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Abstract. Some recent measurement studies of file-sharing peer-to-peer
networks have demonstrated the presence of semantic proximity between
peers and between shared files. This observation may be used for improv-
ing the performance of searching by introducing semantic caches. One
type of such caches links peers that are interested in similar files. The
query routing mechanism uses this information by forwarding queries
first to peers which are semantically close. The second type of semantic
caches groups similar content instead of similar nodes. In this paper we
show how to combine both methods by introducing a two-level caching
infrastructure based on super-peers. The super-peers in our system cache
pointers to files recently requested by their client peers. The client peers,
on the other hand, constantly look for the super-peers that are most
suitable for them. We propose a simple, yet powerful cache management
policy that guarantees high cache hit ratios also for the less popular
files. Further, we discuss the design choices and optimizations of the
presented model. Finally, we evaluate our system versus the symmetric
network that uses only one level of semantic caches.

1 Introduction

Peer-to-peer content sharing has become very popular in the last few years, and
is nowadays the biggest consumer of Internet bandwidth [19, 23]. The success of
P2P technology has attracted the interest of the research community, which has
resulted in many improvements to the existing protocols as well as completely
new P2P designs [6, 14, 16]. However, the dominating P2P content sharing net-
works seem to completely ignore the dynamic properties of the shared data such
as file popularities or flash crowds. Search is either blind [1, 3], independent of
the query, or based on static aspects of the content [21,22,25,29] such as file
hashes. In this paper we propose an optimization that can be integrated with
both these searching schemes improving their performance by taking advantage



of the semantic correlation [8,10] between peers as well as shared files. The
problem that needs to be solved here is the efficient management of semantic
information. We tackle this issue by introducing a hierarchy into the network in
the form of super-peers.

Super-peer networks [28] occupy the middle-ground between centralized and
entirely symmetric P2P networks. Super-peers are selected nodes with extra
capabilities, but also extra duties in the network. A super-peer acts as a server
to a dynamic subset of weak (ordinary, client) peers. Weak peers submit queries
to their super-peers and receive results from them. Super-peers are connected to
each other forming an overlay network of their own, submitting and answering
requests on behalf of the weak peers.

Creating connections between weak peers and super-peers can be seen as
peer clustering; a cluster in this context is simply the set of peers that are
connected to the same super-peer. The semantic structure in the shared content
and the patterns observed in successive searches made by individual nodes can
be used as the clustering criterion. Grouping together peers with similar interests
under one super-peer increases query locality, and as a consequence improves the
performance of search [17].

A semantic structure can be defined in several ways. Because content clas-
sification is generally a difficult problem [12], the most common approach is to
identify semantic groups explicitly [7,15,17,18]. In this paper, we take an al-
ternative approach, trying to detect semantic relationships between peers auto-
matically based on user interests [24]. The potential of methods in this category
was shown in [27].

Clustering may be applied either to peers or to content. In the first case, peers
with similar interests are grouped under one super-peer. Content clustering, in
turn, results in pointers to files with similar request patterns cached at the
same super-peer. In our approach we combine both methods, and the proposed
architecture assumes the existence of caches of two types. Weak peers keep lists
of super-peers that proved in the past to be in some way most suitable for them.
Super-peers index files that were recently requested by their weak peers. The
mutually re-enforcing dependency between the cache management policies at the
weak peers and the super-peers results in a convergence to a Pareto optimal [11]
steady state in which cache modifications occur only occasionally.

The rest of the paper is organized as follows. Section 2 describes in detail
the system architecture, the performance of which is assessed in Section 3. The
paper concludes in Section 4 by exploring some opportunities for future work.

2 Detailed system model

In this section we describe in detail the concept of the super-peer network based
on two-level semantic caches.



2.1 Design considerations

We take several design decisions that make our architecture different from other
approaches addressing the problem of managing semantic information in P2P
systems. For each decision we provide a brief rationale for adopting it.

Caching is the most commonly used technique for discovering and exploiting
semantic dependencies between peers and shared content. Most of the existing
P2P infrastructures based on caching of the search results assume the existence
of homogeneous caches at all nodes. Such approaches seem to ignore the fact
that caching can be efficient only if a sufficient number of queries is generated.
FEach cache has a warm-up phase in which it collects information about the
access characteristics of the stored items. A new peer joining the system has to
first build its own cache before it can profit from the semantic structure of the
network. We solve this problem by placing shared caches at a set of selected
(super-)nodes. These caches are used (shared) by many peers at the same time.
A peer that joins the system is automatically bound to one or more super-peers
and can immediately use the information collected by these super-peers.

