
A Multiphased Approach for Modeling and Analysis of the BitTorrent Protocol

Vivek Rai, Swaminathan Sivasubramanian, Sandjai Bhulai, Pawel Garbacki⋆, Maarten van Steen
Vrije Universiteit Delft University⋆

Amsterdam Delft
The Netherlands The Netherlands

Email: {vivekr, swami, sbhulai, steen}@few.vu.nl, p.j.garbacki@tudelft.nl

Abstract
BitTorrent is one of the most popular protocols for con-

tent distribution and accounts for more than 15% of the
total Internet traffic. In this paper, we present an analyti-
cal model of the protocol. Our work differs from previous
works as it models the BitTorrent protocol specifically and
not as a general file-swarming protocol. In our study, we
observe that to accurately model the download process of
a BitTorrent client, we need to split this process into three
phases. We validate our model using simulations and real-
world traces. Using this model, we study the efficiency of
the protocol based on various protocol-specific parameters
such as the maximum number of connections and the peer
set size. Furthermore, we study the relationship between
changes in the system parameters and the stability of the
protocol. Our model suggests that the stability of BitTor-
rent protocol depends heavily on the number of pieces a file
is divided into and the arrival rate of clients to the network.

1. Introduction
BitTorrent is an example of a self-scalable P2P protocol

that is used for efficient content distribution [4]. The funda-
mental idea behind the protocol is to divide a file into pieces
and to make the downloaders of that file forward (i.e., up-
load) pieces to each other. By sharing the cost of uploading
among downloaders, the protocol allows hosting of a file to
become affordable. In principle, when there are N down-
loaders, the bandwidth of the outgoing link at a host need
only facilitate a single complete download, instead of N file
downloads as would be normally the case.

BitTorrent achieves fairness among peers by using a “tit-
for-tat” mechanism, by which a peer uploads a piece of a
file to another downloading peer only if the latter has a new
piece to offer. The BitTorrent protocol uses decentralized
decision making for selecting which peer to trade pieces
with (peer selection) and which pieces to trade for (piece
selection).

Despite the popularity of BitTorrent for distributing con-

tent across a large number of users, relatively few attempts
have been made to analytically model the BitTorrent proto-
col. Earlier research on modeling peer-to-peer content dis-
tribution systems assumed that each peer has global knowl-
edge of other peers and the status of their downloads [12, 9].
However, in the BitTorrent protocol, each peer makes its
own decision regarding the peer and pieces to select based
on a limited view of the complete network. Hence, assum-
ing global knowledge is unrealistic and does not really help
in understanding the system dynamics and the performance
of the protocol.

In this paper, we provide an analytical model with less
restrictive assumptions that models the BitTorrent protocol
better. To this end, we first analyze the real world traces
of the download process of BitTorrent clients. Our mea-
surement analysis reveals that the evolution of the down-
load process of a BitTorrent client can be split into three
phases: the bootstrap, the efficient download, and the last
download phase. To accurately model this download pro-
cess, we model each of these phases separately. We observe
that our model can correctly capture the behavior of real-
world BitTorrent clients. An important distinction with pre-
vious works is that we validate our model using real-world
traces. To the best of our knowledge, we are the first to do
so. Using our model, we also analyze the behavior of the
protocol for different protocol related parameters such as
the maximum number of connections and the peer set size.

Our model also allows us to analyze the stability of the
protocol. A notable work on analyzing stability of a similar
system is done in [8], where the authors analyze the stability
of coupon replication systems, which approximate the be-
havior of BitTorrent. We analyze the stability of the BitTor-
rent protocol itself. In our study, we observe that stability
of the BitTorrent protocol depends heavily on the number
of pieces a file is divided into and the arrival rate of peers to
the network. We show how the system can reach an unstable
state in realistic scenarios.

The contribution of this paper is threefold. First, we
identify that in order to accurately model the BitTorrent pro-

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

tocol, we need to divide the evolution of the download pro-
cess of a BitTorrent client into three phases. Second, we are
among the first to provide an analytical model of the Bit-
Torrent protocol that captures all phases and validate them
with real-world traces and simulations. Third, we provide
an accurate analysis of the efficiency and stability properties
of the actual BitTorrent system in contrast to other research
that has provided analysis of systems that are only roughly
similar to BitTorrent.

The rest of the paper is structured as follows. Section 2
presents the protocol background and related work. Sec-
tion 3 presents our multiphased download model and Sec-
tion 4 presents the experimental validation of the model.
Section 5 discusses the impact of the number of connections
on system efficiency and Section 6 discusses the stability of
the protocol. Section 7 discusses the open issues and the
insights we have gained during our analysis. Section 8 con-
cludes the paper.

2. Background

2.1. Algorithms and Mechanisms

The data distribution model of BitTorrent is based on
the file swarming paradigm which assumes that the file is
sliced into pieces that are distributed independently of each
other [8]. Swarming allows peers to start providing data
immediately after they have downloaded the first piece in
contrast to alternative download protocols where sharing is
possible only after obtaining the complete file.

The key decision points that influence the download effi-
ciency of the BitTorrent protocol are: (i) which peer to trade
your pieces with (peer selection strategy) and (ii) which
pieces to trade for (piece selection strategy). In BitTorrent,
these decisions are performed in a decentralized fashion by
each peer based on a limited view of the network. To en-
force fairness in sharing, BitTorrent adopts the tit-for-tat
mechanism which ensures that each peer contributes (by up-
loading pieces to other peers) proportionally to how much
it receives (by downloading pieces from other peers).

