1 Title

WAN data replication

2 Byline

Maarten van Steen
Vrije Universiteit Amsterdam
http://www.cs.vu.nl/~steen/

3 Synonyms

Wide-area data replication

4 Definition

The field of WAN data replication covers the problems and solutions for distributing
and replicating data across wide-area networks. Concentrating on databases alone, a
wide-area database is defined as a collection of multiple, logically interrelated databases
distributed and possibly replicated across sites that are connected through a wide-area
network.

The characteristic feature here is that data are spread across sites that are separated
through wide-area links. Unlike links in local-area networks, the quality of commu-
nication through wide-area links is relatively poor. Links are subject to latencies of
tens to thousands of milliseconds, there are often severe bandwidth restrictions, and
connections between sites are much less reliable.

In principle, WAN data replication also covers the distribution and replication of plain
files. These issues are traditionally handled by wide-area distributed file systems such
as AFS [11] and NFS [3, 12], which are both widely used. These distributed file sys-
tems aim at shielding data distribution from applications, i.e., they aim at providing a
high degree of distribution transparency. As such, they tackle the same problems that
wide-area databases need to solve. However, matters are complicated for databases,
because relations between and within files (i.e., tables) need to be taken into account as
well.

5 Historical background

WAN data replication is driven by the need for improving application performance
across wide-area networks. Performance is generally expressed in terms of client-



Enterprise network

Figure 1: Web-based data replication deploying servers that are placed at the edge of
the Internet. Adapted from Tanenbaum, van Steen: “Distributed Systems” (2nd ed.),
Prentice-Hall, 2007.

perceived quality of service: response times (latency), data transfer rates (bandwidth),
and availability. Replication may also be driven by the requirement for reducing mone-
tary costs, as the infrastructure over which data distribution and replication takes place
is generally owned by a separate provider who may be charging per transferred byte.

Replication of data has been explored in early wide-area systems such as Grapevine [2],
Clearinghouse [4], and Lotus Notes [6]. All these systems concentrated on achieving
a balance between data consistency, performance, and availability, recognizing that
acceptable quality of service can be achieved only when weak consistency can be tol-
erated. In general, this required exploring application semantics making solutions more
or less specific for an application.

In the mid-90s, researchers from Xerox explored client-centric consistency models by
which data were distributed and replicated in a wide-area database such that a notion
of strong data consistency could be presented to users individually [8]. For example,
data that had been modified by a user when accessing the database at location A would
be propagated to location B before the user would access the system again at B, but not
to other locations.

The need for WAN data replication became widely recognized with the explosion of
the Web, which instantly revealed the shortcomings of its traditional client-server ar-
chitecture. Up to date, virtually all Web sites are centrally organized, with end users
sending requests to a single server. However, this organization does not suffice for
large commercial sites, for which high performance and availability is crucial. To ad-
dress these needs, so-called Content Delivery Networks (CDNs) came into play. A
CDN is essentially a Web hosting service with many servers placed across the Internet
(see Figure 1). Its main goal is to ensure that a single Web site is automatically dis-
tributed and replicated across these servers in such a way that negotiated performance
and availability requirements are met (see also [9]).

CDNss surfaced when most Web sites were still organized as a (possibly very large) col-
lection of files that could be accessed through a single server. Modern sites, however,



are no longer statically organized, but deploy full-fledged databases from which Web
content is dynamically generated by application servers. As a consequence, the so-
called edge servers to which client requests are initially directed are gradually turning
into servers hosting partially or fully replicated databases, or database caches. These
issues are discussed below.

6 Scientific fundamentals

A popular model used to understand the various issues involved in wide-area data(base)
is the one in which every data item has a single associated server through which all
its updates are propagated. Such a primary or origin server as it is called, simplifies
the handling of conflicts and maintenance of consistency. In practice, an origin server
maintains a complete database that is partially or completely replicated to other servers.
In contrast, in an update anywhere approach updates may be initiated and handled at
any replica server. The main problem with this approach is that it requires global
consensus among the replica servers on the ordering of updates if strong consistency
is to be preserved. Achieving such consensus introduces serious scalability problems,
for which reason various optimistic approaches have been proposed (optimistic in the
sense that corrective actions may later be necessary). These are discussed in detail in
the entry “Optimistic replication and resolution.”

Queries are initially forwarded to edge servers, which then handle further processing.
This could mean that subqueries are issued to different origin servers, but it is also
possible that the edge server can compute the answer locally and send the response
directly to the requesting client without further contacting the origin. In this context,
key issues that need to be addressed for wide-area data replication are replica placement
and consistency.

