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Abstract

P2P systems that rely on the voluntary contribution of
bandwidth by the individual peers may suffer from freerid-
ing. To address this problem, mechanisms enforcing fairness
in bandwidth sharing have been designed, usually by limit-
ing the download bandwidth to the available upload band-
width. As in real environments the latter is much smaller
than the former, these mechanisms severely affect the down-
load performance of most peers. In this paper we propose
a system called 2Fast, which solves this problem while pre-
serving the fairness of bandwidth sharing. In 2Fast, we form
groups of peers that collaborate in downloading a file on
behalf of a single group member, which can thus use its full
download bandwidth. A peer in our system can use its cur-
rently idle bandwidth to help other peers in their ongoing
downloads, and get in return help during its own downloads.
We assess the performance of 2Fast analytically and experi-
mentally, the latter in both real and simulated environments.
We find that in realistic bandwidth limit settings, 2Fast im-
proves the download speed by up to a factor of 3.5 in com-
parison to state-of-the-art P2P download protocols.

1. Introduction

In the P2P research community the role of content trans-
fer is often neglected in favor of content searching. Experi-
ence with widely used P2P applications such as file sharing
networks shows, however, that the time needed to locate the
data is only a small fraction of the time required to actually
transfer the data to the requester. State-of-the-art P2P data
transfer protocols such as BitTorrent [3] have decreased the
time needed to fetch a medium-sized file from days to hours.
In this paper we show how this time can be further reduced
to minutes.

Existing P2P download protocol designs take one of the
following two approaches. They either assume that users are
willing to contribute resources even without being explicitly
rewarded by the system for their contributions, or they em-
ploy mechanisms enforcing fair resource sharing.

The assumption that there is enough altruism in the sys-
tem limits the applicability of a solution to communities of
trusted users. However, Internet-scale deployment where
users are anonymous may lead to protocol abuses by freerid-
ers [1], i.e., users obtaining data without contributing, which

results in a drastic performance drop. In systems like
Gnutella [12] and Kazaa [6], users have no natural incentive
to provide services to other participants. In this respect the
users of P2P systems closely resemble rational agents [14]
who are willing to follow the protocol only if their behav-
ior maximizes their utility. If there is no immediate reward
for cooperative behavior, nodes will behave selfishly, which
will bring down the performance of the whole system, a phe-
nomenon known as the “tragedy of the commons” [5].

The performance decrease of P2P systems caused by
freeriders has stimulated research on mechanisms to enforce
fair resource sharing [7, 14]. Practice shows, however, that
the constraints conditioning a user’s quality of service on
his actual contribution to the community are too restrictive
in many cases. The tit-for-tat bartering protocol of BitTor-
rent [3], for example, limits peer’s download bandwidth by
the upload link capacity, which prevents users connected
with ADSL links from utilizing their full download band-
width. Keeping in mind that the majority of P2P users are
connected through such asymmetric links [13], this restric-
tion affects the performance of the whole system.

In this paper we describe, analyze and evaluate a
P2P protocol called 2Fast that prevents freeriding, but at
the same time allows forming collaborative groups of peers
that help each other in downloading files. The bandwidth re-
sources are shared among peers inside such groups, thus im-
proving their download performance. The bandwidth shar-
ing model of 2Fast is significantly different from the mod-
els of existing P2P data transfer systems. While alternative
approaches based on the fair bandwidth sharing paradigm
allow for interaction only between certain peers, e.g., peers
downloading the same file, in 2Fast any peer with idle band-
width can participate in a collaborative download. In 2Fast,
the mechanisms enforcing fairness between collaborating
and non-collaborating peers are separated from each other,
allowing collaborations based on different fairness models
to coexist in a single system.

Collaborations in 2Fast are embedded in an environment
using tit-for-tat [3] data exchange between peers. The tit-
for-tat mechanism provides a simple means of enforcing
fairness between anonymous peers, e.g., peers from outside
a single collaboration. Because of the asymmetric nature
of the collaboration relation, tit-for-tat is not applicable in-
side a collaboration. Instead, we suggest exploiting social



phenomena such as friendships between users as an incen-
tive to form collaborations. In this respect 2Fast follows
the social-based P2P system design paradigm introduced
in our earlier work [10]. That work has given rise to the
P2P client called Tribler. The fully functional implementa-
tion of 2Fast has been integrated with the Tribler code base
and is publicly available for download at the project page —
http:\\tribler.org.

