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Analysis of Caching
and Replication Strategies
for Web Applications

Developers often use replication and caching mechanisms to enhance Web

application performance. The authors present a qualitative and quantitative analysis

of state-of-the art replication and caching techniques used to host Web

applications. Their analysis shows that selecting the best mechanism depends

heavily on data workload and requires a careful review of the application’s

characteristics. They also propose a technique for Web practitioners to compare

different mechanisms’ performance on their own.

W eb sites can be slow for many
reasons, but the most prevalent
one is the dynamic generation of

Web documents. Modern Web sites such
as Amazon.com and Slashdot.org don’t
deliver static pages — they generate con-
tent on the fly each time they receive a
request, customizing their pages for each
user. Clearly, generating a Web page in
response to every request takes more time
than simply fetching static HTML pages
from a server. Dynamic generation of a
Web page typically requires issuing one
or more queries to a database, so access
times to the database can easily get out of
hand when the request load is high.

Industry and academia have developed
several techniques to overcome this prob-
lem. The most straightforward one is Web
page caching, in which (fragments of) the

HTML pages the application generates are
cached to serve future requests.1 Content-
delivery networks (CDNs) such as Akamai
do this by deploying edge servers around
the Internet to locally cache Web pages
and then deliver them to clients. By deliv-
ering pages from edge servers located close
to the clients, CDNs reduce each request’s
network latency. Page-caching techniques
work well if the same cached HTML page
can answer many requests to a particular
Web site. These techniques have proven to
be effective,1,2 but with the growing drive
toward personalized Web content, gener-
ated pages tend to be unique for each user,
thereby reducing the benefits of page-
caching techniques.

Page caching’s limitations have trig-
gered the CDN and database research com-
munity to investigate new approaches for
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scalable Web application hosting. We can classify
these approaches broadly into four techniques:
application code replication,3 cache database re-
cords,4,5 cache query results,6 and entire database
replication.7,8 Although numerous research efforts
have focused on these approaches, very few works
have analyzed their pros and cons and examined
their performance. This article’s objective is to pres-
ent an overview of various scalability techniques
and compare and analyze their features and per-
formance. To do so, let’s first consider some well-
known scaling techniques for Web applications.

Techniques to Scale
Web Applications
Instead of caching the dynamic pages generated
by a central Web server, various techniques aim to
replicate the means of generating pages over mul-
tiple edge servers. Despite their differences, these
techniques often rely on the assumption that appli-
cations don’t require strict transactional semantics
for their data accesses (as, for example, banking
applications do). They typically provide “read-
your-writes” consistency, which guarantees that
when an application at an edge server performs an
update, any subsequent reads from the same edge
server will return that update’s effects (and possi-
bly others). Scalable techniques that provide trans-
actional semantics are beyond this article’s scope.

Edge Computing
The simplest way to generate user-specific pages is
to replicate the application code at multiple edge
servers and keep the data centralized (see Figure 1a).
This technique is the heart of the edge computing
(EC) products at Akamai and ACDN.3 EC lets each
edge server generate user-specific pages according
to context, session, and information stored in the
database, thereby spreading the computational load
across multiple servers. However, this data central-
ization can also pose several problems. First, if the
edge servers are located worldwide, each data access
incurs wide-area network (WAN) latency; second,
the central database quickly becomes a performance
bottleneck because it needs to serve the entire sys-
tem’s database requests. These properties restrict
EC’s use to Web applications that require relatively
few database accesses to generate content.

Data Replication
The solution to EC’s database bottleneck problem is
to place the data at each edge server so that gener-

ating a page requires only local computation and
data access. Database replication (REPL) techniques
can help here by maintaining identical copies of the
database at multiple locations.7–9 However, in Web
environments, database replicas are typically locat-
ed across a WAN, whereas most REPL techniques
assume the presence of a local-area network (LAN)
between replicas. This can be a problem if a Web
application generates many database updates. If this
happens, each update must be propagated to all the
other replicas to maintain the replicated data’s con-
sistency, potentially introducing a huge network
traffic and performance overhead. In our study, we
designed a simple replication middleware solution
that serializes all updates at an origin server and
propagates them to the edges in a lazy fashion. The
edge servers answer each read query locally.