6.1 Replica placement

Somewhat surprisingly, many researchers do not make a clear distinction between
placement of server machines and placement of data on servers. Nevertheless, this
distinction is important: where data placement can be often be decided at runtime, this
is obviously not the case for placement of server machines. Moreover, the criteria for
placement are different: server placement should be done for many data objects, but
deciding on the placement of data can be optimized for individual data objects.

Both problems can be roughly tackled as optimization problems in which the best K
out of N possible locations need to be selected. There are a number of variations of
this problem, but important is the fact that heuristics need to be employed due to the
exponential complexity of known solutions. For this reason, runtime data placement
decisions deploy simpler solutions. An overview is provided in [14].

Relevant in this context is comparing different placements to decide which one is best.
To this end, a general cost function can be used in which various metrics are combined:



cost = wy -res| +wy-resy+ ... wy, - resy, resg > 0,wi >0

where resy is a monotonically increasing varaiable denoting the cost of resource k and
wy its associated weight. Typical resources include distance (expressed in delay or
number of hops) and bandwidth. Note that the actual dimension of cost is irrelevant.
What matters is that different costs can be compared in order to select the best one.

Using a cost-driven placement strategy also implies that resource usage must be mea-
sured or estimated. In many cases, estimating costs may be more difficult than one
would initially expect. For example, in order for an origin server to estimate the delay
between a client and a given edge server may require mapping Internet locations to
coordinates in a high-dimensional geometric space [7].

6.2 Data consistency

Consistency of replicated data has received considerable attention, notably in the con-
text of distributed shared-memory parallel computers. This class of computers at-
tempts to mimic the behavior of traditional shared-memory multiprocessors on clusters
or grids of computers. However, traditional distributed systems have often generally
assumed that only strong consistency is acceptable, i.e., all processes concurrently ac-
cessing shared data see the same ordering of updates everywhere. The problem with
strong consistency is that it requires timely global synchronization, which may be pro-
hibitively expensive in wide-area networks. Therefore, weaker consistency models
often need to be adopted.

To capture different models, Yu and Vahdat defined continuous consistency [15], a
framework that captures consistency along three different dimensions: time, content,
and ordering of operations. When updates are handled in a centralized manner, then
notably the first two are relevant for WAN data replication. Continuous time-based
consistency expresses to what extent copies of the same data are allowed to be stale
with respect to each other. Continuous content-based consistency is used to express to
what extent the respective values of replicated data may differ, a metric that is useful
when dealing with, e.g., financial data. The differences in consistency are subsequently
expressed as numbers. By exchanging this information between sites, consistency en-
forcement protocols can be automatically started without further interference from ap-
plications.

There are essentially three ways to bring copies in the same state. First, with state
shipping the complete up-to-date state is transferred to a replica server. This update
form can be optimized through delta shipping by which only the difference between a
replica’s current state and that of a fresher replica is computed and transferred. These
two forms of update are also referred to as passive replication, or asymmetric update
processing In contrast, with active replication, function shipping takes place, meaning
that the operations that led to a new state are forwarded to a replica and subsequently
executed. This is also known as symmetric update processing.



Differences may also exist with respect to the server taking the initiative for being
updated. In pull approaches a replica server sends a request to a fresher replica to send
it updates. In the push approach, updates are sent to a replica server at the inititative of
a server that has just been updated. Note that for pushing, the server taking the initiative
will need to know every other replica server as well as its state. In contrast, pulling in
updates requires only that a replica server knows where to fetch fresh state. For these
reasons, pull-based consistency enforcement is often used in combination with caches:
when a request arrives at a caching server, the latter checks whether its cache is still
fresh by contacting an origin server.

An important observation for WAN data replication is that it is impossible to simul-
taneously provide strong consistency, availability, and partition tolerance [5]. In the
edge-server model, this means that despite the fact that an origin server is hosting a
database offering the traditional ACID properties, the system as a whole cannot provide
a solution that guarantees that clients will be offered continuous and correct service as
long as at least one server is up and running. This is an important limitation that is
often overlooked.

7 Key Applications

Wide-area data(base) replication is applied in various settings, but is arguably most
prevalent in Web applications and services (see also [1]). To illustrate, consider a Web
service deployed within an edge-server infrastructure. The question is what kind of
replication schemes can be applied for the edge servers. The various solutions are
sketched in Figure 2.

First, full replication of the origin server’s database to the edge servers can take place.
In that case, queries can be handled completely at the edge server and problems evolve
around keeping the database replica’s consistent. Full replication is generally a fea-
sible solution when read/write ratios are high and queries are complex (i.e., spanning
multiple database tables). A main problem is that if the number of replicas grow, one
would need to resort to lazy replication techniques by which an edge server can con-
tinue to handle a query in parallel to bringing all replicas up-to-date, but at the risk
of having to reconcile conflicting updates later on [10]. If queries and data can be or-
ganized such that access to only a single table is required (effectively leading to only
simple queries), partial replication by which only the relevant table is copied to the
edge server may form a viable optimization.