2. The problem setting

For many researchers the role of P2P overlays is limited
to locating files. In reality, however, also the efficient fetch-
ing of content, once it has been located, is a nontrivial prob-
lem, particularly if fairness in bandwidth contributions is one
of the system design objectives.

The data transfer protocols employed by early P2P sys-
tems such as Gnutella [12] and Kazaa [6] lack explicit mea-
sures of fairness in bandwidth usage, which makes them an
easy target for freeriders [1, 15]. It was shown in [1] that
70% of Gnutella users exploit the generosity of others by
downloading shared files without contributing anything to
the common good.

BitTorrent [3] is the first widely used P2P file down-
load protocol that incorporates fairness enforcement mecha-
nisms. Every BitTorrent node that has acquired some subset
of the file trades blocks with other peers until it has the whole
file. In order to bootstrap new nodes, peers reserve a fraction
(usually 1/4) of their bandwidth for altruistic service. Nodes
that trade fairly their bandwidth usually experience a higher
quality of service.

A serious limitation of BitTorrent-derived systems is that
they cannot preserve information about peer contributions in
between download sessions. Consequently, peers can only
use the service at the same level as their current contribu-
tion. In terms of bandwidth, this statement translates to the
peers’ effective download bandwidth being limited by their
upload link capacity. In case of upload-bandwidth-limited
peers, such as peers connected through asymmetric links,
this constraint seriously reduces the achievable download
performance.

Our 2Fast system extends the bartering model of
BitTorrent-like file transfer protocols. The basic concept of
2Fast is that a peer that has idle bandwidth to spare can join a
download currently in progress, fetching missing fragments
of the downloaded file and uploading them to the download
initiator. The contributed bandwidth can be reclaimed in the
future when the peer needs additional bandwidth to speed up
its own downloads.

3. The design of 2Fast

In this section we describe the model of the environ-
ment in which 2Fast is deployed, we present the design of
the 2Fast system, and we discuss the mechanisms provid-
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Figure 1. Collector and helpers.

ing incentives for formation of collaborations of peers in
2Fast system.

3.1. The data distribution model

The 2Fast protocol targets environments where large files
are downloaded by many users at the same time. An exam-
ple of such an environment is the BitTorrent network. Bit-
Torrent is currently the largest P2P file-sharing network with
over one third of the world’s P2P traffic [8], which consti-
tutes more than 15% of the total Internet traffc.

In our approach we focus on optimizing data transfer
speed rather than search capabilities leaving the data loca-
tion problem aside. We assume that data exist in the network
in the form of files or file archives (i.e., files containing mul-
tiple files). To facilitate the file exchange process, files are
split in smaller parts called chunks. The size of a chunk in a
BitTorrent is in the range of a few hundred kilobytes. While
selecting chunks to download from each other, peers follow
the rarest-first policy [3], meaning that the chunk with the
fewest replicas is selected for download first. A peer has a
complete file only after obtaining all the chunks composing
that file. A peer that has the whole copy of a file is called a
seeder, while a peer whose download is still in progress is re-
ferred to as a leecher. The group of peers (seeders and leech-
ers) downloading a particular file is referred to as a swarm.

3.2. The concept of collaborative downloads

In the 2Fast protocol, a peer takes one of two roles: it is
either a collector or a helper (see Figure 1). The collector
is the peer that is interested in obtaining the complete copy
of a particular file. In order to improve the performance of
the download, a collector forms a collaboration consisting of
peers that agree to become its helpers. The helpers download
distinct chunks of the file from the peers outside the collab-
oration they are in, and send these chunks to the collector
without requesting any other chunk in return. The collector
optimizes its download performance by dynamically select-
ing the best available data source from the set of helpers and
other peers in the network. Helpers give priority to requests
originating from the collector and are therefore preferred as
data sources. Helpers are not necessarily interested in the
content they are downloading.



