
Sub-2-Sub: Self-Organizing Content-Based Publish
Subscribe for Dynamic Large Scale Collaborative Networks

Spyros Voulgaris ∗††, Etienne Rivière∗‡, Anne-Marie Kermarrec ‡ and Maarten van Steen †
† Vrije Universiteit, Amsterdam, The Netherlands {spyros,steen}@cs.vu.nl

‡ IRISA/INRIA, Rennes, France {eriviere,akermarr}@irisa.fr

ABSTRACT
In this paper, we address the problem of constructing scalable
content-based publish/subscribe systems. Publish/subscribe sys-
tems are asynchronous event-notification systems in which a pub-
lished event is forwarded to exactly those nodes that have previously
subscribed for that event. Subscriptions can range from a simple
specification of merely the type of an event to a specification of the
value ranges that an event’s attributes can have. Notably the latter
poses potential scalability problems.

Structured peer-to-peer systems can provide scalable solutions to
publish/subscribe systems with simple subscription patterns. For
complex subscription types their applicability is less obvious. In this
paper, we presentSUB-2-SUB, a collaborative self-organizing pub-
lish/subscribe system deploying an unstructured overlay network.
SUB-2-SUB relies on an epidemic-based algorithm in which peers
continuously exchange subscription information to get clustered to
similar peers. In contrast to many existing approaches,SUB-2-SUB

supports both value-based and interval-based subscriptions. Simu-
lations ofSUB-2-SUB on synthetic and reusable workloads convey
its good properties in terms of routing efficiency, fairness, accuracy
and efficiency.

1. MOTIVATION
Publish/subscribe is an appealing paradigm for distributed

and selective content delivery systems. In Publish/subscribe,
subscribersexpress their interest in data by registeringsub-
scriptionswith the system, in order to be notified of any forth-
comingevents(issued bypublishers) matching their subscrip-
tion. In topic-based publish/subscribe systems, events and
subscriptions are associated with a topic name. In content-
based publish/subscribe systems, events and subscriptions
are represented by arbitrary predicates on attributes. A sub-
scription either specifies anexactvalue (a = 2), or covers a
valuerange(a∈ [2,7]).

Peer-to-peer (P2P) systems have been identified as the key
to scalability and their self-organizing properties make them
natural candidates for large-scale publish/subscribe systems
design. Several efficient implementations of P2P topic-based
publish/subscribe systems have been proposed [3, 2]. Un-
fortunately, it is not obvious how to devise a scalable P2P
solution for content-based publish/subscribe systems.

Structured P2P overlays [8, 7, 9] have often been fa-
vored over unstructured ones to implement content-based
publish/subscribe systems. The idea is to map the attribute

∗Spyros Voulgaris’ and Etienne Rivière’s research in this project
has been partially funded by the Van Gogh grant for European col-
laborations fromÉgide.
†Spyros Voulgaris is supported by the Onassis Public Benefit Foun-
dation.

space of the latter to the identifier space of the former. At
one extreme, each attribute is associated with one specific
peer. Although this provides efficient routing to interested
subscribers, peers hosting popular attributes are quickly over-
loaded. At the other end of the spectrum, in an attempt to
discretize the ranges of attributes, a peer is made responsible
for a specific(attribute, value)pair. In this case, attaining
a scalable implementation for range subscriptions becomes
problematic.

In this paper, we step away from structured overlays and
propose a fully decentralized and self-organizing approach
based on unstructured overlays to deal efficiently with both
exact and range subscriptions. Key to our approach, which is
calledSUB-2-SUB, is that subscribers to the same events are
automatically clustered.SUB-2-SUB leverages the overlap-
ping intervals of range subscriptions and creates an unstruc-
tured overlay reflecting the structure of the attribute spaceand
that of the set of subscriptions. Once subscriptions are clus-
tered, events are directly posted to the proper cluster where
they are efficiently disseminated.

A key issue is thatSUB-2-SUB is highly reactive to changes
in the set of subscriptions. To this end, it deploys an epi-
demic algorithm to continuously cluster subscribers. Epi-
demic protocols have proved to converge quickly and to pro-
duce failure-resistant overlays. Each peer knows about a
few other peers, comprising itsview. Periodically, a peer ex-
changes its view with a selected peer, and subsequently each
of them updates its view.

