely that all of the remaining external views become unus-
able as they contain a random sample of the population, and
50% of it is leaving. When its view becomes unusable, Pup-
petCast requires that the node obtains a new view. However,
to prevent overloading the bootstrap service in this case,
each node waits a random amount of time before reregis-
tering, thus dividing the load over time. So malicious nodes

cannot cause other nodes to contact the bootstrap service en
masse.

There is another case where PuppetCast offers some pro-
tection against overloading of the bootstrap service. Mali-
cious nodes may contact the bootstrap service too often for
a refresh of their external view. This is a denial-of-service
attack that will swamp the service’s download links and use
up processing capacity. PuppetCast provides some mea-
sures for preserving processing capacity and the service’s
uplinks. In particular, the bootstrap service will consider a
request only when its sender is not on its blacklist and the
request is legal. There are four cases when a node is allowed
to contact the bootstrap service: (1) when it is not yet reg-
istered there; (2) when its external view expires; (3) when
more than half of the nodes in its external view declared
themselves dead and (4) when all of the nodes in its internal
and external view appear dead. The bootstrap service can
verify whether a request is legal based on the information
the node is required to send along. If a node sends illegal
requests too often it is put on the blacklist. Depending on
how often it makes these requests the bootstrap service ei-
ther refuses to answer after authentication is complete or
even stops accepting messages from its network address.

4. Performance analysis

We evaluate the performance of PuppetCast in two ex-
periments, discussed in turn. In both experiments we study
the properties of a system of 10,000 nodes of which 50%
are malicious. The first property of the system we look at
is the average number of dead links in a good node’s inter-
nal view. This is a measure of how successful the malicious
nodes are in attacking the good nodes. In addition we study
the load on the bootstrap service. The load on the bootstrap
service is primarily determined by how often nodes refresh
their external view, as determined by the expiry time TX .
Therefore we run the experiments with several different re-
fresh intervals v. The larger the interval the less load there
should be on the bootstrap service. The expiration of exter-
nal views of nodes is uniformly distributed over the refresh
interval, as follows. When a node requests its first external
view the expiry time is set to the current time T plus a ran-
dom value in the range 1. . .v. Subsequent external views get
an expiry time T + v. Times and intervals are expressed in
cycles of the protocol.

We also compare the obtained results to those for two
basic gossip-based protocols from [10], rand-healer
and rand-swapper. Rand-healer uses a view-
merge function that keeps the freshest entries, and
rand-swapper uses a function by which nodes effec-
tively swap the links they are exchanging. As a re-
sult, rand-healer will more quickly remove the dead
links from its view during churn or after failure than

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 50 100 150 200 250 300a
v
g
.
#
 d

e
a
d
 l
in

k
s
 f
o
r

a
 g

o
o
d
 n

o
d
e

Cycle

puppetcast, e=0%, v=200
puppetcast, e=50%, v=10

puppetcast, e=50%, v=200
rand-healer, e=0%

rand-swapper, e=0%

Figure 2. Average number of dead nodes in a
good node’s internal view in the churn exper-
iment.

rand-swapper. On the other hand, rand-swapper
balances the load of the nodes more evenly. We assume both
protocols are operating in the absence of malicious nodes,
and their results thus represent the ideal case. For all proto-
cols we use an (internal and external) view size d of 20.

4.1. Churn experiment

The churn experiment is taken from [10]. In this exper-
iment we study the properties of a system of 10,000 nodes
over 300 cycles of the protocol. Each cycle 1% of the nodes
(=100 nodes) gracefully leave the system and are replaced
with 100 new nodes. The percentage of malicious nodes in
the initial network as well as the nodes joining and leaving
is 50%.

The good nodes leaving will send death certificates to
their publishing nodes and the bootstrap service. When
good nodes have received death certificates for more than
50% of the links in their external view, they refresh it at
the bootstrap service, uniformly distributed over the next
10 cycles. The 50 malicious nodes that leave each cycle
will not send death certificates or deregister from the BS.
In addition, none of the malicious nodes will pass on death
certificates they received from good nodes. Otherwise the
malicious nodes adhere to the PuppetCast protocol.