Content-Aware Data Caching
Instead of maintaining full copies of the database
at each edge server, content-aware caching (CAC)
systems cache database query results as the appli-
cation code issues them. In this case, each edge
server maintains a partial copy of the database,
and each time the application running at the edge
issues a query, the edge-server database checks if it
contains enough data locally to answer the query
correctly. This process is called a query contain-
ment check. If the containment check result is pos-
itive, the edge server can execute the query locally;
otherwise, it must be sent to the central database.
In the latter case, the edge-server database inserts
the result in its local database so that it can serve
future identical requests locally. To insert cached
tuples into the edge database, the caches create
insert/update queries on the fly. Examples of CAC
systems include DBCache5 and DBProxy.4

CAC stores query results in a storage-efficient
way — for example, the queries “select * from
items where price < 50” (Q1) and “select *
from items where price < 20” (Q2) have over-
lapping results. By inserting both results into the
same database, the overlapping records are stored
only once. Another interesting feature of CAC is that
once Q1’s results are stored, Q2 can execute locally,
even though that particular query hasn’t been issued
before. In this case, the query containment proce-
dure recognizes that Q2’s results are contained in
Q1’s results. CAC systems are beneficial when the
application’s query workload has range queries or
queries with multiple predicates (for example, to
find items that satisfy <clause1> OR <clause2>).
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Typically, a query containment check is high-
ly computationally expensive because it must
check the new query with all previously cached
queries. To reduce this cost, CAC systems exploit
the fact that Web applications often consist of a
fixed set of read and write query templates. A
query template is a parameterized SQL query
whose parameter values pass to the system at run-
time. Use of query templates can vastly reduce the
query containment’s search space because the
edge-server database must check each incoming
query only with a relatively small set of query
templates. Using a template-based checking tech-
nique in our previous example, we might check
Q1 and Q2 only with other cached instances of the
template QT1, “select * from items where

price<?”, and not with instances of, for example,
QT3, “select * from items where subject=?”.
However, this method can also reduce the cache
hit rate. These systems often also use template-
based mechanisms to ensure cache consistency. In
CAC systems, the update queries always execute
at the origin server (the central database server).
When an edge server caches a query, it subscribes
to receive invalidations of conflicting query tem-
plates. In our example, an update to change an
item table’s price will conflict with QT1.

Content-Blind Data Caching
An alternative to CAC is content-blind query
caching (CBC). In this case, edge servers don’t need
to run a database at all. Instead, they store the
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Figure 1. Solutions for scalable Web hosting. We compare (a) edge computing, (b) content-aware
caching, (c) content-blind caching, and (d) data replication.
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results of remote database queries independently.6,10

CBC uses a method akin to template-based invali-
dation to maintain its cached results’ consistency.10

Because the query results aren’t merged together in
CBC, caching the answers to the queries Q1 and Q2
defined earlier would lead to storing redundant
information. Also, the cache will have a hit only if
the application (running at the edge) issues the
same exact query again at the same edge server.
This can potentially lead to suboptimal usage of
storage resources and lower cache hit rates, but it
has some advantages. First, the process of check-
ing if a query result is cached or not is trivial in
CBC and incurs very little computational load. Sec-
ond, by caching query results as result sets instead
of database records, the CBC system can return
results immediately. In contrast, CAC pays the price
of database query execution, which can increase
the load on edge servers. Finally, inserting a new
element into the cache doesn’t require a query
rewrite — rather, it merely stores objects.

Cache replacement is an important issue in any
caching system because it determines which query
results to cache and which ones to evict from the
cache. An ideal cache replacement policy must
take into account several metrics such as temporal
locality, query cost, and the database’s update pat-
terns. Note that cache replacement in CBC is sim-
ple because each result is stored independently,
and we can apply many popular replacement algo-
rithms.10 However, because CAC merges multiple
query results, its replacement policy should ensure
that a query result’s removal doesn’t affect other
cached queries’ results.

Performance Analysis
To quantitatively compare these four techniques,
we evaluated their performance for two different
applications: RUBBoS, a bulletin-board benchmark
application that models Slashdot.org, and TPC-W,
an industry-standard e-commerce benchmark that
models an online bookstore such as Amazon.com.