In SUB-2-SUB updating the view is based on a proximity
metric in the attribute space. In the resulting overlay, sub-
scribers are therefore clustered according to the similarity in
their subscriptions. A similar process is followed to navigate
publishers to clusters of matching subscriptions. Publish-
ers progress greedily across the network according to the
same algorithm and proximity metric, eventually reaching
the cluster that containsexactly the subscribers which the
event should be delivered to. Moreover, within such a clus-
ter, subscribers are loosely organized into a distributed data
structure that enables efficient event dissemination.

The rest of the paper is organized as follows. In Section 2
we present the system model, followed by the principles
underlyingSUB-2-SUB in Section 3. The core epidemic al-
gorithm to build a publish/subscribe overlay is presented in
4. Section 5 presents the simulation results of the system
against synthetic and reusable workloads. We then present
some related work and conclude.

2. SYSTEM MODEL
A multitude of publish/subscribe systems have been pro-

posed in the literature. Not all of them, however, refer to

Si

� �
� �
� �
� �

� �
� �
� �
� �

Sv

St

Event e (a=10) Value of attribute a

Sl

Sj

Sk

Figure 1: A set of subscriptions and an event.

the same problem. In this paper, we consider content-based
publish/subscribe systems where subscribers express their
interests through predicates over attributes. In our model,
events and subscriptions are associated with one or more at-
tributes and their corresponding values. Subscribers define
their interests by means of desired attribute values. A sub-
scription associates with each attribute either a discrete value
or an interval. We call the former,discreteand the latterrange
subscriptions in the rest of this paper. We consider acon-
junctive (AND-based) subscription model in whichall of the
attributes’ conditions should be met for an event to match a
subscription.

The attribute space is composed ofN floating-point at-
tributes and supports subscriptions on bothdiscreteattribute
values andranges. More formally, we assume a fixed number,
N, of attributes,A1, . . . ,AN, with values inIR (the set of real
numbers). Attributes can alternatively be assigned values of
any type that can be directly mapped toIR, such as integers,
enumerations, boolean values, or character arrays.

Subscriptions are conjunctions of predicates on one or
more attributes. A predicate can denote either an exact
value (e.g.,Ai = v), or a continuous range of values (e.g.,
Ai ∈ [vmin,vmax]). A subscription can have at most one pred-
icate per attribute. Multiple exact values or multiple non-
continuous subranges on a single attribute can be modeled
as multiple separate subscriptions. Attributes not referred to
in a subscription (wildcards) are assumed to cover the whole
attribute space, that is, their value is indifferent to the sub-
scriber. An example subscription for a 5-attribute system is
〈A2 = 30 ∧ A5 ∈ [2.2,2.7]〉.

Events areN-sized vectors specifying exact values forall
attributes. An example event for a 5-attribute system is
〈{A1, A2, A3, A4, A5} = {5, 30, −2.5, 20, 1.87}〉.

In the remainder of this paper, we will consider range sub-
scriptions, i.e., subscriptions composed of a set of predicates,
each specifying a range of values. Exact-value predicates are
considered as a special, and simpler, case of a range subscrip-
tion.

3. SUB-2-SUB IN A NUTSHELL
SUB-2-SUB is an autonomous, self-organizing P2P event-

notification system that supports multi-attribute subscrip-
tions. Autonomousimplies that the dissemination of events
to all interested nodes is accomplished by the cooperation
of interested nodes themselves, eliminating any dependency
on relay servers or dedicated elements.Self-organizingrefers
to the fact that nodes organize themselves in a structure that
enables their cooperation for event dissemination in a com-

pletely decentralized manner. The self-organizing property
of SUB-2-SUB relies on the use of an epidemic algorithm to
cluster similar peers. Its efficiency relies on the fact that
overlapping subscriptions are leveraged so that(i) only inter-
ested subscribers are reached by an event and(ii) subscribers
do not miss any event matching their subscription.