Figure 2 shows the average number of dead links in the
internal view of a good node. The numbers are the average
of ten runs, all with a standard deviation of less than 0.14.
The degree of a good node is 20 on average. The variable e

in the labels indicates the percentage of malicious nodes in
the system. For PuppetCast at e=50%, the number of dead
links first increases. Each cycle 50 malicious nodes leave
without telling their publishing nodes or the bootstrap ser-
vice. The 50 good nodes that leave do tell their publishing
nodes, but if those are malicious the death certificates will
not be passed on. As a result, the publishing nodes start
to spread external views that contain more and more dead
links. Furthermore, the bootstrap service starts to assign ex-
ternal views to new nodes that contain dead links from the
start. As more of these external views are received by a
good node and merged into its internal view, the number of
dead links in that view increases.

After a while, PuppetCast’s mandatory periodic rereg-
istration causes the number to stabilize. This is because
a newly handed-out external view contain less dead links
than an old one, for two reasons. First, the new view no
longer contains any addresses of good nodes that already
left. Second, the registrations of the malicious nodes that
left without telling expire and their addresses are no longer
included in external views. If we run the same experiment
with the rand-healer and rand-swapper protocols
in the absence of malicious nodes, they manage to stabi-
lize quickly at a low number of dead links. In such a be-
nign environment, PuppetCast performs even better than
rand-healer, due to its use of death certificates.

The speed and level at which the number of dead links
stabilizes in PuppetCast depends on the refresh interval v.
The shorter the interval, the faster the number stabilizes and
at a lower level. Unfortunately, short intervals put a high
load on the bootstrap service. In addition, if the interval
becomes too long the number does not stabilize. It turns out
that up until v = 200 periodic registration removes as many
entries for dead malicious nodes from the BS database as
there are malicious nodes that leave (50).

The interval v = 200 is therefore the one interval that
puts the lightest affordable load on the bootstrap service.
This load can be calculated as follows. Each cycle, 100 new
nodes register at the BS, and 50 good nodes leaving the sys-
tem send a deregister message. In addition, we mea-
sured that at v = 200 51.1 nodes reregister themselves at the
BS either due to the mandatory periodic reregistration or be-
cause they received death certificates for more than 50% of
their client nodes. The total load on the BS is therefore very
low at 201.1 requests per cycle for a 10,000-node network.
For example, given that cycle times (TC) are expected to be
in the range of 10 seconds for real Internet applications, the
total load in this scenario is just 20.1 requests per second.
A more complete analysis of the load on the BS at different
refresh intervals is found in [1].

As the load is so low it is possible to use shorter refresh
intervals, trading load for a lower average number of dead
links in the system. However, v = 200 is a viable refresh

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30

a
v
g
.
#
 d

e
a
d
 l
in

k
s
 f
o
r

a
 g

o
o
d
 n

o
d
e

Cycle

puppetcast, e=50%, v=10
puppetcast, e=50%, v=25

puppetcast, e=50%, v=200
rand-healer, e=0%

rand-swapper, e=0%

Figure 3. Average number of dead nodes in a
good node’s internal view in the catastrophic-
failure experiment.

interval as it supports the system in the worst-case scenario
of 50% bad nodes. The percentage of bad nodes is actually
more than 50% because we implicitly allowed a Sybil attack
to take place, making v = 200 even more viable, see [1].

4.2. Catastrophic failure

In this second experiment (also from [10]) we observe
a 10,000-node network for 30 cycles. At cycle 15, 5000
of the nodes, randomly chosen, crash unexpectedly. This
means that none of the nodes (good or malicious) is able
to send death certificates or deregister from the bootstrap
service. Hence, this experiment shows only the recovery
power of PuppetCast by means of its periodic reregistration,
as death certificates do not help here. There are also no
sensible attacks possible.