Before analyzing the impact of BitTorrent mechanisms
on the download process, we first outline the basic termi-
nology that will be used throughout the paper.

• Pieces and blocks: In BitTorrent, each file is divided
into pieces, usually of size 256 KBs, which are further
split into blocks of a default size of 16 KBs. There-
fore, a block is a basic transmission unit in the system.
However, a peer can start serving a block only after the
entire piece is received and its correctness is verified
through a hash function.

• Leechers and seeds: Peers in a BitTorrent swarm are
divided in two categories: leechers and seeders. A
leecher or downloader is a peer with a download in

progress. A peer that has acquired the complete file
and still chooses to participate in the swarm is termed
as a seed.

• Neighbor set (NS): Each peer maintains information
on the pieces possessed by a limited number of peers,
which is referred to as its neighbor set. The neighbor
set is a symmetric relation meaning that if peer A is
in the neighbor set of peer B, then peer B is in the
neighbor set of peer A. Initially, the neighbor set con-
tains a list of random peers obtained from the tracker
while joining the swarm. The updates of the neighbor
set occur during successive, periodic contacts with the
tracker and when a peer is added to the neighbor set of
another peer. Whenever a peer obtains a new piece, it
informs everyone in its neighbor set.

• Potential set: The potential set of a peer consists of the
subset of peers in its NS that have at least one piece to
trade with the peer at a given instance of time. For
example, if B is present in the NS of A and B has one
piece that A does not have (and vice versa) at a given
instant, then B belongs to A’s potential set (and vice
versa).

• Peer selection strategy: In order to exchange content,
a peer contacts a member of its neighbor set. We refer
to this process of contacting neighbors as an encounter.
The policy guiding the selection of peers to encounter
is called peer selection strategy. In the BitTorrent pro-
tocol, the peer selection strategy is implemented by the
choking algorithm that prefers peers with the highest
upload rates.

• Piece selection strategy: After a successful encounter,
the peer needs to decide which pieces to download. To
this end, BitTorrent uses two piece selection strategies:
(i) random piece first – the piece is selected randomly
and (ii) rarest piece first – the piece held by the fewest
number of neighbors is selected for download.

2.2. Related Work

In the recent years, there have been some notable
works that have proposed analytical models for general file-
swarming systems and studied their efficiency and/or sta-
bility characteristics [12, 9, 8, 2, 1, 10]. Before providing a
detailed review of these works, we first clarify two impor-
tant performance-related metrics. Efficiency is defined as
the fraction of peer upload bandwidth utilized for content
distribution (i.e., to upload content). Stability is defined as
the existence of a steady state. In the context of BitTorrent,
this means that the arrival rate of peers should be balanced
by their departure rate.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

Fluid models have been used in [12], [9], and [11], to
study the performance of file-swarming networks. The gen-
eral notion of fluid models is to study the aggregate behav-
ior of the system. In the file-swarming context, fluid mod-
els discard protocol level details and study the system us-
ing aggregate parameters such as utilization of the peer up-
load bandwidth, the peer abort rate, the average number of
seeders, etc. In [12], the authors use a fluid model to study
the efficiency of file-swarming networks under two types
of peer arrival patterns: (i) in a flash crowd phase where
peers arrive simultaneously in a single burst and (ii) in a
steady-state phase where peers arrive as a Poisson stream.
The authors conclude that during the flash crowd phase, the
service capacity of the network scales logarithmically with
the number of peers, and during the steady state phase the
capacity scales in proportion to the number of peers. In [9],
the authors use a fluid model to study the stability of a Bit-
Torrent network. The authors consider two scenarios: first,
when the download bandwidth is the bottleneck for the ser-
vice capacity and second, when the upload bandwidth is the
bottleneck for the service capacity. The authors conclude
that in both situations, the BitTorrent network is stable in
the neighborhood of an equilibrium point. In [11], the au-
thors further develop the stability results introduced in [9] to
account for the heterogeneous peer bandwidths. However,
the fundamental limitation of fluid models is that they hide
protocol dynamics and instead rely on specific input param-
eters, which are not trivial to obtain. In contrast, our objec-
tive in this paper is to study the impact of protocol design
on the performance of the system. Therefore, we consider
models which study the system parameters in detail.

In [8], the authors model the impact of protocol dynam-
ics on the performance of a file-swarming network, which
they call a coupon replication system. The authors show
that the efficiency of the coupon replication system depends
only on the number of pieces a file is split into. Further-
more, the authors show that stability depends critically on
the exogenous arrival rate of the pieces. They prove that
the system is unstable when the arrival rate of a single piece
is greater than the sum of the arrival rates of other pieces.
However, the fundamental limitation of their work is that
the design of the coupon replication system is consider-
ably different from BitTorrent, and hence their resultant dy-
namics is also different. In BitTorrent, a peer maintains a
neighbor set and encounters only within this limited view
of the network. In the coupon replication system, a peer
randomly selects its encounters from the entire swarm, and
hence there is a positive probability of failed encounters if
peers do not have pieces to trade. Furthermore, the coupon
replication system utilizes only a single connection for an
encounter, whereas, as we show later in the paper, the num-
ber of connections has a significant impact on the efficiency
of BitTorrent. Other details, like the impact of tit-for-tat

mechanism, the download process dynamics, and the evo-
lution of the system entropy, are also missing from the work
in [8].

In [5], the authors propose the use of network coding
for content distribution. This technique enables each peer
in the swarm to generate and transmit a dynamically cre-
ated piece that is significantly different from other simul-
taneously transmitted pieces. This improves the utilization
of the upload bandwidth at the peers and the entropy of the
swarm. As shown in their work, network coding is partic-
ularly useful when the network connectivity among peers
is poor and the degree of outgoing connections of a peer is
low.

