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SUMMARY

Most current P2P file-sharing systems treat their users as anonymous, unrelated entities, and completely
disregard any social relationships between them. However, social phenomena such as friendship and the
existence of communities of users with similar tastes or interests may well be exploited in such systems in
order to increase their usability and performance. In this paper we present a novel social-based P2P file-
sharing paradigm that exploits social phenomena by maintaining social networks and using these in content
discovery, content recommendation, and downloading. Based on this paradigm’s main concepts such as
taste buddies and friends, we have designed and implemented the TRIBLER P2P file-sharing system as a
set of extensions to Bittorrent. We present and discuss the design of TRIBLER, and we show evidence that
TRIBLER enables fast content discovery and recommendation at a low additional overhead, and a significant
improvement in download performance.

1. Introduction

Traditional P2P file-sharing systems focus exclusively on technical issues and are therefore unable
to leverage the power of social phenomena. However, we believe that social phenomena such as
friendship, trust, and a sense of community may be at least as important as technical issues, and
may indeed have a large positive impact on the usability and performance of P2P file-sharing and
content-delivery systems. For example, viewing users as social partners rather than as solitary rational
agents [12] could alleviate the problem of freeriding [3] by exploiting the fact that people tend not to
steal (bandwidth) from the social group they belong to.

To confirm our belief, we propose in this work a novel social-based P2P file-sharing paradigm,
which facilitates the formation and maintenance of social networks and exploits social phenomena
for improved content discovery, recommendation, and sharing. Our contribution is threefold. First, we
relate the social-based P2P file-sharing paradigm to the current research challenges in P2P research
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(Section 2). Second, we present the design and implementation of TRIBLER, which adheres to the
social-based paradigm by adding social-based functionality to the widely used Bittorrent system
(Section 3). To facilitate the formation and maintenance of social networks, TRIBLER introduces
permanent user identifiers, and will in the future be able to import existing user contacts from
other social networks such as MSN (Section 4). Rather than using direct content-based searching,
TRIBLER performs content discovery and recommendation based on the notion of taste buddies, that
is, users with the same tastes or interests (Section 5). Third, we show evidence that TRIBLER achieves
a significant improvement in download performance, by invoking the joint efforts of social peer groups
(Section 6). In Section 7 we discuss related work, and in Section 8 we present our conclusions
and ideas for future work. The full TRIBLER documentation and source code are available from
http://Tribler.org.

2. Research challenges in P2P file sharing

With current P2P file-sharing systems continuously having more than 1,000,000 users, their
performance and behavior have become of great interest. Starting in 2003, we have studied the
performance of Bittorrent [15], which has for a number of years been the most popular P2P file-
sharing system. Based on this work and on related studies, we formulate the following five grand
research challenges for P2P file sharing, and we argue for the importance of the social-based paradigm
in solving these challenges. In particular, with our social-based P2P network called TRIBLER we want
to address all these challenges.

The most difficult research challenge is the decentralization of the functionality of a P2P system
across its peers. Full decentralization eliminates the need for central elements in the system, which
must be set up and maintained by some party and which may form serious bottlenecks, points of
failure, or security threats. In particular, connecting to the network and validating user identities are
difficult to implement without any central element. To date, no P2P file-sharing system exists which
fully decentralizes all functionality efficiently and without a high risk of a loss of integrity. Bittorrent is
not fully decentralized as it depends on web sites and trackers for finding content. Social groups form
a natural method to efficiently decentralize P2P systems because people/peers who know each other
tend to exchange information.

The second challenge is to guarantee the availability of a P2P system as a whole. The operation
of such a system should not depend on the availability of any particular participating peer, or of any
central component (something we don’t want if we aim for decentralization), as the failure of such a
component can be disruptive to service [15]. Given the short periods of availability of peers (in [15]
we found less than 4% of the peers to have an uptime of over 10 hours), the availability problem is
critical. Proven social incentives such as rewards and social recognition could stimulate users to leave
their P2P software running for longer periods, thus improving the overall availability of the network.