Epidemic-based clustering.SUB-2-SUB forms an unstruc-
tured overlay network in which each peer is associated with
a single subscription. Multiple subscriptions are handled
by running multiple virtual peers on a single physical node,
each virtual peer maintaining its own set of links.SUB-
2-SUB implements an epidemic algorithm to automatically
cluster similar subscriptions. Periodically, peers exchange
information to discover similar peers to form clusters with.
Note that the resulting clusters do not have explicit bound-
aries. Figure 1 depicts an example of a set of subscriptions
for a single attribute scheme. Each line represents a range
subscription. The epidemic algorithm ensures that peers are
automatically clustered so that when an event specifying a
value for attributea (e.g.,e: 〈a= 10〉 in Figure 1) is published,
all interested subscribers (Sv, Sl andSt in Figure 1) get it.

Organizing range subscriptions.A key observation un-
derlying SUB-2-SUB’s design is that every subscription by
peeri essentially specifies anN-dimensional subspaceSi ⊂
IRN, which we refer to as ahyperspace. As a consequence,
we are interested only in those events that fall intoS =

⋃
Si .

The principle behindSUB-2-SUB is that we automatically
partitionS into M disjoint hyperspacesS1, . . . ,SM such that

∀ 1≤m≤M : [Sm∩Si 6= /0]⇒ [Sm⊆ Si]

Furthermore, we demand thatM is minimal: there is no
partitioning with fewer parts that can satisfy this constraint.

To this end, we let peers periodically exchange their sub-
scriptions. If two peersi and j note thatSi j ≡ Si ∩Sj 6= /0, they
will record this fact and maintain references to each other
(how this is done is described below). For example in Figure
1, Si and Sj satisfy the above condition for a given range
and get connected. When discovering a third peerk with
Si jk ≡ Si ∩Sj ∩Sk 6= /0, peersi, j andk will further organize
into a structure associated withSi jk such that an evente∈ Si jk
will be efficiently disseminated to the three peers. Bothi and
j will still maintain references to each other, but now for the
subspaceSi j −Si jk . Figure 1 illustrates this process: whenSk
joins the network it gets connected toSj for the shaded range
while Sj andSi remain connected for the hatched range.

A publisher of an evente joins the overlay identically to
subscribers, and will eventually find the setSm which e be-
longs to. At that point,e is disseminated to the members
associated withSm. Note that, providedS is indeed parti-
tioned along the lines we just described,e will reach only
nodes that are interested in it, and no other ones.

This way of matching a publisher to the relevant sub-
scribers ensures that an event will be deliveredonly to sub-
scribers interested in it, but not necessarily toall of them. To
achieve dissemination to all interested subscribers, we fur-
ther organize nodes associated withSm in a ring, as we will
see in the following section.

4. EPIDEMIC-BASED PUB/SUB
Let Nm denote the set of peers associated withSm. The

major issue thatSUB-2-SUB needs to solve is to ensure that
each peeri is contained in exactly those setsNm for whichSm
intersects withSi : [i ∈Nm]⇔ [Sm∩Si 6= /0]. To this end, we let
each peeri maintain a reference to another nodej if Si and
Sj intersect, and such that this intersection is not yet fully
covered by the subscription of another node to whichi has
a reference. Initially,i’s goal is to make sure that its entire
subscriptionSi is covered (unless there are parts for which it
is truly the only subscriber). The principal idea is that when
an evente∈ Si ∩Sj is published, eitheri passes the event on
to j or vice versa. As a consequence, we also need to ensure
thatall peers interested ine are one way or another directly
or indirectly linked to each other. To this end, those peers
are organized into a ring-like structure, described below.

4.1 Building the overlay
We let nodes self-organize into bidirectional rings that rep-

resent the setsNm mentioned above. Each node is equipped
with a randomsequence IDuniformly drawn from a large
identifier space. If nodei discovers that nodej covers part
of its subscription, it will keep a reference toj. However, as
soon as another nodek is discovered that covers the same or
larger area, but with a sequence ID that lies between that ofi
and j (using cyclic arithmetic),i will trade the reference toj
for that ofk. The use of (random) identifiers allows for a de-
terministic organization of peers so that the event-spreading
algorithm is sure to reach all interested subscribers.