The impact of fairness on the efficiency of the system
is discussed in [2]. The authors argue that the unchoking
mechanisms utilized in BitTorrent may lead to unfairness
and propose a bandwidth matching mechanism to improve
fairness which may decrease the efficiency. In this paper,
we consider a strict tit-for-tat upload policy and homoge-
neous bandwidth settings and hence their results are not di-
rectly applicable to our study. However, we plan to address
this issue in the future. In [1], the authors study the fea-
sibility of BitTorrent style systems to stream content over
the network and suggest that BitTorrent can be effective for
streaming content provided proper upload scheduling poli-
cies are used.

3. Multiphased Download Evolution Model
In this section, we model the evolution of the peer down-

load process as a Markov chain. For this purpose, we as-
sume that (i) peers exchange pieces with others only in a
strict tit-for-tat fashion and (ii) peers have homogeneous
bandwidth connections. Even though these assumptions
may seem limiting, our model captures the evolution of the
download process of a BitTorrent client with reasonable ac-
curacy. In particular, the model captures three phases in the
peer download evolution that occur in practice. We discuss
the impact of the two assumptions and describe how to ex-
tend our model in Section 7.

3.1. Model Details

The evolution of the download process of a single peer in
BitTorrent can be described by a three-dimensional Markov
chain. The state space is defined by the triplet (n, b, i);
where n is the number of active connections, b is the num-
ber of downloaded pieces, and i is the size of the potential
set. We assume that a peer joins the system without any
piece. Therefore, its initial state is (0, 0, 0). In addition, we
assume that a peer exits the system immediately after down-
loading all B pieces. Therefore, the process is absorbed in
state (0, B, 0).

The transition probability of moving from state (n, b, i)
to state (n′, b′, i′) can be split into several functions f , g,

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

and h. These functions represent the probability of mak-
ing the transition to b′, i′, and n′, respectively. Thus, the
transition probabilities are given as follows.

Pr{(n, b, i) → (n′, b′, i′)}

= f(b′ |n, b) × g(i′ |n, b, i)× h(n′ |n, b, i′),

for 0 ≤ n, n′ ≤ k, 0 ≤ b, b′ ≤ B, and 0 ≤ i, i′ ≤ s. Note
that this also reflects the order in which the variables in the
process are updated: first the number of downloaded pieces
b is updated, then the potential set size i, and finally the
number of connections n (which depends on i′). Recall that
in the equation above, B represents the number of pieces
to be downloaded, k the maximum number of simultaneous
uploads, and s the maximum achievable size of the neighbor
set.

When a peer joins the system, it acquires its first piece
either through seeds or through optimistic unchoking from
other downloaders. Therefore, the process moves to a state
with b′ = 1 when b = 0. However, the download progress
for subsequent pieces depends on the number of active con-
nections n that was established previously. Thus, the num-
ber of downloaded pieces in the next state increases by n
such that the total number of downloaded pieces does not
exceed B, i.e., the total file size. Hence, the state transitions
in b, determined by the function f , are given by

f(b′ |n, b) =











1, b = 0, b′ = 1,

1, b ≥ 1, b′ = min{b + n, B},

0, otherwise.

The evolution of the potential set is determined by the
number of successful connections that are set up with peers
in the neighbor set. There are various factors on which this
number depends.

First, upon joining the system, thus with b + n = 0, the
peer tries to setup a connection with each of the s peers in
the neighbor set with success probability pinit. The number
of successful connections can then be modeled as a binomi-
ally distributed random variable X1 with parameters s and
pinit.

As explained, after this transition, the peer will acquire
its first piece, resulting in b + n = 1. However, if the first
piece is not tradable with anyone in the neighbor set (i.e.,
the potential set size is 0), then the peer has to wait until
a new peer with exchangeable pieces enters the neighbor
set. We represent the probability that this happens by the
parameter α.

The potential set size is determined by the instantaneous
trading power of a peer P , which depends on the number
of complete pieces b + n ≥ 1 that P has when i > 0. We
consider two cases: (1) other peers who already have at least
j > b + n pieces, and (2) those who have equal or less.

For the first group we need to determine the probability
that a peer Q has at least one piece to exchange with P .
Q has nothing to exchange if all of P ’s b + n pieces are al-
ready stored at Q. This probability is equal to

(

j
b+n

)

/
(

B
b+n

)

.
In other words, the probability that P has something to ex-
change with an arbitrary node with at least b + n pieces, is
equal to

B
∑

j=b+n+1

ϕ(j)

[

1 −

(

j

b + n

)

/

(

B

b + n

)]

,

with ϕ the probability distribution function of the different
pieces, i.e., ϕ(j) is the fraction of peers having j pieces. We
return to this distribution in Section 6.

For a peer Q with j ≤ b + n pieces, P will not be able
to exchange pieces if all of Q’s j pieces are already stored
at P . This probability is equal to

(

b+n

j

)

/
(

B

j

)

, so that the
probability that P will be able to exchange pieces is

b+n
∑

j=1

ϕ(j)

[

1 −

(

b + n

j

)

/

(

B

j

)]

.

As a consequence, the probability p(b+n) that a randomly
selected peer has a piece to exchange with a peer having
b + n pieces is given by

p(b+n) =

B
∑

j=b+n+1

ϕ(j)

[

1 −

(

j

b + n

)

/

(

B

b + n

)]

+

b+n
∑

j=1

ϕ(j)

[

1 −

(

b + n

j

)

/

(

B

j

)]

.