The RUBBoS application’s database consists of
five tables containing information about users, sto-
ries, comments, submissions, and moderator activ-
ities. We filled the database with information for
500,000 users and 200,000 comments. The TPC-W
benchmark consists of seven database tables filled
with information on 100,000 items and 288,000
customers. For our experiments, we chose the open
source PHP implementation of these benchmarks
(http://jmob.objectweb.org/rubbos.html and http://

pgfoundry.org/projects/tpc-w-php/). Both applica-
tions have very different data access characteris-
tics: in a typical bulletin board, users are usually
interested in the latest news, so the workload can
exhibit high locality, but customer shopping inter-
ests can vary in a bookstore application, thereby
leading to lower query locality. This can help us
study different systems’ behaviors for different
data access patterns, but these benchmarks are by
no means truly representative of actual workload.

In our experiments, we used emulated browsers
(EBs) to generate the client workload for both
benchmarks and conformed to the TPC-W specifi-
cation for clients (www.tpc.org/tpcw/tpcw_ex.asp).
We set the average think time (the amount of time
an EB waits between receiving a response and issu-
ing the next request) to 5 seconds. The user work-
load for RUBBoS had more than 15 percent of its
interactions leading to updates. For TPC-W, we
studied the performance for two kinds of workloads:
browsing (95 percent browsing and 5 percent shop-
ping interactions) and ordering (equal fraction of
browsing and shopping interactions). We modified
the client workload behavior such that the book
popularity followed a Zipf distribution (with � = 1),
which appeared in a study that observed a major
online bookstore’s data characteristics.11

For our tests, we used two servers with dual-
processor Pentium III 900-MHz CPUs and 1 Gbyte
of memory. We used the Apache 2.0.49 Web serv-
er with PHP 4.3.6 in our edge server, PostgreSQL
7.3.4 for our database management system, and
PgPool to pool database connections (http://pg
foundry.org/projects/pgpool/). We emulated a WAN
between the edge server and the origin server by
directing all network traffic to an intermediate
router that ran the NIST Net network emulator
(http://snad.ncsl.nist.gov/itg/nistnet/). This router
delays the packets sent between different servers
to simulate a realistic WAN. For the rest of this
article, we refer to links via NIST Net with 50-Mbps
bandwidth and 100-ms latency as WAN links, and
100 Mbps and zero latency as LAN links. These
values are considerably optimistic because Inter-
net bandwidth usually varies a lot and is affected
by network congestion. We chose these values to
model the best network conditions for a CDN built
on an Internet backbone, but they’re the least
favorable conditions for showing any data caching
or replication system’s best performance. Figure 2
shows our experimental setup. We didn’t emulate
wide-area latency between clients and the edge
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server: this is a constant that would equally apply
for all systems.

We started all our experiments with a cold
cache. We warmed the system up for 20 minutes,
after which we took measurements for a period of
90 minutes. Because we didn’t want the effect of
cache replacement algorithms to affect CAC and
CBC performance, we didn’t constrain the edge
server’s storage capacity — that is, we didn’t
restrict the cache repository’s size. At the outset,
this might look advantageous for caching systems,
but in our experiments, we found that the amount
of disk space required for cache repository was, at
most, only 20 percent of the entire database. In all
our experiments, we varied the request load
(expressed in terms of the number of active client
sessions) and measured the end-to-end client
latency, which is the sum of network latency (the
time the request spends traversing the WAN) and
internal latency (the time the request spends gen-
erating query responses and composing the subse-
quent HTML pages).

Performance Results
Figure 3 shows our results. For RUBBoS, CBC per-
formed the best in terms of client latency (except
under low loads) whereas EC performed the worst.

The reason for CBC’s superior performance with
RUBBoS was twofold. First, RUBBoS’s workload
exhibits high temporal locality (yielding a cache hit
ratio of up to almost 80 percent) thereby avoiding
WAN latency. Second, for CBC, the query execution
latency incurred in generating a query response
was much lower than that of REPL (or CAC)
because the caching system avoided database query
planning and execution latency. This let CBC sus-
tain a higher load than REPL and CAC. EC per-
formed worse than the other architectures because
each data access incurred a WAN latency, and a
single-origin server handled all requests. However,
REPL performed marginally better than CBC dur-
ing low loads because each query was answered
locally thereby avoiding any WAN latency. More-
over, during low loads, the internal latency incurred
in generating a query response was lower than the
network latency incurred in answering a query.

In our experiments, CBC and CAC had almost
the same hit ratio, despite the fact that CAC’s
merged storage theoretically allows more hits than
CBC. The reason was that CAC’s merged storage is
most beneficial for workloads with many range
queries and queries with multiple predicates. How-
ever, in RUBBoS, most queries are exact lookup
queries, which don't benefit from the flexibility
that CAC’s query containment tests offer. We also
attributed the latency increase for CAC to the
increased overhead of query containment, cache
management (inserting and invalidating caches),
query planning, and execution.