The third challenge is to maintain the integrity of the system and to achieve trust among peers.
By definition, P2P systems use donated resources. However, donors cannot always be trusted, and
maintaining system integrity has proven to be difficult in operational P2P systems [7]. Data at several
levels can be attacked in a P2P system, namely system information (e.g., pointers to content), metadata,
and the actual content itself. This significant problem, often ignored by P2P system designers, can be
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Figure 1. The system architecture of TRIBLER.

solved with a social-based network, in which users actively help to clean or remove polluted data and
users can select trustworthy representatives.

The performance of a P2P system highly depends on peers donating resources. Even though the
resource economy is by definition balanced (e.g., every MByte downloaded corresponds to a MByte
uploaded), autonomous peers are free to decide whether to donate resources or not. Hence, as the
fourth challenge, providing proper incentives is vital to induce cooperation and to achieve good
performance [3]. Again, social recognition can help to alleviate this problem.

The fifth challenge in P2P systems is to achieve network transparency by solving the problems
caused by dynamic IP addresses, NAT boxes, and firewalls. The Internet has fundamentally changed
due to the wide-spread use of these three technologies, and as a consequence, peers no longer have
the freedom to send anything anywhere without the help of another peer acting as a mediator. Social
networks enable communicating peers to automatically select trusted mediators from the members of
their social proximity that are online, thus eliminating the need for fixed mediators.

3. The architecture of Tribler

In this section, we present the architecture of our TRIBLER social-based P2P file-sharing system, which
is built on top of the Bittorrent protocol. Figure 1 depicts this architecture, with rectangles representing
its modules and files, and extrusions representing makes-use-of relationships. To achieve backwards
compatibility with the existing Bittorrent P2P system, we have only made modifications and extensions
to the existing Bittorrent client software. We have based our system on the popular ABC open-source
Bittorrent client [1] so as to have a tested code base for our implementation and a large user base in a
relatively short period of time. We now discuss several important concepts in TRIBLER.

Social groups: The prime social phenomenon that we exploit in TRIBLER is that “kinship fosters
cooperation” [13]. In other words, a similar taste for content can form the foundation for an online
community with altruistic behavior. In order to implement effective social groups in TRIBLER, we
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use an approach borrowed from evolutionary biology (see for instance [13]): we have implemented
the ability to distinguish friend, foe (e.g., a polluter), and newcomer. For this, we de-anonymize peers
and facilitate social-group formation. De-anonymization is achieved by having every user choose a
nickname; TRIBLER transfers user nicknames between users automatically. The Social Networking
module in Figure 1 is responsible for storing and providing information regarding social groups (the
group members, their recently used IP numbers, etc.).

Megacaches: Virtually all current P2P file-sharing systems lack persistent “memory” about
previous activity in the network; peers usually exchange queries for files and file metadata, but
completely ignore other types of information. The context information that needs to be saved in order to
improve the performance consists of information on social relations, altruism levels, peer uptimes, taste
similarities, etc. In TRIBLER, every piece of context information received by a peer that is relevant to it
based on its interests and tastes is stored locally in its so-called Megacaches, and this information
is exchanged within social groups using an epidemic protocol [10] (the Buddycast protocol, see
Section 5). The small database icons in Figure 1 identify the four Megacaches in TRIBLER, which
are the Friends List with information on social networks, the (Super) Peer Cache with information on
superpeers and peers in general, the Metadata Cache with file metadata, and the Preference Cache
with the preference lists of other peers. The sizes of the Friends List, the (Super) Peer Cache, and the
Preference Cache are below 10 MB at any time, which for the Preference Cache is enough to store the
preference lists of thousands of taste buddies (see also Section 5).

The main problem concerning the Megacaches is the overhead traffic required to keep them up-to-
date. For the Metadata Cache, we have observed that in Bittorrent the number of newly injected files
per day is limited to roughly 1500 [15] when content pollution [7] is kept to a minimum. Then, by
reducing the average size of the metadata for each file to just 400 bytes using Merkle hashes [11], the
overhead is reduced to approximately 600 KBytes/day. With this amount of overhead, all metadata can
be replicated among all peers, moving content discovery from network-based keyword searching to
local metadata browsing.