(1)

Hence, in this case, the number of successful connections is
given by a binomially distributed random variable X2 with
parameters s and p(b+n).

Finally, it could happen that a peer P has pieces to ex-
change, i.e., b + n > 1, but that the potential set size i
drops to 0. This typically occurs when P has acquired a
lot of pieces, so that finding another peer Q to trade pieces
with becomes much harder. In this case, P will have to wait
for new pieces to flow into the neighbor set. We model the
probability of this event by the parameter γ.

The evolution of the potential set, determined by the

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

function g, can now be given as:

g(i′ |n, b, i) =



























































Pr(X1 = m), b + n = 0, i′ = m,

α, b + n = 1, i = 0, i′ = 1,

1 − α, b + n = 1, i = 0, i′ = 0,

Pr(X2 = m), b + n ≥ 1, i > 0, i′ = m,

γ, b + n > 1, i = 0, i′ = 1,

1 − γ, b + n > 1, i = 0, i′ = 0,

1, b = B, i′ = 0,

0, otherwise,
(2)

Let us now look at the transitions in the number of active
connections. These transitions depend on the re-encounter
probability pr, that an established connection does not fail,
and on the probability pn, that a new connection is estab-
lished. Clearly, upon entry, when b + n = 0, the peer can-
not establish new connections, since it has no pieces to ex-
change. When b + n ≥ 1, the number of active connections
due to re-encounters is a binomially distributed random
variable Y1 with parameters n and pr. Since the potential set
size has grown to i′, there can be at maximum min{i′, k}
connections of which max{min{i′, k} − n, 0} are new.
Thus, the number of new connections is a binomially dis-
tributed variable Y2 with parameters max{min{i′, k} −
n, 0} and pn. Therefore, the transitions in the number of
active connections, determined by the function h, is given
by

h(n′ |n, b, i′) =



















1, b + n = 0, n′ = 0,

Pr(Y1 + Y2 = m), b + n ≥ 1, n′ = m,

1, b = B, n′ = 0,

0, otherwise.
(3)

3.2. Multiphased Evolution

The evolution of the download progress in BitTorrent can
be divided into three critical phases: the bootstrap, the effi-
cient download, and the last download phase.

Bootstrap phase In this phase, a peer acquires its first
complete piece and is then ready to trade it with the mem-
bers of its neighbor set. However, if the first piece is not
tradable with anyone in the neighbor set (i.e., the potential
set size is 0), a peer waits until a new peer with exchange-
able pieces enters the neighbor set. In our model, the boot-
strap phase is reflected by the transitions from (0, 0, 0) to
(0, 1, i).

If i = 0, the Markov process has a self-transition in the
state (0, 1, 0) with probability 1 − α and a transition to the
state (0, 1, 1) with probability α. The parameter α is equal

to λws
N

, where λ is the arrival rate of peers, s is the neighbor
set size, w is the probability that a newly arriving peer has
a piece to exchange, and N is the number of peers in the
swarm.

Otherwise, if i > 0, the process makes transitions out of
the bootstrap phase into the trading phase, where the down-
load rate depends on the efficiency of the BitTorrent mech-
anisms rather than the altruistic behavior of other peers.

Efficient download phase In this phase, there is always
someone in the neighbor set to trade pieces with (i.e., the
potential set size is always greater than one). The instan-
taneous size of the potential set constrains the maximum
number of connections a peer can establish. In our model,
this is demonstrated in Equation (3), where Y1 + Y2 (the
total number of connections) is constrained by min (i, k).

The potential set size is determined by the instantaneous
trading power of a peer, which depends on the number of
completed pieces that a peer has. From Equation (2), the bi-
nomial variable X2 represents the distribution of the poten-
tial set with parameters s and p(b+n). The parameter p(b+n)

represents the probability that a randomly selected peer has
a piece to exchange with a peer having (b+n) pieces. Note
that the probability p(b+n) increases from 0.5 for b + n = 1
to its maximum at b + n = B/2, and decreases to 0.5 for
b + n = B − 1. Therefore, on average more than half
the peers in the neighbor set are ready to exchange content.
However, once the potential set size falls to 0, the process
makes a transition to the last download phase. Otherwise,
the process is absorbed in state (0, B, 0).

Last download phase This download phase occurs when
the potential set size falls to 0. In this phase, the download
rate depends on γ, the rate at which new pieces flow into the
neighbor set. The process makes transitions from (0, b, 0)
to (0, b + 1, 0) with probability γ and self-transitions with
probability 1 − γ. The process is finally absorbed in the
state (0, B, 0).

4. Model Validation
In this section, we present the experimental validation of

our model. We validate our multiphased download model
using two methods. First, we simulate the BitTorrent proto-
col and measure the impact of the neighbor set size on the
evolution of the potential set and hence the evolution of the
download rate. As a next step, we collect real-world traces
of the download process of a BitTorrent client for differ-
ent kinds of swarms and validate these real-world measure-
ments.

4.1. Validation with Simulations
We implemented a discrete-event simulator in C++ that

simulates a BitTorrent swarm. In our simulator, peers ar-

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180 200

P
o

te
n

ti
a

l
S

iz
e

 S
iz

e
/

N
e

ig
h

b
o

r
S

e
t

S
iz

e

Number of Pieces Downloaded

PSS=5
PSS=10
PSS=25
PSS=40

(a) Potential set

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160 180 200

E
v
o

lu
ti
o

n
 T

im
e

li
n

e

Number of Pieces

PSS=5

PSS=50

Sim, PSS=50
Model, PSS=50

Sim, PSS=5
Model, PSS=5

(b) Evolution timeline

Figure 1. Effect of the peer set size on the
download process.

rive to the swarm according to a Poisson process with a cer-
tain rate and depart as soon as they have downloaded all the
pieces. The number of pieces in a file (B), the maximum
number of connections for a peer (k), the peer set size (s),
and the time to download a piece are built as configurable
parameters.