An alternative solution is to apply what is known as content-aware caching. In this case,
an edge server has part of the database stored locally based on caching techniques. A
query is assumed to fit a template allowing the edge server to efficiently cache and
lookup query results. For example, a query such as “select * from items where price <
50” contains the answer to the more specific query “select * from items where price <
20.” In this case, the edge server is actually building up its own version of a database,
but now with a data schema that is strongly related to the structure of queries.



Edge-server side

Origin-server side

Server

Client
Server query
response
Content-blind Database
cache copy

full/partial data replication

Content-aware

query templates

full schema replication/

]

/' Authoritative

cache L .
Schema .
.

@ database

Figure 2: Caching and replication schemes for Web applications. Adapted from Tanen-
baum, van Steen: “Distributed Systems” (2nd ed.), Prentice-Hall, 2007.

Finally, an edge server can also deploy content-blind caching by which query results
are simply cached and uniquely associated with the query that generated them. In other
words, unlike content-aware caching and database replication, no relationship with the

structure of the query or data is kept track of.

As discussed in [13], each of these replication schemes has its merits and disadvan-
tages, with no clear winner. In other words, it is not possible to simply provide a single
solution that will fit all applications. As a consequence, distributed systems that aim to
support WAN data replication will need to incorporate a variety of replication schemes

if they are to be of general use.

8 Cross references

1-COPY SERIALIZABILITY

AUTONOMOUS REPLICATION

CONSISTENCY MODELS FOR REPLICATED DATA
DATA REPLICATION

DISTRIBUTED DATABASES

EVENTUAL CONSISTENCY

OPTIMISTIC REPLICATION AND RESOLUTION
PARTIAL REPLICATION

REPLICA CONTROL

REPLICATION BASED ON GROUP COMMUNICATION
REPLICATION FOR HIGH AVAILABILITY



REPLICATION FOR SCALABILITY
TRADITIONAL CONCURRENCY CONTROL FOR REPLICATED DATABASES

Recommended reading

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures and Applications. Springer-Verlag, Berlin, 2004.

[2] A. Birrell, R. Levin, R. Needham, and M. Schroeder. “Grapevine: An Excercise
in Distributed Computing.” Communications of the ACM, 25(4):260-274, Apr.
1982.

[3] B. Callaghan. NFS Illustrated. Addison-Wesley, Reading, MA., 2000.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. “Epidemic Algorithms for Replicated Database
Maintenance.” In Proc. 6th Symposium on Principles of Distributed Computing,
pp- 1-12, Aug. 1987. ACM.

[5] S. Gilbert and N. Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services.” ACM SIGACT News, 33(2):51-59,
June 2002.

[6] L. Kawell, S. Beckhardt, T. Halvorsen, R. Ozzie, and 1. Greif. “Replicated Docu-
ment Management in a Group Communication System.” In Proc. 2nd Conference
Computer-Supported Cooperative Work, pp. 226235, Sept. 1988.

[7] E. Ng and H. Zhang. “Predicting Internet Network Distance with Coordinates-
Based Approaches.” In Proc. 21st INFOCOM Conference, June 2002. IEEE
Computer Society Press, Los Alamitos, CA.

[8] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. “Bayou: Replicated
Database Services for World-wide Applications.” In Proc. 7th SIGOPS European
Workshop, pp. 275-280, Sept. 1996. ACM.

[9] M. Rabinovich and O. Spastscheck. Web Caching and Replication. Addison-
Wesley, Reading, MA., 2002.

[10] Y. Saito and M. Shapiro. “Optimistic Replication” ACM Computing Surveys,
37(1):42-81, Mar. 2005.

[11] M. Satyanarayanan. “Distributed File Systems.” In S. Mullender, (ed.), Dis-
tributed Systems, pp. 353-383. Addison-Wesley, Wokingham, 2nd edition, 1993.

[12] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and
D. Noveck. “Network File System (NFS) Version 4 Protocol.” RFC 3530, Apr.
2003.

[13] S. Sivasubramanian, G. Pierre, M. van Steen, and G. Alonso. “Analysis of
Caching and Replication Strategies for Web Applications.” IEEE Internet Com-
puting, 11(1):60-66, Jan. 2007.

[14] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. “Replication
for Web Hosting Systems.” ACM Computing Surveys, 36(3):1-44, Sept. 2004.

[15] H. Yu and A. Vahdat. “Design and Evaluation of a Conit-Based Continuous Con-
sistency Model for Replicated Services.” ACM Transactions on Computer Sys-
tems, 20(3):239-282, 2002.