Taste-buddy-based content discovery: Locating content is critical for P2P systems. Current
solutions are based on one or a combination of query flooding, distributed hash tables, and semantic
clustering. We take a next step by connecting people with similar tastes called taste buddies instead of
focusing on files, and by using full metadata replication.

Using the Files I like module (see Figure 1), each peer indicates its preference for certain files
expressed as a number between 1 and 5. By default, the preference list of a peer is filled with its most
recent downloads. We have developed an algorithm called Buddycast which uses an epidemic protocol
to exchange preference lists using the overlay swarm (see Bootstrapping) and which can efficiently
discover a user’s taste buddies (see Section 5). The Peer Similarity Evaluator module in Figure 1 is
able to compare preference lists and determine the similarity in taste of two peers, which is measured
as the cosine of their vectors of user ratings of content.

The Recommendation Engine module is able to compile a list of files a user most likely wants. First,
a user-item rating matrix is built from the preference lists [5], and then a user-based recommendation is
generated by TRIBLER, based on standard collaborative filtering techniques. Finally, the user interface
facilitates metadata browsing by augmenting each file entry with the estimated interest to the user.

Downloading: The Bittorrent Engine module in Figure 1 downloads files using a Bittorrent-
compatible protocol. This module can also use the Collaborative Downloader module’s capabilities
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Table I. Performance of the TRIBLER system.

Test description Performance [ops/s]
Geo-lookup 1730
Overlay swarm connect 7045
Connect+challenge/response 865
Connect+challenge+Buddycast 844

to achieve a significant increase in file download speed by exploiting idle upload capacity of online
friends (see Section 6).

User interface: The user interface is key to making a social-based network usable and, as such, is
a critical part of TRIBLER. The User Interface module from Figure 1 is split into five components:
Map, Downloads, My Friends, Files I like, and Taste Buddies. The use of the Downloads, Files I like,
and Taste Buddies modules is clear from the description above. The main goal of the interface is to
facilitate the formation of social groups. For this purpose, the My Friends module clearly displays the
friends, the friends-of-friends, and the taste buddies of the user. This visual proximity gives the user a
more personal contact with his peers, and may help reduce asocial behavior.

Another goal of the user interface design was to ease the process of visual identification of potential
collaborators. When a user is downloading a file, the observed IP addresses of members of the
corresponding download swarm are geo-located and then displayed on a world map using the Map
module. We have built a Peer Geo-Location Engine module on top of a freely available Geo-Location
Engine (http://hostip.info). The user interface also facilitates the use of the Collaborative
Downloader module: The user can see which friends helped him in the past, which friends he donated
bandwidth to, and which friends who are currently online can help speedup his new downloads.

Bootstrapping: Finding other peers in a P2P systems after software installation is called
bootstrapping. In Bittorrent, peers have to repeatedly connect to a tracker in order to discover other
peers. Furthermore, the original Bittorrent protocol restricts communication to within the swarms of
peers that download the same files, making the bootstrapping process unnecessarily repetitive. To solve
the bootstrapping problem in TRIBLER, we use two mechanisms. First, a TRIBLER peer automatically
contacts one of a set of pre-known superpeers only once immediately after installation in order to
obtain an initial list of other peers in the system (through a Buddycast message, see Section 5), so that
it can start participating in the epidemic information dissemination in TRIBLER. Second, we define a
special overlay swarm, which is a swarm of which every TRIBLER peer is a member that has no tracker
and that is used for content and peer discovery, again using Buddycast.