We validate the model by comparing the download pro-
cess described by the model with the one obtained from the
simulation. As previously discussed in our model, we can
identify three phases in the download process. In Figure 1
we observe that the bootstrap and the last download phase
do occur when the peer set size is small (both in the simu-
lation and the model). The reason for this is that there is a
high probability to lose a significant fraction of the neigh-
bors leading to a small potential set size. The download rate
depends highly on the potential set size, as the peers in this
set are the ones with whom pieces are exchanged. Hence,
the potential set evolution and the download rate are highly
correlated. In the efficient download phase the graphs for a
peer set size of 5 do not match as accurately as for higher
peer set sizes. The gap between the two plots, obtained from
the simulation and the model for a peer set size of 5, can
be explained as follows. The function p(b+n), which de-
termines the size of the peer set in the efficient download
phase, is the dominant factor in determining the duration
of the efficient download phase. It is not trivial to deduce
an exact expression for this function from the data. The
function in our model serves as a first approximation, and
exhibits the presence of the bootstrap and the last download
phase, capturing the trends seen in the simulation results.
As can be seen from the figure, the model validates the re-
sults with a high accuracy for higher values of the peer set
size. In reality, BitTorrent clients do have peer set sizes in

the range of 40–70. This leads us to believe that our model
is useful to study the BitTorrent protocol in many realistic
scenarios.

4.2. Validation with Real-World Traces

In addition to evaluating our model through simula-
tions, we have measured the real world BitTorrent swarms
and used the collected data to validate our modeling ap-
proach. For the purpose of obtaining measurements we have
extended a popular BitTorrent software, the BitTornado
client1, with the functionality required to collect detailed
statistics on the download process. The modified BitTor-
rent client was injected into real-world BitTorrent swarms
and actively participated in logging download progress in-
formation. Since our model assumes a strict tit-for-tat piece
trading strategy, during the measurements we did not allow
the modified client to interact with the seeds.

An important aspect of the measurement setup is the
swarm selection criterion. To eliminate the possible influ-
ence of starvation inherent to small swarms on the obtained
results, we have collected data for swarms of sizes varying
from a few hundred to a few thousand peers. These swarms
have been selected based on manual inspection of the statis-
tics provided by the tracker. The tracker statistics consist of
the number of peers involved in the download at a one hour
resolution. We were, thus, able to filter out swarms in flash
crowds (by observing rapidly increasing numbers of peers)
as well as dying swarms and concentrate only on the stable
ones.

In Figure 2, we plot the download rate evolution and the
corresponding evolution of the potential set size for three
different peers. We selected these plots to demonstrate three
different instances of the download evolution process. Fig-
ures 2(a) and (b) depict a download instance without any
predominant bootstrap and last download phase. As can be
seen in Figure 2(b), the potential set size grows very fast
in the beginning and remains greater than 15 throughout
the download process, which implies that a peer always has
more than k = 7 other peers to exchange the pieces with.
This results in a smooth download rate from the beginning
to the end as depicted in Figure 2(a). Figures 2(c) and (d)
depict a download instance with a significant last download
phase. This is because the potential set size, as depicted
in Figure 2(d), drops to 1 towards the later stages of the
download. Therefore, the download progress depends on
whether a successful connection with this potential peer is
established or some new peers join the potential set. Fig-
ures 2(e) and (f) depict a download instance where a peer
is stuck within its bootstrap phase. This is because the po-
tential set size as depicted in Figure 2(f), is equal to 0 dur-
ing the initial part of the download process and hence the

1http://www.bittornado.com.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

C
um

ul
at

iv
e

by
te

s
do

w
nl

oa
de

d

Timeline

(a) Download Process of
a client with a smooth
download

 0

 5

 10

 15

 20

P
ot

en
tia

l S
et

 S
iz

e

Timeline

(b) Potential Set Size of
a client with a smooth
download

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

C
um

ul
at

iv
e

by
te

s
do

w
nl

oa
de

d

Timeline

(c) Download Process of
a client with a significant
last phase

 0

 2

 4

 6

 8

 10

 12

 14

P
ot

en
tia

l S
et

 S
iz

e

Timeline

(d) Potential Set Size of
a client with a significant
last phase

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

C
um

ul
at

iv
e

by
te

s
do

w
nl

oa
de

d

Timeline

(e) Download Process of
a client with a significant
bootstrap phase

 0

 5

 10

 15

 20

P
ot

en
tia

l S
et

 S
iz

e

Timeline

(f) Potential Set Size of
a client with a significant
bootstrap phase

Figure 2. Plots of the download process and the evolution of potential set for different clients.

download rate remains 0 until the potential set size makes a
transition out of state 0.

4.3. Conclusion

We have demonstrated that a typical peer download in a
BitTorrent swarm evolves through three phases. The per-
formance of each phase is determined by different protocol
parameters and design strategies.