The property of the system we are interested in is again
the average number of dead links in a good node’s inter-
nal view, which is shown in Figure 3. The numbers are the
average of ten runs, all with a standard deviation of less
than 0.10. The catastrophic failure causes half of the links
in the internal view to become dead. As in the churn ex-
periment, the speed at which PuppetCast recovers depends
on the refresh interval. By tuning this parameter Puppet-
Cast can be made to recover quickly like rand-healer or
more slowly following rand-swapper. To approximate
the speed of rand-swapper, the refresh interval has to be
between v = 10 and v = 25. In this scenario of catastrophic

failure and our uniform distribution of refreshes over the
interval, the load on the BS is equal to 10,000

v . This im-
plies a load of between 400 to 1000 reregistration requests
per cycle on the bootstrap service, which is a light load.
Longer refresh intervals are also viable, as a catastrophic
failure such as described here is likely to be rare.

4.3. Scalability

The load PuppetCast puts on the bootstrap service in
both experiments is very low. For a system of 10,000 nodes
in the churn scenario the load is just 201.1 requests per cy-
cle, which can easily be handled by a single server (fault
tolerance considerations apart). Furthermore, the load on
the BS appears to scale linearly with the size of the net-
work in this case. In an experiment we ran with a network
10 times the original size (=100,000 nodes) the load on the
bootstrap service increased ten fold [1], which can also still
be handled by a single server. We therefore claim Puppet-
Cast is suitable for building a peer sampling service for very
large numbers of nodes.

We have also conducted a number of churn experiments
with 90% malicious nodes. Even in these extreme condi-
tions PuppetCast continues to function and prevents a good
node’s internal view from being totally polluted. For ex-
ample, the average number of dead links in a good node’s
internal view was (on average) 1.6 for v = 10 and 12.5 for
v = 200 at cycle 299 (for 10 runs of the experiments). Fur-
thermore, we measured that the percentage of good links in
a good node’s internal view is indeed 10% as desired. How-
ever, it is not clear that samples with such a small percent-
age of good links are useful to the higher-level protocols
that use PuppetCast for sampling.

In addition to the properties of a good node’s internal
view we also verified that the graph formed by the nodes and
the links in their internal views still has the desirable proper-
ties of a balanced indegree (meaning the load is distributed
evenly amongst nodes), low average path length and a low
clustering coefficient, see [1].

5. Related Work

[8] provide some sketches of how to detect and neutral-
ize malicious nodes in gossip-based protocols. However,
these indicated solutions require that malicious intent can
be derived from the messages the nodes send. This is not
possible in peer sampling where the messages are just lists
of node addresses.

[11, 12] propose solutions to protect peer sampling pro-
tocols against the attack described in the Introduction, the
so-called hub attack. Unfortunately, the proposed solutions
can defend only against a percentage of malicious nodes
smaller than 0.25 percent of the population.

Fireflies [13] is a secure membership protocol that pro-
vides a probabilistic view of the complete membership of
non-malicious nodes. In addition, the protocol provides a
set of neighbors per node. A peer sampling service can be
built from this protocol by randomly selecting peers from
the full membership or by using the neighbor set if that is
a proper random sample (which is not clear). The authors
claim the protocol scales to thousands of nodes. We have
shown that PuppetCast is much more scalable in the scenar-
ios discussed.

The Brahms [3] protocol provides each correct node with
a uniform random sample of the system. It was shown to re-
sist 20% of nodes in the system being malicious when there
is churn, and it is fully decentralized. However, the samples
of the population it provides are rather static, only changing
when either a better matching node (according to a certain
distance function) is found or one of the nodes in the sam-
ple goes down. It is therefore not directly suitable in se-
curing higher-level protocols that depend on continuously
receiving new samples (e.g. [9]). PuppetCast also scales
to large systems, can resist higher numbers of malicious
peers under churn, and, moreover, provides new samples
incessantly, ensuring the higher-level protocols will expedi-
tiously receive the address of every other node in the sys-
tem.