In order to assess the overhead incurred by some of the operations in the TRIBLER protocol, we
have done some performance tests on a powerful computer (a 4-CPU 2.0 GHz machine with 16 GB
of main memory and a 1 Gb/s Internet connection). Table I shows the results of these tests. The first
test determines the number of geo-lookups this machine can handle per second. The second test shows
the performance of connecting to a peer in the overlay swarm with the standard Bittorrent protocol
messages. In the third test, in addition also the public key of the peer that connects is validated using
a challenge/response algorithm (see Section 4). The fourth test adds to the third test the exchange of a
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preference list with 100 file names by means of the Buddycast algorithm. These tests show that a single
peer can handle a significant workload, although indeed a certain amount of overhead is added to the
Bittorrent protocol.

4. Social networking

A fundamental limitation in most file-sharing systems is the session boundary—all context information
is lost when a user disconnects from the network. Due to dynamic IP numbers, it is difficult to store
context information about peers across sessions. Storing long-term context information in databases
like our Megacaches enables the existence of trust-based social groups, but only if the user identities
are stable. To solve this problem, we have introduced permanent, unique, and secure peer identifiers
(PermIDs), which are the public keys of a public-key scheme using elliptic-curve cryptography, and
which are exchanged by e-mail. To prevent peers from faking the identity belonging to a PermID
(spoofing), we have implemented a challenge-response mechanism for validating PermIDs. In this
mechanism, a random number selected by the challenger is encrypted by the challengee with its private
key and subsequently decrypted by the challenger with the corresponding public key—authentication
succeeds when the result is identical to the original number. Social-network creation in TRIBLER will
be facilitated by the ability to import contacts from other social networks of which peers are members,
such as MSN and GMail.

We will use Bloom filters [6], which are very dense hash-table-like data structures for storing and
(probabilistically) testing set membership, for distributing and pairwise comparing the contents of
the Megacaches. Because of their reduced size, Bloom filters can significantly reduce the bandwidth
requirements of epidemic protocols, which are the basis of our solution for content discovery and
social networking. In a recent prototype [16] of a design for decentralized swarm discovery in Tribler,
we have already implemented Bloom filters for filtering peers from messages that are already known
to their destinations.

The size of a Bloom filter depends on the number of expected connections peers have. To assess
their size while we do not yet have sufficient information on the operation of TRIBLER, we resort
here to analyzing another existing social network, Friendster.com. We have created a crawler for
this network and we have extracted 3.3 million relations between 27,000 people. Figure 2 shows
the probability density of the numbers of friends and friends-of-friends in Friendster.com. In this
network, we find that a person has on average 243 friends and 9,147 friends-of-friends. These figures
are to within an order of magnitude similar to the figures reported in [14] for several P2P file-sharing
networks. Based on these numbers, we can compute that 260 bytes are needed to discover the common
friends-of-friends of two peers using a Bloom filter. This very low bandwidth requirement will enable
TRIBLER peers to exchange information with thousands of other peers in a short time frame, which is
a significant improvement over traditional epidemic protocols.

5. The Buddycast algorithm

In order to make recommendations and to enable peer and content discovery, and more generally, to
disseminate the contents of the Megacaches in the TRIBLER overlay swarm, we have designed the
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Figure 2. The probability density of the numbers of friends and friends-of-friends (FoFs) in Friendster.com.

Buddycast algorithm, which is an epidemic protocol that works as follows. Each peer maintains in its
Megacache a number of taste buddies with their preference lists and a number of random peers (i.e.,
peers for which no preference list is known). Periodically (in the current version of TRIBLER every
15 seconds), a peer either connects to (a) one of its taste buddies (exploitation) or to (b) a random
peer (exploration) to exchange a Buddycast message, or it replies to such a message received from
another peer. In contrast to other epidemic protocols such as Newscast [10], we use both exploitation
and exploration, we limit the randomness of peer selection during the exploitation, and we implicitly
cluster similar peers into (trusted) social groups. This is very close to the approach proposed in [17].