In the bootstrap phase, the performance is determined by
two factors. First, the initial size of the potential set, i.e., the
number of neighbors interested in exchanging pieces with a
peer that has only one complete piece. If the initial poten-
tial set size is 0, a peer remains with this neighborhood un-
til new peers arrive. Therefore, the design of the BitTorrent
protocol should be such that the probability of remaining in
the bootstrap phase is minimized. This can be accomplished
either by choosing the size of the neighbor set sufficiently
high or by intelligent construction of the neighbor set as de-
scribed in [8]. In this paper, the authors suggest clustering
of peers in terms of their download status such that the prob-
ability of successful encounters can be increased. However,
feasible implementation of such a technique is still an open
question and should be considered as future work. Second,
the important factor that determines the performance in the
bootstrap phase is the rate at which new peers are arriving
into the neighbor set. To improve performance, the tracker
can bias new peer arrivals into the neighborhood of the peers
which are trapped in the bootstrap phase.

The second phase of the download evolution is the trad-
ing phase. Most of the pieces are downloaded in this phase.
Therefore, the analysis of this phase is crucial in the study of
the overall system efficiency. The potential set size within
this phase is always greater than 0. In fact, as shown in Fig-
ure 1, for a suitably chosen neighbor set size, the fraction
of neighbors in the potential set is close to 1. Therefore, the
performance of the download process in this phase is deter-
mined by the number of active connections established with

the peers in the potential set. Thus, an important system pa-
rameter which determines the performance of the system is
k (the maximum permissible number of simultaneous ac-
tive connections). We will study the impact of k on the
efficiency of the system in the next section.

A peer makes a transition to the last download phase with
a certain probability. Once the peer enters this phase, the
rate at which the download process evolves is determined
by the rate at which new pieces are flowing into the neigh-
bor set. The last download phase or the last piece problem
has also been observed in the measurement study conducted
in [7]. However, we are the first to model the protocol dy-
namics that creates such a phenomenon. Furthermore, we
discuss the possible techniques that can be used to alleviate
the last piece problem in Section 7.

5. Efficiency Model
In the previous section, we studied the download evo-

lution model for a BitTorrent peer. In our model, the effi-
ciency of the download process depends on the average uti-
lization of connections. Therefore, if xi represents the frac-
tion of peers that have i active connections, for i = 0, . . . , k,
the efficiency is defined by η = (1/k)

∑k

i=1 i · xi. In this
section, we study the impact of k, the maximum permissi-
ble number of simultaneous connections, on the efficiency
of the system.

The number of active connections at a peer evolves as a
general birth/death process. The birth rates are determined
by the success rate of new encounters, and the death rates
are determined by the expected length of active connections.
Therefore, to ensure a high download efficiency in a Bit-
Torrent swarm, both the expected length of active connec-
tions and the success probability of new encounters should
be high. The success probability depends on the fraction of
peers that have at least one open connection, i.e., a connec-
tion that is not active. However, if the expected length of
active connections is high, the fraction of open connections

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

will be low and hence the success probability will be low.
Therefore, to study this intricate dynamics of connection
establishment/failure, we establish a Markov chain model..

The state space of the Markov chain is given by
{x0, . . . , xk}. Connection failures are modeled as transi-
tions from state xi to xj for all i > j, with transition rates
given by wi

i−jxi, where wi
l represents the probability that l

connections out of the i active connections fail. Therefore,
wi

l is given by the binomial probability
(

i
l

)

(1 − pr)
lpi−l

r ,
where pr, as previously defined, represents the probability
(averaged over all peers in the system) that an established
encounter does not fail.

Connection establishments are modeled as transitions
from state xi to xi+1 for all i < k. This transition occurs
when a peer from class i sets up a connection successfully
with another peer j having at least one open connection,
thus j < k. However, when j = i − 1, the peer in class
i moves to class i + 1 and the peer in class i − 1 moves
to class i, resulting in no effective change in the fraction
xi. Moreover, when j = i, both peers move from class i
to class i + 1. Hence, the transition rates can be written as
(1 − xi−1 + xi − xk)xi.

This type of Markov chains are typical for modeling
migration processes. It is well known that a finite-state
Markov chain which is unichain and a-periodic has a unique
steady-state (or equilibrium) distribution [3]. Even though
our Markov chain satisfies the unichain property and is a-
periodic, the lemma does not directly apply. In our model,
we have that xi ∈ [0, 1], thus we have a compact state space
instead of a finite state space. However, let N be the number
of peers in the system, then x̃i = xiN ∈ {0, . . . , N}, and
hence the lemma applies to the process x̃i. Consequently,
the lemma applies to the original process as well, since there
is a one-to-one mapping between x̃ and x.

The equilibrium distribution of the Markov chain can be
obtained from the solution of the so-called system of bal-
ance equations. The balance equations describe the evolu-
tion of the system in steady state. For the downward transi-
tions, the fraction xi decreases because of transitions out of
state xi due to failures in xi, and increases because of tran-
sitions into state xi due to failures in xj for all j > i. The
change in the first case is given by xi

∑i

l=1 wi
l , whereas the

latter is given by
∑k

l=i+1 wl
l−ixl. Hence, the evolution for

the downward transitions is given by

xi = xi − xi

i
∑

l=1

wi
l +

k
∑

l=i+1

wl
l−ixl. (4)

For the upward transitions, the fractions xi are updated
in increasing order so that we update x0 first, followed by
x1, x2, etc. When peer i connects to a peer from class l < k
(which occurs with probability xl), the peer from class i
moves to class i + 1, and the peer from class l moves to

class l + 1. Thus, when l = i − 1 the number of peers in
class i remains the same, and when l = i two peers leave
class i. Therefore, the net change in the fraction xi is given
by

(

xi · N − 1 + 1{l=i−1} − 1{l=i}

)

/N . Hence, the total
change is given by

xi =

k−1
∑

l=0

xl

xi · N − 1 + 1{l=i−1} − 1{l=i}

N
+ xkxi

=

k
∑

l=0

xl

xi · N − 1 + 1{l=i−1} − 1{l=i} + 1{l=k}

N
.