The fairness of bandwidth sharing is enforced by a hy-
brid approach, as the bandwidth is accounted differently be-
tween non-collaborating peers, and between a collector and
its helpers. Peers that are not members of the same col-
laboration can exchange chunks with the standard BitTor-
rent tit-for-tat [3] algorithm. The BitTorrent tit-for-tat barter-
ing strategy ensures that for a peer the amount of incoming
data is roughly equal to the amount of outgoing data.

The tit-for-tat mechanism guarantees fairness only within
a single download session (download of one file). The asym-
metric nature of the collector-helper relation implies that the
bandwidth contributed by the helper to obtain the chunks
for the collector in the current download can be reclaimed
only during later downloads. We base the fairness between
collaborating peers on a notion of a promise. A collector re-
cruits helpers by giving them a promise that the bandwidth
invested in boosting the collector’s download performance
will be returned in the future. Helpers contribute their cur-
rently idle bandwidth knowing that later the roles may be
reversed — a helper will become a collector and the current
collector will pay back for the consumed bandwidth by par-
ticipating in the download as a helper.

The role of a promise is to provide an incentive for col-
laboration. This role can be fulfilled only if the system pro-
vides guarantees that the promise will be delivered. The
2Fast system in its basic form uses social incentives to en-
force promise delivery. In our previous work [10] we have
shown that social phenomena such as friendship and the ex-
istence of communities of users who trust each other can
be exploited in P2P protocol design. Viewing users as so-
cial partners rather than solitary rational agents [14] can al-
leviate the problem of false promises, by exploiting the fact
that people tend not to steal bandwidth from the social group
they belong to. The observation that members of social com-
munities tend to have significant numbers of friends [10]
in combination with the small number of helpers that is
required to achieve high download performance (see Sec-
tion 4) gives a reason to believe that a collector should not
have problems in finding helpers. In the system described
in [10], users select who they are willing to help by explic-
itly specifying how much they trust each other. The trust
value can be modified at any time to reflect the change in
users’ confidence in each others’ credibility, e.g., as a con-
sequence of (not) keeping promises. This solution is similar
to the inter-tribal exchanges of cowrie (shells) for seasonal
food products, used from as early as 1200 BC to the mid
20th century in bankless transactions [4].

3.3. Bandwidth sharing model of 2Fast

The 2Fast protocol enables a new, less restrictive model
of resource sharing in P2P data distribution networks. The
existing P2P data distribution systems base their incentives
on content trading, while 2Fast introduces bandwidth trad-
ing based incentives.

All content trading incentives translate, in one way or an-
other, to gaining the right to download a file from the net-
work in return for uploading a file stored locally to the net-
work. In this model, files or content in general, are traded
between peers to enforce the fairness of sharing. Enabling
content trading between two peers in the simplest situation
requires that each of the involved peers has content which is
interesting for the other one. As a consequence, content trad-
ing can happen only between peers that have mutual content
interests. The BitTorrent protocol is an example of the most
restrictive variant of content trading as BitTorrent peers trade
chunks of the same file. Systems such as Scrivener [7] adopt
a more advanced content trading mechanism called transi-
tive trade. Transitive trade establishes a credit path [7, 2]
from the requesting node to the node that has the desired file.
Credits are then transferred along this path and the download
may start. Discovering credit paths is, however, a complex
problem, and there is always a chance that no path exists
between two particular peers.

In the bandwidth trading incentive model of 2Fast the
traded good is bandwidth rather than content. Any peer can
act as a helper to any other peer, investing its currently un-
derutilized bandwidth and getting this bandwidth returned
in the future. No mutual interest between the helper and the
collector is therefore required.

4. Performance analysis of 2Fast

In this section we analyze the performance of the
2Fast collaborative download protocol.