6. Conclusions

In this paper we presented PuppetCast, a protocol that
continuously supplies a node in a distributed system with
the addresses of a random selection of other nodes in the
system. Such a peer sampling protocol can greatly improve
the effectiveness of higher-level, gossip-based protocols for
information dissemination, load balancing, network man-
agement and other important tasks. Unlike previous peer
sampling protocols, PuppetCast is highly resistant to attacks
by malicious nodes, scales to large systems and provides
dynamic samples. In particular, we showed that PuppetCast
continues to operate even when 50% (or more) of the nodes
in the system are malicious and attacking. Furthermore, we
showed that it only puts a light load on the central trusted
authority it is based on during these attacks. We therefore
claim that PuppetCast can scale to systems of significant
size.

References

[1] A. Bakker and M. van Steen. Security Aspects of the P2P-
TV Client: A Secure Peer Sampling Service. D1.14 Deliver-
able, Freeband I-Share project, Enschede, The Netherlands,
Feb. 2008.

[2] Z. Bar-Yossef, R. Friedman, and A. Kama. RaWMS - Ran-
dom Walk based Lightweight Membership Service for Wire-

less Ad Hoc Networks. In Proc. 7th ACM Int’l Symp. on
Mobile Ad Hoc Networking and Computing (MobiHoc’06),
Florence, Italy, May 2006.

[3] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and
A. Shraer. Brahms: Byzantine Resilient Random Member-
ship Sampling. In Proceedings 27th ACM Symp. on Princi-
ples of Distributed Computing (PODC’08), July 2008.

[4] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure Routing for Structured Peer-to-peer
Overlay Networks. In Proc. 5th Symp. on Operating Sys-
tem Design and Implementation (OSDI’02), page 2990314,
Boston, MA, USA, Dec. 2002.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
Proc. 6th annual ACM Symp. on Principles of Distributed
Computing (PODC ’87), pages 1–12, Vancouver, British
Columbia, Canada, Aug. 1987.

[6] J. R. Douceur. The sybil attack. In IPTPS ’01: Revised
Papers from the 1st Int’l Workshop on Peer-to-Peer Systems,
pages 251–260, London, UK, 2002. Springer-Verlag.

[7] M. Jelasity, A. Montresor, and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer applica-
tions. In Proc. 1st Int’l Workshop on Engineering Self-
Organizing Applications (ESOA’03), Melbourne, Australia,
Apr. 2003.

[8] M. Jelasity, A. Montresor, and O. Babaoglu. Detection and
Removal of Malicious Peers in Gossip-Based Protocols. In
Proc. 2nd Bertinoro Workshop on Future Directions in Dis-
tributed Computing, Bertinoro, Italy, June 2004.

[9] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Trans. on
Comp. Sys., 23(3):219–252, 2005.

[10] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. van Steen. Gossip-based Peer Sampling. ACM Trans.
on Comp. Sys., 25(3), Aug. 2007.

[11] G.-P. Jesi, D. Gavida, C. Gamage, and M. van Steen. A
Secure Peer Sampling Service as “Hub Attack” countermea-
sure. Technical Report UBLCS-2006-17, Dept. of Computer
Science, University of Bologna, Italy, May 2006.

[12] G.-P. Jesi, D. Hales, and M. van Steen. Identifying Ma-
licious Peers Before It’s Too Late: A Decentralized Secure
Peer Sampling Service. In Proc. 1st IEEE Int’l Conf. on Self-
Adaptive and Self-Organizing Systems (SASO’07), Boston,
MA, USA, June 2007.

[13] H. Johansen, A. Allavena, and R. van Renesse. Fireflies:
Scalable Support for Intrusion-Tolerant Network Overlays.
In Proc. Eurosys’06, Leuven, Belgium, Apr. 2006.

[14] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, FL, USA,
2001.

[15] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of
Network-Based Defense Mechanisms Countering the DoS
and DDoS Problems. ACM Comput. Surv., 39(1):3, 2007.

[16] S. Voulgaris and M. van Steen. An epidemic protocol for
managing routing tables in very large peer-to-peer networks.
In Proc. 14th IFIP/IEEE Int’l Workshop on Distributed Sys-
tems: Operations and Management, (DSOM 2003), Heidel-
berg, Germany, Oct. 2003.