(5)

The changes for peers j with i 6= j < k are not captured
by Equation (5). Changes occur only when peer i connects
to peers in class j − 1 and class j. In the first case, when
i 6= j − 1, only one peer enters class j, whereas two peers
enter in case i = j − 1. In the second case, a peer leaves
class j. Thus, the net change in the fraction xj is given by
(

xj ·N +1{l=j−1} +1{l=i}−1{l=j}

)

/N . Hence, the total
change is given by

xj =

k
∑

l=0

xl

xj · N + 1{l=j−1} + 1{l=i} − 1{l=j}

N
, (6)

for j 6= i and j < k. Note that the value of xk remains the
same, since peers in this class do not have open connections.

The formulas given by Equations (5)–(6) form the sys-
tem of balance equations. Due to the complex state-
dependent transition rates, closed-form expressions for the
equilibrium distribution are hard to obtain. Alternatively,
by iterating this set of equations, the state of the system
converges to the steady-state distribution [3]. Note that the
order in which we iterate the equations provides an upper
bound to the efficiency η. Since we start with the classes
with the least number of connections first, more peers are
able to migrate to classes with a high number of connec-
tions.

Figure 4(a) depicts the impact of k on the efficiency of
the system. As we mentioned before, the order in which
we iterate the equations in the model gives an upper bound
on the efficiency. Therefore, the model overestimates the
simulation results by over 8% for k = 1. However, as k
increases, the relative difference between model and simu-
lation results is less than 1%. Moreover, both the model and
simulation results provide conclusive evidence that the ef-
ficiency of the system increases significantly by increasing
k from 1 to 2. Further, increasing the value of k beyond 2
does not bring any significant improvement in the efficiency
of the system. This result can be explained as follows. For
k = 1, the duration of a connection is determined by the
number of exchangeable pieces at the start of the connec-
tion. However, for k > 2, peers maintain multiple simul-

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Number of connections

Model
Simulation

(a) Impact of k on efficiency

 500

 1000

 1500

 2000

 2500

 3000

of

 p
ee

rs

Timeline

3 Pieces

10 Pieces

(b) Effect of B on successful
downloads

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
nt

ro
py

Timeline

3 Pieces

10 Pieces

(c) Effect of B on entropy

 1

 1.5

 2

 2.5

 3

 3.5

 4

 190 192 194 196 198 200

T
T

D
 b

lo
ck

Num Blocks

Normal
Shake

(d) Effect of shaking peer set on
download time during the last
download phase

Figure 3. Effects of model parameters on the
download process.

taneous connections. Therefore, new pieces are simultane-
ously arriving at the peers, which can also be exchanged.
Thus, the expected duration of connections increases sig-
nificantly by increasing k from 1 to 2. Longer duration of
established connections implies low re-encounter probabil-
ities, and hence a high efficiency of the system.

6. Stability
In this section we discuss the stability of the BitTorrent

protocol, where stability is defined in terms of the entropy
of the system. When di denotes the replication degree of
the ith piece in the system, then the entropy E is given by

E =
min{d1, . . . , dB}

max{d1, . . . , dB}
.

The entropy is a measure of the skewness of the piece distri-
bution in the system. We call the system stable if the long-
run behavior of the system is such that the entropy E goes

to 1. Otherwise, if the entropy goes to 0, the skewness of
the pieces prohibits the progress of peers resulting in large
download times leading to instability. We use our down-
load evolution model and simulation experiments to study
the impact of system design parameters on the stability. As
discussed in the previous sections, the download process is
divided into three phases. We show that each phase has an
influence on the stability of the system.

In the bootstrap phase, the parameter α determines the
probability that the potential set remains empty. The smaller
the entropy E, the smaller the probability α becomes, due to
the fact that the skewness in the system gives a higher prob-
ability of obtaining more replicated pieces. This leads to
longer expected sojourn times in the bootstrap phase, since
on average the time that a peer remains in this phase is
1/α. If the arrival rate is high enough, the skewness in-
creases since the new peers will also encounter more repli-
cated pieces with a higher probability. Hence, the skewness
deteriorates the stability of the system.

In the trading phase, the BitTorrent protocol tries to sta-
bilize the system compensating for any initial skewness in
the bootstrap phase. The dynamics of the protocol is such
that the least replicated pieces are exchanged at a faster rate
than the more replicated pieces. Provided that the number of
pieces B is large enough, this creates a drift of the entropy
E towards 1 again, leading to ϕ being a uniform distribu-
tion. In other words, the fraction of peers having j pieces
is the same for all j. When the number of pieces B is too
small, peers leave the system too quickly and decrease the
number of less replicated pieces. Consequently, when B
is too small, the expected time peers remain in the trading
phase is not sufficiently long to push the entropy back to 1.

In the last download phase the parameter γ affects the
rate at which new peers enter the potential set when it is
empty. When γ decreases, peers with almost all pieces re-
main longer in the system, since the expected time in the
last download phase is 1/γ. This improves stability of the
system in the same way as explained in the efficient down-
load phase. Hence, smaller values of γ provide a larger drift
of the entropy E towards one.

In Figure 4(b) and (c), we show using simulations the
effect of B on the number of peers in the system and the
entropy when starting from an initial state with a high skew-
ness. As explained in the discussion, when B is too small
the system does not have sufficient time to reach stability
again. The figures reflect this insight, since the number of
peers grows very large when B = 3, whereas stability is
achieved when B = 10. Similarly, the entropy goes to 0 in
the former case, whereas the latter case pushes the entropy
back to one.