4.1. Notation

For the purpose of the analysis we introduce the following
notation:

N the number of leechers in the system,

S the number of seeders in the system,

K the number of chunks that the file distributed in the
swarm is divided into,

L the number of peers that possess a particular chunk.
The rarest-first chunk selection policy guarantees that
every chunk has roughly the same number of copies in
the network,

ni the number of chunks possessed by peer i,

mi,k 1 if peer i possesses chunk k, 0 otherwise,

µ the maximal upload bandwidth of a peer. For the pur-
pose of the formal analysis we assume that all peers
have the same maximal upload bandwidth,

c the maximal download bandwidth of a peer. We as-
sume that all peers have the same maximal download
bandwidth, and that c ≥ µ.



4.2. The selection of the number of helpers

The performance of the collaborative download depends
on the number of helpers that are involved. It is clear, how-
ever, that after the collector’s bandwidth is filled, adding a
new helper won’t improve the download speed. Here, we
compute the minimal number of helpers sufficient to fill the
collector’s download bandwidth.

The effective download bandwidth of the collector is the
sum of three contributions: the bandwidth obtained from the
seeders, the bandwidth bartered for with peers outside the
collaboration, and the bandwidth provided by the helpers.
As to the first contribution, the aggregate upload bandwidth
of the seeders in the system is Sµ. So, assuming that this
bandwidth is distributed equally over the N leechers, each
peer (and so, also the collector) gets from the seeders a con-
stant download rate of Sµ/N . Secondly, the tit-for-tat mech-
anism of BitTorrent guarantees that the collector’s download
bandwidth from the peers it is bartering with roughly equals
its upload bandwidth µ. Thirdly, assuming that the collector
has h helpers, let fi ∈ (0, 1] be the fraction of the upload
bandwidth of helper i which is used to transfer data to the
collector, for i = 1, 2, . . . , h. We can now express the effec-
tive download bandwidth d of the collector as

d =
S

N
· µ + µ +

h
∑

i=1

fiµ. (1)

In this paper we assume that c > Sµ/N + µ, for otherwise
the maximal download bandwidth of the collector is already
filled by the seeders and by bartering, and helpers are of no
use.

Because a fraction fi of the upload bandwidth of helper i
is reserved for the collector, only a fraction of 1 − fi can be
spent for bartering with other peers, which results in helper
i’s effective download bandwidth being reduced to Sµ/N +
(1 − fi)µ. On the one hand, helper i cannot transfer data to
its collector faster than it is downloading, which leads to the
constraint fiµ ≤ Sµ/N + (1− fi)µ. On the other hand, the
transfer speed between helper i and the collector should be
maximal, which occurs when fiµ = Sµ/N + (1− fi)µ, or,
in other words, fi = (S/N + 1)/2. We can now substitute
this value of fi in Eq. (1), which leads to:

d =
S

N
· µ + µ +

1

2

h
∑

i=1

(

S

N
+ 1

)

µ =

(

S

N
+ 1

)(

1 +
h

2

)

µ. (2)

Adding new helpers makes sense only until a collector’s
effective download bandwidth reaches the download link ca-
pacity, which occurs when d equals c. Replacing d with c
in Eq. (2) gives us the following formula for the minimum
number of helpers required to fill entirely a collector’s down-
load link, denoted by hopt:

hopt = 2

(

cN

(S + N)µ
− 1

)

. (3)

4.3. The download speedup

As the performance metric which allows us to quantify
the performance gain of collaborative downloads, we use
the value of the collector’s speedup u, which we define as
the ratio between the download time of a peer acting on its
own and the download time of a collector supported by its
helpers. As the download time is directly related to the in-
verse of the download bandwidth, we can equivalently define
the speedup as the ratio between the bandwidth of a collector
and a peer acting on its own. Using the notation introduced
in Section 4.2, we find for the speedup

u =
d

S
N

µ + µ
=

{

1 + h
2 , h < hopt,

cN
(S+N)µ , otherwise.

(4)

In Eq. (4), Sµ/N + µ represents the download bandwidth,
as defined in Section 4.2, of a peer acting on its own. The
final value of the formula for u is obtained by substituting
for d the value computed in Eq. (2).