Of course, maintaining a ring allows only for a linear
dissemination speed. To improve on this, each node also
maintains links to randomly chosen peers. When an event
e∈ Sm needs to be disseminated, not only is it sent along
the ring forNm, it is also sent to randomly chosen peers that
have interest ine as well. Effectively, this short-cuts the
ring. By its recursive nature, this forwarding requires only a
logarithmic-like number of steps.

Finally, to actually discover nodes, we deployCYCLON [11],
an epidemic protocol by which a node maintains a list of ran-
domly selected neighbors (its view), and regularly exchanges
views with other peers. This also serves as a membership
management protocol. Nodes join by contacting any one
node of the network, andCYCLON takes care of integrating
them in the system.

These observations lead to three different types of links.
Random links, i.e., links to randomly selected peers in the
overlay, are needed to discover nodes, and to keep the whole
overlay connected in a single partition.Overlapping-interest
links reflect the similarities between subscriptions and are
used to send published events to random other interested
peers (and to speed up event dissemination). Finally,ring
linksare used to build a ring of nodes for each setNm. Figure
2 depicts these three types of links, for a set of subscriptions
over one attribute.

For each type of link, a peer maintains a separate view with
each associated protocol.

Random links.Several approaches may be used to ran-
domly sample peers in an unstructured peer-to-peer overlay
[6]. In SUB-2-SUB we useCYCLON [11], an epidemic proto-
col that has shown to produce overlays that strongly resemble
random graphs [6].

Overlapping-interest links.Such links are maintained us-
ing a proximity-based epidemic protocol, here we useV ICIN-

Figure 2: Each subscriber maintains three sets of links. From
left to right : random links, overlapping interests links, and
ring links. Shaded areas denote where links of the respective
type are appropriate for this subscriber.

function select peers for nodej
var space: HyperSpace
var nodes, selected: set of Node init /0
nodes← l1.view+ l2.view+ l3.view
for directionin {ascending,descending}

space← j.space
foreach N ∈ nodesfrom j.id by direction

if N.spaceintersectsspacethen
space← space−N.space
selected← selected+{N}

end if
end foreach

end for

Figure 3: Pseudocode for selecting peers.

ITY [12]. The basic idea of proximity-based epidemic proto-
cols is that peers, upon epidemic view exchanges, keep links
to the closest nodes according to a given proximity metric
(here proximity refers to a distance in the attribute space).
In SUB-2-SUB proximity is defined as 0 if two nodes have
overlapping interests and otherwise as the Euclidean distance
in the respective hyperspaces that represent two nodes’ sub-
scriptions. Formally, ifSi = [l i1, r

i
1]×·· ·× [l iN, r i

N], then

d(i, j) =

√√√√ N

∑
k=1

(
min{r i

k, r
j
k}−max{l ik, l

j
k}

)2

for peersi and j with non-overlapping subscriptionsSi and
Sj . In this way, each node builds an ordered list of nodes
with similar interests.

Ring links. To maintain such links, periodically each peeri
initiates a view exchange with subscriberj, selected among
i’s ring neighbors. In this case,i merges all its views (i.e.,
including the ones for the random and overlapping-interest
links) into a single container. It subsequently goes through
the subscribers in this container in increasing sequence ID or-
der (and cycles when reaching the maximal sequence ID) and
selects a subscriber only if it intersectsj ’s interest space at
some region not yet covered by already selected subscribers.
This process is then repeated, but now iterating in decreasing
sequence ID order. Note that in this way, we build a bidirec-
tional ring. The selected subscribers are then sent toj, which
subsequently performs the same logic. The pseudocode for
selecting ring links is shown in Figure 3.

Note that ring links are indifferent to publishers. Indeed,
publishers build views for only random and overlapping-
interest links, and gossip greedily (as fast as they can) to
reachanymatching subscriber, independently of its sequence

Figure 4: An event dissemination ring highlighted.

ID. As we will see in Section 5, this permits them to find a
matching subscriber in a very small number of steps. If more
steps than a small threshold elapse, they can safely assume
that no subscriber in the whole network is interested in their
event(s).