An exact analysis of the stability of the BitTorrent pro-
tocol capturing the stability behavior (and its effects on
all the parameters) is a nontrivial problem and is left for

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

future work. The difficulty arises from the complex de-
pendence between the parameters (that affect each other)
at each transition in our model. This intricate interplay
requires transient methods to deal with the nonstation-
ary state-dependent behavior of the parameters. For an
overview of transient methods we refer to [6].

7. Discussion and Future Work
This section contains the lesson we learn from the anal-

ysis and models discussed in this paper.

7.1. The Last Piece Problem
In our study, we recognize that the last piece problem oc-

curs when the pieces missing at a peer are not held by any
other peer within its neighbor set. An obvious solution to
this problem is to download the final pieces from seeds (as
they do not enforce the tit-for-tat mechanism). However, in
the event of retaining a strict tit-for-tat trading mechanism,
we observe that continuous randomization of the neighbor
set can alleviate the last piece problem. To demonstrate this,
we ran a simulation experiment with the following modifi-
cation to the BitTorrent algorithm: when a peer completes
90% of its pieces, it removes all its neighbors in its current
peer set and gets a new (randomly chosen) set of peers from
the tracker for populating its peer set. We call this process
as shaking the peer set. We evaluated the impact of this
modification to the traditional BitTorrent setup and plotted
the download time for just the last few pieces for the sake
of clarity. The results of our experiment are given in Fig-
ure 4(d). As seen in the figure, shaking the peer set signif-
icantly reduces the download time for the last few pieces.
Even though this is a simple study, we believe this is a
promising step to address the last piece problem.

7.2. Effects of Seeding
A seed is a peer that has acquired a complete file and

still chooses to participate in the swarm. Furthermore, since
seeds do not enforce the tit-for-tat piece trading download-
ers can get new pieces for free. Previous models, [12]
and [9], incorporate the impact of seeding by assuming
seeds to be a central piece distribution source with the ca-
pacity of the source scaled by the number of seeds. In our
model, we can incorporate the effects of seeds by modeling
extra connections, which do not require the strict tit-for-tat
policy. However, several advanced seeding techniques such
as super-seeding2 have been proposed and we plan to study
seeding as a separate work in future.

8. Conclusion and Future Work
In this paper, we presented an analytical model of the

BitTorrent protocol. In our study, we observe that to accu-
rately model the download process of a BitTorrent client,

2http://en.wikipedia.org/wiki/Superseeding.

we need to split the download process into three phases.
Our work differs from the previous works mainly in two
aspects. First, we model the BitTorrent protocol specifi-
cally and not as a general file-swarming protocol. Second,
we validate our model using simulations and real-world Bit-
Torrent client traces. Our experiments show that our model
validates the real-world behavior with reasonable accuracy.
Using this model, we studied the efficiency of the protocol
based on various protocol-specific parameters such as the
maximum number of connections and the peer set size. Our
analysis shows that the gain in system efficiency rapidly de-
creases beyond two connections. Furthermore, we studied
the relationship between changes in the system parameters
and the stability of the protocol. Our model suggests that
the stability of the BitTorrent protocol depends heavily on
the number of pieces a file is divided into and the arrival
rate of clients to the network.

As an immediate next step, we plan to include the impact
of seeding behavior in our model. Furthermore, we would
like to do an exact analysis of the overall protocol stabil-
ity including transient effects for different protocol specific
parameters.

References
[1] D. Arthur and R. Panigrahy. Analyzing BitTorrent and re-

lated peer-to-peer networks. In SODA ’06, pages 961–969,
New York, NY, USA, 2006. ACM Press.

[2] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing
and improving BitTorrent performance. MSR-TR-2005-03,
Microsoft Research, Redmond, WA, USA.

[3] K. Chung. Markov Chains with Stationary Transition Prob-
abilities. Springer-Verlag, 1967.

[4] B. Cohen. Incentives build robustness in BitTorrent. Proc. of
Workshop on Economics of Peer-to-Peer Systems, 2003.

[5] C. Gkantsidis and P. Rodriguez. Network coding for large
scale content distribution. In Proc. of IEEE Infocom, 2005.

[6] A. Ingolfsson, E. Akhmetshina, S. Budge, Y. Li, and X. Wu.
A survey and experimental comparison of service level ap-
proximation methods for non-stationary M/M/s queueing
systems. INFORMS Journal of Computing, 2005.

[7] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest first
and choke algorithms are enough. under submission.

[8] L. Massoulie and M. Vojnovic. Coupon replication systems.
In SIGMETRICS ’05, pages 2–13, New York, NY, USA,
2005. ACM Press.

[9] D. Qiu and R. Srikant. Modeling and performance analysis
of BitTorrent-like peer-to-peer networks. SIGCOMM Com-
put. Commun. Rev., 34(4):367–378, October 2004.

[10] Y. Tian, D. Wu, and K. Ng. Modeling, analysis and improve-
ment for BitTorrent like file sharing networks. In Proceed-
ings of IEEE Infocom, 2006.

[11] F. Venot-Perronnin, P. Nain, and K. Ross. Multiclass P2P
networks: static resource allocation for service differenti-
ation and bandwidth diversity. Perf. Eval., 62(1-4):32–49,
2005.

[12] X. Yang and G. de Veciana. Service capacity of peer to peer
networks. In Proceedings of IEEE Infocom, 2004.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