EC performed the worst for TPC-W, whereas
REPL performed the best. In this case, CBC and
CAC perform relatively poorly because the TPC-W
benchmark workload exhibits poor temporal local-
ity, which yielded a hit ratio of at most 35 percent
in our experiments. REPL performed better because
the edge servers can answer each read query local-
ly. CBC performed better than CAC because the for-
mer’s cache hit ratio was only marginally lower
compared to the latter. Again, this was because
TPC-W doesn’t fully exploit CAC’s query contain-
ment features. Due to space constraints, we won’t
present detailed discussions of our results here.
Extensive discussions and more results for multiple
edge servers using weak consistency mechanisms
appear elsewhere.10

Discussion
From our experiments, we found no clear winner.
For applications whose query workload exhibited
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Figure 2. Architecture of the evaluated systems.
This setup guarantees fair and reproducible
performance comparison between the different
systems.
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high locality (such as RUBBoS), CBC performed the
best. CAC didn’t perform as well as expected, most-
ly because the tested query workloads didn’t fully
exploit CAC’s query containment features. For
applications that have a predominant load of such
queries, we believe CAC will outperform CBC sys-
tems. For applications that exhibit poor locality
(such as the TPC-W benchmark), data-replication
schemes perform better than CBC. We conclude
that no single solution performs best for all Web
applications and workloads.

Choosing the Right Strategy
Because different techniques are optimal for dif-
ferent applications, Web designers should choose
them after carefully analyzing their Web appli-
cation’s characteristics. In general, the best strat-
egy is the one that minimizes the application’s
end-to-end client latency. The end-to-end laten-
cy is affected by parameters such as the cache hit
ratio (page cache, CAC, or CBC), application serv-
er execution time, and database query execution
time. (A detailed description of a model for esti-
mating a multitiered Web application’s end-to-
end latency appears elsewhere.12) Although we
can measure parameters such as execution time
via server instrumentation and log analysis,
measuring the cache hit ratio for strategies such
as CBC and CAC is harder. Ideally, we want to
estimate the possible hit ratio of different
caching strategies without having to run each of
them. To this end, we propose the concept of vir-
tual caches (VCs).

A VC behaves just like a real cache except that it
stores only metadata, such as the list of objects in
the cache, their sizes, and invalidation parameters —
objects themselves aren’t stored. By applying the
same operations as a real cache, a VC can estimate
the hit rate a real cache would offer with the same
configuration, but because the VC stores only
metadata, it requires less memory. To measure the
hit ratio of a cache that can hold millions of data
items, for example, the virtual cache’s size would
be on the order of a few megabytes. A system
could use two such VCs to determine the effective
hit ratio for CAC and CBC. (Note that to implement
a virtual CAC, you must also implement the query
containment checker into the VC along with simple
put, get, and invalidation operations.) A Web
administrator can thus determine the hit ratios that
different caching techniques offer. 

By definition, a VC’s hit ratio should be the

same as a real cache because they both perform
the same operations. Our experiments with virtu-
al GlobeCBC, fragment caches, and CAC also con-
firm this. Moreover, compared to static
trace-driven analysis, a VC is more effective due
to its ability to instantly measure cache hit ratios
online. Once we obtain the hit ratios for different
techniques and execution times for servers at dif-
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Figure 3. Performance results. (a) RUBBoS
benchmark, (b) TPC-W browsing, and (c) TPC-W
ordering. Content-based caching performs the best
for RUBBoS whereas full database replication is
the best for TPC-W.
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ferent tiers, we can estimate the application’s end-
to-end latency if we were to deploy it with differ-
ent techniques.12 Subsequently, we can choose the
technique that offers the least end-to-end latency
to host the application.

Note that Web practitioners can do this selec-
tion process during the initial phases of applica-
tion deployment and revise it periodically, if
necessary. In such cases, different VCs must run
(with the application) only during the decision-
making periods. However, if the application expe-
riences frequent workload changes, we envisage
running these VCs continuously and performing
adaptations more frequently.12

C urrently, we’re building and evaluating a pro-
totype system that enables dynamic provision-

ing and reconfiguration of multitier Web
applications. The prototype uses a combination of
end-to-end analytical model and virtual caches to
determine the optimal resource configuration for
a given application.
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