For h < hopt, Eq. (4) is intuitive. First, adding a new
helper increases the collector’s speedup by a constant value,
which is a consequence of the observation that each helper
contributes the same amount of bandwidth (see Eq. (1)).
Only the contribution of the last helper added before entirely
filling the collector’s available bandwidth may be restricted
by the remaining empty capacity of the collector’s download
link. Second, adding a helper increases the speedup by 0.5
as a helper has to devote equal amounts of upload bandwidth
to the collector and to the peers it is bartering with outside
the collaboration.

4.4. Finding bartering partners

The formula for the speedup derived in Eq. (4) is based
on a simplified model of a P2P network. In particular,
this model ignores the overhead introduced by locating the
chunks to download. We now extend our analytical model
to show that the more helpers are involved in the download,
the higher is the performance penalty caused by the diffi-
culties in locating appropriate chunks to download. Conse-
quently, we prove that in reality the maximal speedup cannot
be achieved with only hopt helpers.

We start with introducing the intuition behind this state-
ment. The consequence of the bartering-for-bytes mecha-
nism built into BitTorrent is that the download speed of a
peer is lower in the beginning and in the end of the down-
load. In the early stage of the download peers have only a
few chunks to offer, and are therefore not attractive as barter-
ing partners. Similarly, near the end peers have difficulties in
finding other peers that have the last few chunks they miss.

In 2Fast helpers are downloading distinct chunks of a file.
The more helpers we use, the faster the download will fin-
ish, and consequently the lower the amount of chunks down-
loaded by each helper. The lower the amount of chunks a
helper can offer, the more difficulties it has in finding barter-
ing partners. Increasing the number of helpers in a collabo-



ration has, thus, a negative influence on the performance of
an individual helper. Below we present a proof of this claim.

Using the notation introduced in Section 4.1 we are go-
ing to quantify the influence of the number of chunks pos-
sessed by a peer on the probability of finding a bartering
partner. First, let’s observe that peer i can barter with peer j
only if i has a chunk k1 which j is interested in, and j has
a chunk k2 which i wants. In other words, the exchange
of chunks k1 and k2 between i and j is possible only if
mi,k1

(1 − mj,k1
)mj,k2

(1 − mi,k2
) equals 1.

The total number of chunk exchange possibilities
Bi of peer i can be expressed as

∑

j,k1,k2
mi,k1

(1 −
mj,k1

)mj,k2
(1−mi,k2

). Assuming for simplicity, as in [11],
that the probability that peer i possesses a (random) chunk is
ni/K, we may treat Bi as a random variable. The expected
value EBi of Bi is the number of possible chunk exchanges
in which a peer may be involved. The computation of EBi

is straightforward.
EBi =

=E





∑

j,k1,k2

mi,k1
(1 − mj,k1

)mj,k2
(1 − mi,k2

)





=
∑

j,k1,k2

P[mi,k1
= 1]P[mj,k1

= 0]P[mj,k2
= 1]P[mi,k2

= 0]

=
∑

j,k1,k2

ni

K
(1 −

nj

K
)
nj

K
(1 −

ni

K
)

=
ni(K − ni)

K2

∑

j

∑

k1,k2

nj(K − nj)

K2

=
ni(K − ni)

K2

∑

j

(Knj − n2
j )

=
ni(K − ni)

K2
(K2L −

∑

j

n2
j )

=ni(K − ni)(L −
∑

j

(
nj

K
)2). (5)

In the above computations we assume that the value of mi,k1

is independent of the value of mj,k2
for i 6= j and k1 6= k2.

Note that the value of EBi is maximal when ni equals
K/2. This observation accords with our intuition. Namely,
a peer has the biggest chance of finding a bartering partner
when the number of chunks the peer still misses equals the
number of chunks it can offer in return. Furthermore, EBi

is influenced by the distribution of chunks on other peers in
the system in the form of the sum

∑

j(nj/K)2. The value of
EBi is maximized when the chunks are distributed evenly,
i.e., every peer has the same number of chunks.