A Buddycast message contains the identities of a number (currently 10) taste buddies along with
their top-10 preference lists, a number (currently also 10) of random (and fresh, see below) peers,
and the top-50 preferences of the sending peer. The age of each peer is included in the message to
help others know the freshness of peers. After exchanging Buddycast messages, both peers merge the
information in the message received into their own Megacache. To maximize the exploration and avoid
redundant messages, every peer also maintains a list with the most recently contacted random peers,
and avoids reconnecting to the peers in this list for a certain period of time (currently 4 hours). Users
can disable the functionality of Buddycast to protect their privacy.

To find a good balance between exploration and exploitation, an exploration-to-exploitation ratio λ
for selecting either a random peer or a taste buddy is used, which is currently set to 1, but which we
may want to make adaptive. In the case of exploration, a random peer is selected based on its freshness,
to improve the chance of its still being online when connecting to it. In the case of exploitation, a taste
buddy is selected from a number (currently 100) of the most recently contacted taste buddies based on
its similarity with the sending peer. As a consequence, the fresher or more similar a peer, the higher its
chance to be selected.

For a first assessment of the operation of the Buddycast algorithm, we have investigated the
availability of the peers contained in Buddycast messages at the moment of receiving such messages.
To this end, we have run a continuously fresh TRIBLER peer for a period of 519.7 hours, and we have
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Figure 3. The availability of peers in Buddycast messages.

probed all the peers in every Buddycast message it received to see how many of them were still online.
At the time of this experiment, there were about 15,000 TRIBLER clients in the world who had actually
downloaded files. The results are shown in Figure 3 (please note the logarithmic scale on the vertical
axis). During the experiment, our peer received 5,049 messages in total. As can be seen in the figure,
often at most only 4 taste buddies in the Buddycast messages were still online, which agrees with our
earlier finding that online periods in Bittorrent are short [15]. From the figure we also see that random
peers have a higher chance to be online, which indicates that selecting peers based on freshness can
benefit the effectiveness of exploration.

6. Collaborative downloading

In this section we present the collaborative download protocol called 2Fast that we have developed for
TRIBLER, in which a user invokes the help of his friends to speed up downloads. Early downloading
protocols (e.g., Gnutella) have no incentives for donating upload bandwidth, which has serious
limitations in real environments, because unconstrained bandwidth sharing is sensitive to freeriding
[3]. The Bittorrent tit-for-tat mechanism was the first system which offered an incentive for uploading.
The current Bittorrent mechanism also has its disadvantages, because without enough seeding peers
(i.e, peers which possess the complete file in question), the download speed of a peer is restricted
by Bittorrent’s tit-for-tat bartering protocol to its upload link capacity. Hence, peers with asymmetric
Internet access, such as ADSL or ADSL-2, cannot fully use their download capacity.

The 2Fast protocol makes use of social groups, where members who trust each other collaborate
to improve their download performance (see Figure 4). The idea of downloading with the help of
others was first introduced in [18], where altruistic peers contribute their bandwidth by joining a
swarm even if they are not interested in the content being distributed in this swarm. The inherent
assumption of sufficient altruism in the network without any incentives makes this simple approach
impractical in real-world environments. Our 2Fast protocol solves this problem by introducing social-
group incentives. For a full account of 2Fast, see [9].
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In 2Fast, peers from a social group that decide to participate in a collaborative download take one
of two roles: they are either collectors or helpers. A collector is the peer that is interested in obtaining
a complete copy of a particular file, and a helper is a peer that is recruited by a collector to assist in
downloading that file. Both the collector and the helpers start downloading the file using the classical
Bittorrent tit-for-tat and the collaborative download extensions. As in Bittorrent, a helper selects a
chunk of the file for downloading based on the rarest-first policy among the chunks in possession
of its bartering partners. However, before actually downloading this chunck, it asks the collector for
approval, which will only be granted when the chunk is unique, that is, when no other helper already
downloads the same chunk. After downloading a file chunk, the helper sends the chunk to the collector
without requesting anything in return. In addition to receiving file chunks from its helpers, the collector
also optimizes its download performance by dynamically selecting the best available data source from
the set of helpers and other peers in the Bittorrent network using the default mechanisms of Bittorrent,
which prefer peers that upload at higher rates. As helpers give priority to collector requests, they are
preferred as data sources.