4.2 Spreading events
Given the dissemination overlay described above, publish-

ing events is a simple task. All a publisher has to do is locate
any one matching subscriber for its potential event(s), and
deliver the event(s) to it. From that point on, dissemination
is taken care of by the matching subscribers themselves. Fig-
ure 4 depicts a set of subcriptions and the associated ring, for
a sample event value (only rings links are shown).

In particular, we assume that each node is running a simple
dissemination algorithmas a daemon thread listening to incom-
ing events and forwarding them accordingly. The daemon
thread is activated when a node receives an event. It first
looks up the node’s recent event history. Previously seen
events are ignored. New events are delivered to the applica-
tion, and subsequently forwarded in two respects. First, an
event is forwarded to the node’s two adjacent neighbors (if
any) along the event’s ring. Second, it is forwarded to a small
number (typically only one or two) of additional matching
subscribers, by following random shortcuts in the event’s
ring. Obviously, a node does not send an event back along
the same link it received it through.

Four facets of the dissemination algorithm are worth not-
ing, namely its behavior with respect tohit ratio, propagation
speed, spam ratio, andload balancing.

Hit ratio and propagation delay are dealt with by ring links
and random shortcuts, respectively. Forwarding along ring
links guarantees that events are sequentially propagated to
all corresponding matching subscribers, achieving a hit ratio
of 100%. Random shortcuts to matching subscribers are
followed only to boost propagation speed. Indeed, following
the ring links alone requires linear time to cover all interested
nodes. By each node forwarding incoming events to as few
as one random matching node, dissemination completes in
close to logarithmic time.

Spam is entirely out of the question in this dissemination
algorithm. Clearly, no node forwards an event to another
node, unless the latter is interested in that event. The only
scenario in which a node might receive spam messages, is
if it has recently modified its subscription, and its updated
subscription has not yet spread enough. In that case, it may
still receive events matching its previous subscription.

Finally, with respect to load balancing, two points are

worth emphasizing. First, no dissemination load is imposed
on irrelevant subscribers. Second, load is evenly balanced
across matching subscribers, as each of them receives an
event once or a few more times, and upon first reception
forwards it to the same small number of nodes: up to two
adjacent neighbors, and a few random ones.

5. EVALUATION
In this section, we evaluateSUB-2-SUB by simulation under

synthetic subscription workloads. We focus on four key
issues: overlay construction, hit ratio, propagation speed,
and complexity for publisher and subscriber joins. Spam
ratio is not considered, as it is fundamentally eliminated by
our design.

We built and evaluatedSUB-2-SUB on PeerSim[1], an open
source Java simulation framework for P2P protocols.

Experimental setup.In lack of real-world subscription datasets,
we generated synthetic ones as follows.N-attribute subscrip-
tions were represented asN ranges in[0. . .1], one for each
attribute. A range’s center was chosen following the re-
spective attribute’sinterest distribution. A range’s width was
determined by the attribute’swidth distribution.

In each experiment we applied the same interest distri-
bution to allN attributes: eitheruniform or power law. The
former represents a natural unbiased workload. The latter,
known asZipf, is admitted to be a good approximation of
interest popularity and results in subscription sets closer to
expected social behavior, exhibiting popular and rare values.
It also results in more interesting experiments, as there is
higher overlap around the “center” of the interest space, and
lower towards its edges, resulting in rings of various lengths.
The width distribution was fixed topower lawcentered at 0,
with α = 4, to account for both wide range and (nearly) exact
subscriptions.

In evaluatingSUB-2-SUB we considered schemes of up
to five attributes. The number of subscribers was fixed to
10,000 for all experiments.

We tested each experiment’s effectiveness by observing the
dissemination of 10,000 test events. Test events were picked
at random, ensuring each one had at least two matching
subscribers, to make dissemination meaningful.

Jump-startingSUB-2-SUB. We first test our algorithm’s
ability to jump-start aSUB-2-SUB overlay from scratch. Nodes
started gossiping at the same time, having been initiated with
a single random link in theirCYCLON views, ensuring the
overlay formed a connected graph. We recorded the topology
evolution by keeping statistics over the ring links associated
with each of the 10,000 test events.