Assuming that each helper in the collaboration obtains
during the entire download the same number of chunks,
helpers finish the download with fewer than half (K/2) of
the chunks. The number of bartering possibilities of a helper
behaves on the interval [0, K/2] roughly as a quadratic, in-
creasing function of the number of downloaded chunks. The

more helpers are involved in the collaboration, the fewer
chunks each of them downloads, the lower the number of
bartering possibilities of each individual helper. A lower
number of bartering possibilities of helpers decreases their
bartering efficiency, which has a negative influence on the
achieved speedup of the collector. In other words, the larger
the collaboration, the lower the contribution of each member
of this collaboration.

5. Protocol extensions
Taking into account the conclusions of the analysis pre-

formed in Section 4, we further extend the basic 2Fast pro-
tocol with the following two mechanisms.

Redundant chunks download. Helpers constantly mon-
itor their download bandwidth and use a simple exponen-
tial smoothing algorithm to predict their download band-
width usage in the immediate future. If the predicted val-
ues are lower than a certain, globally defined, constant frac-
tion of their download link capacity, helpers start request-
ing chunks that have already been downloaded by the col-
lector or by other helpers. These redundant chunks make
the helpers more attractive as bartering partners by increas-
ing their chunk exchange possibilities as explained in Sec-
tion 4.4. To prevent protocol abuse, helpers are not allowed
to request chunks from each other. As the helpers are not ex-
plicitly rewarded for the download of redundant chunks, the
amount of bandwidth invested in fetching redundant chunks
depends of the level of altruism of a particular helper.

Sharing of swarm information. A well known property
of BitTorrent-like systems is the slow-start phase. Peers in
BitTorrent-like system discover the network gradually, peri-
odically contacting a tracker [3] service. The tracker is, how-
ever, a central component which often becomes overloaded.
Consequently, it may take tens of minutes before peers can
bootstrap to the network and find appropriate bartering part-
ners. To tackle this problem, we enable a collector and its
helpers to share between each other the information about
the IP addresses and the chunks possessed by other peers in
the swarm. The information on a new peer discovered by the
collector or one of the helpers is immediately propagated to
all other peers in the collaboration.

6. The evaluation of 2Fast
In this section we present the results of the evaluation of

the 2Fast system in both simulated and real-world environ-
ments.

6.1. The experimental setup

We have integrated the 2Fast protocol with one of the
popular BitTorrent clients creating a fully functional appli-
cation [10] which can profit from the collaborative down-
loads feature. Our implementation is backward compatible
with the current BitTorrent protocol specification, meaning



that 2Fast peers can transparently connect to standard Bit-
Torrent peers. The source code of the 2Fast client is freely
available at http://tribler.org.

We have evaluated the performance of 2Fast on both real-
world and artificially created swarms. The reason for creat-
ing artificial swarms is that some of the experiments require
full control over the characteristics of all peers in the swarm,
which is of course not possible in the case of real-world
swarms. For the purpose of simulating BitTorrent swarms
in an isolated, local environment we have developed a sim-
ulator which can integrate any BitTorrent-compatible client
software. In our experiments, non-collaborating peers in the
swarm are using BitTornado1, one of the currently most pop-
ular BitTorrent clients.

The parameters of the simulation are selected to mimic
a typical BitTorrent swarm. These properties are extracted
from the traces of PirateBay2, which is as of February 2006
the biggest BitTorrent tracker used by millions of users every
day. Analyzing the PirateBay traces we compute the num-
bers of seeders and leechers in an average BitTorrent swarm,
which are 10 and 100, respectively. Peers are distributing a
file of size 700MB — the average file size reported by Pi-
rateBay, which is also the size of a CD image. Peer down-
load and upload bandwidths represent the standard end-user
ADSL package offerings around the world.

In the real-world experiments we connect our collaborat-
ing peers with real BitTorrent swarms. Although we do not
have the control over the sizes of these swarms, the large
amount of files with different popularities registered at Pi-
rateBay gives us a wide range of swarm selection options.
By omitting swarms in a flash crowd [9] we can also guar-
antee a certain level of swarm size stability for the duration
of the experiments.

6.2. The download speedup

In the first series of experiments we investigate the in-
fluence of the number of helpers on the download perfor-
mance. In particular, we are interested in finding out how
well our protocol approximates the maximum achievable
speedup predicted by the formulas derived in Section 4.