We have implemented and tested 2Fast in a real environment. For this we have selected a middle-
sized swarm of around 1,900 peers with only 6% seeds, distributing a 1.2 GB file. These numbers
remained almost unchanged during our experiments. We have performed tests for three download-
to-upload bandwidth ratios from standard Internet package offerings: low-end ADSL with a ratio of
512:128 Kbps, high-end ADSL with a ratio of 2048:512 Kbps, and ADSL-2 with a ratio of 8:1 Mbps.
It should be noted that we could only impose these bandwidths on the collector and the helpers, which
were under our control, but not on the peers in the Internet that they selected as their bartering partners.

As a performance metric of our system, we use the ratio between the download time achieved by a
peer obtaining a file all by itself versus the corresponding time for a collaborative group (speedup). The
theoretical maximum speedup is achieved when a peer can fully use its download bandwidth, and so
it is equal to the ratio between the download and upload link capacities. Thus, for ADSL and ADSL-2
the maximum achievable speedup is 4 and 8, respectively.

Figure 5 shows the obtained speedups for the number of helpers in the range from 0 to 32. The total
download time was decreased with a factor of almost 2 for low-end ADSL, of more than 3 for high-end
ADSL, and of almost 6 for ADSL-2. The difference between the theoretical and achieved speedups is
mainly due to the influence of the seeders (when there are many seeders to begin with, the potential
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Figure 5. The impact of the number of helpers on the download speedup.

speedup is restricted) and of the delays experienced by helpers when requesting unique file chunks
from peers. The more helpers are involved, the more restrictive the unique file chunk selection method
is, and consequently, the longer the time needed to find a bartering partner for such a chunk. This time
is further increased in the case of low-end ADSL by the fact that then the collector and the helpers
were discriminated as peers with an upload bandwidth which is below average [15].

7. Related work

The idea of exploiting the natural social connections between the humans behind the computers in
large-scale P2P networks is starting to become a major research topic. To date, methods based on
social clustering were applied in P2P networks to limited aspects of content distribution [8], user
communities formation [4], and collaborative service provisioning [5]. In [8], a system which uses
knowledge discovery techniques for overlay network creation is presented. By automatically clustering
users based on their preferences, the system enables content location and improves the performance
of content sharing. In [4], a simple general-purpose system is proposed which groups peers based on
the similarity of their keyword searches. The authors give evidence on how their system can be used to
form and maintain communities of users. An extensive experimental analysis of several collaborative
filtering methods is given in [5]. TRIBLER is the first system which exploits social phenomena to
address all the research challenges in P2P file-sharing networks mentioned in Section 2. The BTSlave
project [2] extends the Bittorrent protocol by introducing special-purpose peers called repeaters that
use their idle bandwidth to increase content replication in the swarm. In contrast to Tribler, in BTSlave
a peer is not aware of the help it is receiving, and so it cannot coordinate its helpers as the collector
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in 2Fast does. Due to the lack of coordination, BTSlave repeaters can end up competing for the same
content instead of collaborating.

8. Conclusion and future work

In this paper we have presented a novel paradigm for the design of P2P file-sharing networks based
on social phenomena such as friendship and trust. Following the paradigm’s main concepts of taste
buddies and friends, we have designed and implemented the TRIBLER P2P file-sharing system. We
have described how TRIBLER can help to automatically build a robust semantic and social overlay
on top of Bittorrent, one of the most popular P2P file-sharing systems. We have shown how various
TRIBLER components can yield good performance with respect to existing solutions. In particular, we
have presented evidence that collaborative downloading yields a significant speedup when used in a
real Bittorrent swarm. Last but not least, we have shown how with TRIBLER we have made a start in
addressing the five major P2P research challenges introduced in Section 2.

As future work, we intend to extend TRIBLER with a reputation system, with tag-based content
navigation, with video-on-demand, and with application-level multicasting for video streaming. In
addition, we are planning a much more detailed analysis of the Buddycast algorithm.
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