Figure 5 shows the evolution of ring construction per cycle,
for four experiments. We can see that after 40 cycles, all rings
are fully set up.

Due to limited space, and having seen that rings are con-
structed in a small number of cycles in all cases, the remain-
ing evaluation concentrates on a single experiment, namely
the one with three attributes and power law interest distri-
bution. This experiment is the most interesting for testing
event dissemination and propagation speed, as the rings it
involves range from very small (2 subscribers) to quite large
(246 subscribers). In five-attribute schemes, rings are triv-
ially short (2-3 subscribers) due to the very large subscription

Figure 5: Construction of the rings in time. Light bars show
the percentage of ring links already in place. Dark bars show
the percentage of rings that are complete. 10K nodes.

Figure 6: Event dissemination. Light bars show the hit ratio for
non-completedisseminations. Dark bars show the percentage
of disseminations that were complete (events delivered to all
their matching subscribers). 10K nodes; 3 attributes; power
law interest distribution.

space. (Fig. 7(a)).

Event dissemination.We apply theSUB-2-SUB dissemina-
tion algorithm by forwarding an event toonerandom match-
ing subscriber in addition to its two adjacent ones.

Figure 6 presents the performance ofSUB-2-SUB with re-
spect to event dissemination. It is worth noting that, by
comparison to Fig. 5(upper-right), complete dissemination
is achieved evenbeforeall rings are in place. This comes as
a result of (also) forwarding to random overlapping links.

Propagation speed.We now examine the speed, in terms
of the number of hops at which events spread. We are specif-
ically interested in the number of hops forcomplete dissemi-
nation, that is, the number of hops elapsed from the moment
a publisher delivers an event to some matching subscriber,
until the event reaches the last one of them.

Figure 7(b) shows the number of dissemination hops as a
function of the number of subscribers matching the respec-
tive events. Clearly, the number of hops increases with the
number of matching subscribers. However, as a result of
short-cutting the rings in disseminating events, this relation
is of logarithmic fashion.

Single joins.Jump-startingSUB-2-SUB consists a worst
case scenario, as the whole overlay starts from a completely

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

#
 r

in
g

s

(a) ring length

3 attr, uniform

3 attr, power law

5 attr, power law

5 attr, uniform
 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250

h
o

p
s
 t

o
 c

o
m

p
le

te
 d

is
s
e

m
in

a
ti
o

n

(b) ring length

3 attr, power law

Figure 7: (a) Distribution of ring lengths. (b) Hops to complete
event dissemination, as a function of the number of matching
subscribers (ring length). 10K nodes; 3 attributes; power law
interest distribution.

 1

 10

 100

 1000

 0 10 20 30 40 50 60

no

de
s

cycles for SUBSCRIBER joins

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8

no

de
s

cycles for PUBLISHER joins

Figure 8: Cycles it takes subscribers and publishers to join.

non-clustered state. We now take a look at the other end of
the spectrum, measuring the speed ofsinglenode joins to an
already converged overlay.

Starting from the converged state of our experiments, each
subscriber (and links to it) was individually removed to let it
join again. The number of cycles it took to re-establish all
ring links of the rejoined subscriber to its neighbors andvice
versa, gives the distribution shown in Figure 8.

For publishers, on the other hand, joining is a simpler
task, as they are only interested in reachingany matching
subscriber, independently of its sequence IDs. Figure 8 also
shows the distribution of cycles it takes publishers to join,
starting from a random node. It is worth noting that all
10,000 publishers we tested joined in five or less cycles.
This is important, as a publisher can safely assume there is
no subscriber matching its event(s) after a low threshold of
cycles (i.e., in the order of 10 or 20).

6. RELATED WORK AND CONCLUSIONS
Scalability of peer-to-peer systems makes them natural

candidates to implement large-scale publish/subscribe sys-
tems. In this paper, we presented the design and evaluation of
SUB-2-SUB, a scalable, self-organizing peer-to-peer approach
for content-based publish/subscribe in collaborative environ-
ments. SUB-2-SUB deploys an unstructured overlay where
subscribers are clustered in efficient dissemination structures,
based on shared interests. To the best of our knowledge,SUB-
2-SUB is the first attempt to build publish/subscribe overlays
using epidemic-based algorithms, thus exploiting their abil-
ity to handle dynamic environments.