In both the simulated and the real environments, the size
of the distributed file is around 700MB. The upload and
download link capacities of the collector and helpers are
256 kbps and 1024 kbps, respectively. The link bandwidth
characteristics of the non-collaborating peers in the simu-
lated swarm are the same as those of the collector and the
helpers. In the real environment we do not have any influ-
ence on these values. During the simulation we keep the
number of seeders and leechers constant and equal to 10 and
100, respectively. The real swarm is selected to have a simi-
lar numbers of peers of both types as the simulated swarm.

1http://www.bittornado.com
2http://thepiratebay.org

Figure 2. The speedup of 2Fast in a simulated (left)
and a real (right) environment.

Figure 2 shows the speedup of our 2Fast protocol in
simulated and real environments. The three lines in these
plots represent the theoretical bound for the speedup, and
the performance of the 2Fast protocol with and without the
redundant-chunk download and swarm-information sharing
optimizations described in Section 5.

The results show that the speedup achieved by the
2Fast protocol is less than 10% lower than the computed
perfect speedup. The shapes of the speedup curves are sim-
ilar for both the simulated and real environments, which in-
dicates that the simulation methodology approximates well
the real BitTorrent environment. The improvement gained
by enabling the redundant-chunk download and swarm-
information sharing features is more significant in the real
than in the simulated environment. We suspect that this dif-
ference is caused by the following two facts. First, in a
real environment, where bandwidth is expensive, peers are
more concerned about fairness of their resource usage and
set hard policies enforcing a certain sharing ratio (ratio be-
tween number of uploaded and downloaded chunks). Peers
in our simulation do not restrict their upload speed as long
as they have available bandwidth, and therefore the effect of
the redundant-chunk download is less visible in comparison
with the real environment. Second, trackers in the real envi-
ronment serve not one, as in our simulation, but hundreds of
swarms simultaneously and often become overloaded. The
swarm-information sharing optimization was designed for
situations in which the overloaded tracker slows down the
bootstrapping and peer discovery process.

6.3. The link characteristics

In the second experiment we quantify the influence of a
peer’s link bandwidth characteristics on the performance of
the collaborative downloads. The results of such an experi-
ment can be reliable only under the assumption that all peers
in the swarm have links with certain properties. This re-
quirement excludes the possibility of using real world Bit-
Torrent swarms. Instead, with the method described in Sec-
tion 6.1, we have built a local BitTorrent swarm where all
peers have fixed upload and download link capacity limits.
The size of the distributed file and the number of seeders
and helpers are the same as in the experiment described in



Upload/download Speedup Optimal number of helpers
bandwidth [kbps] Theoretical Measured Theoretical Measured

682/1024 1.36 1.27 1 1
512/1024 1.82 1.72 2 2
256/1024 3.64 3.25 6 7
128/1024 7.27 6.4 14 17

Table 1. Efficiency of 2Fast for different upload/download link bandwidth setups.

Section 6.2.
The results of the experiment are summarized in Table 1.

For each upload/download link capacity limit we compute
the minimum number of helpers that should suffice to fill
entirely the download link of the collector. Having this
number of helpers ideally should result in theoretical per-
fect speedup. In reality, however, different factors such as
slow-start phase and difficulties of helpers in finding bar-
tering partners (see Section 4) result in the actual measured
speedup being lower than the perfect speedup. Still, by
adding a few more helpers a speedup close to the perfect
one can be achieved. The last column of Table 1 gives the
minimal number of helpers needed to reach a speedup which
is at most 5% lower than the perfect speedup.

6.4. The download progress

The purpose of the next experiment is to measure the
download bandwidth variation over time from peers of dif-
ferent roles. To conduct this experiment we select an aver-
age size BitTorrent swarm hosted at PirateBay and connect
to it at the same time a collector with six helpers and an
original BitTorrent client downloading on his own. All our
peers have the same bottleneck link bandwidth characteris-
tics which are 256 kbps up and 1024 kbps down, and the
size of the downloaded file is around 700MB. The reason of
adding an ordinary BitTorrent peer instead of selecting one
of the real-world peers is that this way we can enforce cer-
tain bandwidth settings and easily track the progress of all
our peers. This way we can compare the download behavior
of a peer with and without helpers.

Figure 3 presents the numbers of chunks downloaded by
peers of different roles. Note that the helpers disconnect as
soon as the collector has obtained the entire file.

Figure 4 shows the number of chunks that are uploaded
to the collector by the different peers (helpers as well as or-
dinary BitTorrent peers) at every stage of the download. The
stages are defined as 100 second intervals. The plot pre-
sented here is a stacked plot, which means that the number of
the chunks contributed by a particular peer is proportional to
the area of the corresponding layer. There are in total seven
layers, the bottom six of which quantify the contribution of
the helpers. The top layer represents the number of chunks
downloaded by the collector from non-helpers. Note that the
experimental results confirm the conclusions from the theo-
retical analysis performed in Section 4.3, which says that the
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Figure 3. The download progress of a collector, its
helpers and a BitTorrent peer.

download speed of a peer is fastest around the middle of the
download process.

6.5. The swarm characteristics

In the last series of experiments, we investigate the in-
fluence of the swarm size characteristics on the 2Fast pro-
tocol performance. During these experiments, the collector
and its helpers are connected to real BitTorrent swarms. Be-
cause we are working with real BitTorrent swarms, we do
not have influence on the bandwidth characteristics of the
peers in these swarms. While selecting particular swarms for
our experiments, we have limited ourselves to the swarms of
peers distributing files of size around 700MB, with an accu-
racy of 100MB. To compute the speedup of the 2Fast proto-
col we use the same method as in the previous experiments
— in parallel with a collector and its six helpers, we start an
ordinary BitTorrent client and compare the download times
measured for the collector and the original BitTorrent peer.
The upload and download link capacities of our peers are the
same as previously.

Figure 5 (left) shows the relation between the swarm size
and the value of the 2Fast protocol speedup. The swarm
sizes vary from 17 to 3014 (note the logarithmic scale on the
horizontal axis). It can be clearly seen that the collabora-
tive download protocol performs much better for middle- to
large-size swarms than for small swarms. In small swarms,
where each chunk is possessed by only a few peers, the spe-
cific interests of the helpers make it difficult for them to find
bartering partners.
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Figure 5. The influence of the swarm size on the
speedup (left), and the influence of the seeders-to-
leechers ratio on the speedup (right).

In the following experiment we examine the performance
of the 2Fast protocol on swarms of sizes around 100 peers
but with different numbers of seeders and leechers. The re-
sults are presented in Figure 5 (right). Also in this case the
experimental results are consistent with the formal analy-
sis. The value of the speedup described by Eq. (4) decreases
when the seeders-to-leechers ratio increases; when there are
many seeders, the potential benefit of helpers is limited. An
interesting observation can be made for swarms with a high
relative number of seeders. For those swarms the perfor-
mance of the 2Fast protocol exceeds the theoretically com-
puted maximum. We explain this behavior by the differences
in the seeding protocols in different BitTorrent clients. Many
popular BitTorrent clients implement a so-called super seed-
ing algorithm which strictly limits uploading of duplicate
chunks3. The super seeding mechanism limits the bandwidth
contributions of the seeders. Consequently, in swarms with
enough leechers, the number of seeders has less influence on
the overall download performance then when super seeding
is disabled.

3http://wikipedia.org/wiki/Super seeding

7. Conclusions and Future Work
In this paper we have presented a novel concept of data

distribution in P2P networks based on establishing collab-
orations of peers helping each other in downloading a sin-
gle copy of a file. Our 2Fast system eliminates the bottle-
neck of the upload link capacity limiting the download speed
of peers with asymmetric links present in other P2P down-
load protocols. We find that, by removing this limitation,
2Fast improves the download speed by up to a factor of 3.5
in comparison to state-of-the-art P2P download protocols.

In the future we plan to extend the bandwidth sharing
model introduced by 2Fast system by allowing collabora-
tions to have more than one collector. We will also investi-
gate different approaches for maintaining persistent credits
between peers helping each other.
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