Unlike SUB-2-SUB, previous peer-to-peer approaches for
content-based publish/subscribe have mainly focused on struc-
tured overlays. Among them, Meghdoot [5] uses an exten-
sion of the CAN DHT [7]. It maps subscriptions to a2×k-
Euclidean space, wherek is the number of attributes. Each
attribute is represented by two dimensions, corresponding

to its minimum and maximum allowed values respectively,
allowing for range subscriptions. UnlikeSUB-2-SUB’s au-
tonomous and self-contained operation, Meghdoot employs
a separate set of dedicated nodes for storing subscriptions and
disseminating events. Meghdoot deals with sparse interest
distribution with CAN zone replication, which may be com-
putationally expensive to maintain in highly populated parts
of the space. Terpstra et al. [10] proposed to leverage the
properties of the Chord DHT [9] to implement an event filter-
ing system. Distributed nodes are dynamic brokers organized
in a graph. They use subscription merging and covering to
provide scalability, acting similarly to traditional content-
based filtering systems based on a dedicated set of brokers.
However, such a set of brokers may be hard to maintain ef-
ficiently in highly dynamic environments. Finally, Costa et
al. proposed to use epidemic-based algorithms to enhance
reliability of existing publish/subscribe systems [4].

We conclude thatSUB-2-SUB is an appealing alternative
to existing solutions for content-based publish/subscribe. It
offers a scalable, autonomous, and self-organizing system,
combining the resilience of epidemic-based overlays with
the expressiveness of the content-based model.

REFERENCES
[1] peersim. http://peersim.sourceforge.net.
[2] Suman Banerjee, Bobby Bhattacharjee, and

Christopher Kommareddy. Scalable application layer
multicast. InSIGCOMM ’02, pages 205–217,
Pittsburgh, PA, 2002.

[3] Miguel Castro, Peter Druschel, Anne-Marie
Kermarrec, and Antony Rowstron. SCRIBE: A
Large-scale and Decentralized Publish-Subscribe
Infrastructure.IEEE JSAC, 20(8), October 2002.

[4] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco,
and Gianpaolo Cugola. Introducing Reliability in
Content-Based Publish-Subscribe through Epidemic
Algorithms. InDEBS, pages 1–8, San Diego, CA,
2003.

[5] Abhishek Gupta, Ozgur D. Sahin, Divyakant Agrawal,
and Amr El Abbadi. Meghdoot: Content-Based
Publish/Subscribe over P2P Networks. InMiddleware,
pages 254–273, Toronto, Canada, 2004.

[6] Màrk Jelasity, Rachid Guerraoui, Anne-Marie
Kermarrec, and Maarten van Steen. The Peer
Sampling Service: Experimental Evaluation of
Unstructured Gossip-Based Implementations. In
Middleware, pages 79–98, Toronto, Canada, 2004.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In SIGCOMM, pages 161–172, San Diego, CA, August
2001.

[8] A. Rowstron and P. Druschel. Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems. InMiddleware,
Heidelberg, Germany, 2001.

[9] Ion Stoica, Robert Morris, David Liben-Nowell,
David R. Karger, M. Frans Kaashoek, Frank Dabek,
and Hari Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Protocol for Internet
Applications.ACM/IEEE Trans. Netw., 11(1):17–32,
February 2003.

[10] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege,

Andreas Zeidler, and Alejandro P. Buchmann. A
Peer-to-Peer Approach to Content-Based
Publish/Subscribe. InDEBS, pages 1–8, San Diego,
CA, 2003.

[11] Spyros Voulgaris, Daniela Gavidia, and Maarten van
Steen. CYCLON: Inexpensive membership
management for unstructured P2P overlays.J. Network
Syst. Mgmt., 13(2), 2005.

[12] Spyros Voulgaris and Maarten van Steen.
Epidemic-style Management of Semantic Overlays for
Content-Based Searching. InEuroPar, Lisboa,
Portugal, September 2005.