The question that arises then is how replacing a number of local caches with
one shared cache will influence the hit ratios? According to [5], the average hit
ratio of a cache capable of storing n items is proportional to log(n). Let’s assume
that we replace caches of size n located at m peers with a single shared cache
of size n. The worst case scenario occurs when peer interests are distinct (peers
search completely different files). Assuming that each peer contacts the shared
cache with the same frequency, the cache hit ratio is proportional to log(n/m),
which can be written as log(n)—log(m). The formula comes from the observation
that each peer uses a portion of size n/m of the shared cache. We conclude that
the cache hit ratio decreases logarithmically with m. It should be added that in
a real system the size of the shared cache is higher than n. Furthermore, many
peers share interests for the same files which results in much higher hit ratios.

Introducing super-peers into the architecture of a P2P system usually implies
a serious limitation of the weak peer autonomies. We try to decrease the extent
of this problem by establishing loose relationships between the weak peers and
the super-peers. The weak peers are free to decide which super-peers they are
connected to. This decision is made locally and independently from other peers.
The super-peer selection rule has however a global property of grouping peers
with similar interests under one super-peer.

2.2 System architecture

In this section we describe the architecture of the super-peer network incorpo-
rating a two-level caching scheme.

Figure 1 presents the data structures used in our system. The information
stored at a node depends on the type of this node. Each weak peer p has a
super-peer cache p.S, which contains the identities of super-peers (e.g., their IP
addresses and port numbers). Each super-peer s has a file cache s.F of pointers
to files stored at some peers.
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Fig. 1. The two-level caching scheme.

All items in the super-peer and file caches are assigned priorities, which
are non-negative integer numbers. The priority determines the importance of a
particular item, the higher the better. The initial priority assigned to a data item
when it is added to the cache and the way the priority is modified upon a cache hit
are determined by the caching policy (see Section 2.5). There are two situations
when the priorities are taken into account. First, when the cache capacity is
exceeded, the item with the lowest priority is removed. Second, the priorities are
used for optimizing query routing. Details are presented in Section 2.3.

The super-peers are interconnected with one of the standard P2P networks,
which we leave unspecified. We require however that the probability that the
search succeeds is high if the requested information is possessed by only one of
the super-peers. Examples of protocols satisfying this criterion are Gnutella and
epidemic-based approaches such as SCAMP [9].

Whenever a weak peer initiates a search, it first checks the file caches of the
super-peers known to it. If the file is not found in one of these caches, a system-
wide search in the super-peer network is initiated. The pointer to the located file
is then cached by one of the super-peers known to the weak peer that initiated
the search. Note that in this scheme only the files that are known to at least
one of the super-peers can be located. To increase the probability of finding the
file we could perform a search in the entire P2P network instead of among the
super-peers only. As we show in Section 3, such an expanded search is usually
not needed because most of the files are indexed by at least one super-peer.

The performance of the search is determined by the cache hit ratio. Peer
p should have in its cache super-peers indexing content which is closest to p’s
interests. This is achieved by preferring super-peers that provided in the past
the highest number of positive responses to the queries submitted by p.



By allowing super-peers to cache pointers to the files recently requested by
their weak peers, we exploit a simple, yet powerful principle called interest-based
locality [24]. Interest-based locality postulates that if two peers are interested in
the same file, it is very likely that more of their requests will overlap.

2.3 The search protocol

The following pseudocode describes the actions taken by peer p searching for
file f.

peer_search(p : peer, f : file_name)
1: for (s in p.S ordered according to decreasing priorities)

2: q := super-peer_local_search(s,f)

3: if (super-peer_local_search succeeded) // f was found

4: t :=s

5: break

6: if (f was not yet found)

7: s := super-peer in p.S selected randomly with probability
proportional to its priority in p.S

8: <q,t> := super-peer_search(s,f)

9: if (super-peer_search did not succeed) // f was not found

10: return ERROR "File f not found"

11: if (p.S contains t) then

12: increase the priority of t in p.S

13: else

14: insert t into p.S
156: return q // peer that has file f

In the above algorithm, peer p first tries to locate file f in the local caches of the
super-peers in its super-peer cache. Note that p starts from the super-nodes with
the highest priorities. If the file was not found in this way (line 6), the search
request is forwarded to one of the super-peers in p.S selected randomly based
on its priority (line 7). This super-peer takes care of locating file f and returns
a pair < gq,t >, where ¢ is a peer that shares f and ¢ is a super-peer that has a
pointer < f,q > in its cache. Finally, peer p updates the priority of ¢ in its cache
(lines 11—14).
The algorithm of the super-peer local search is straightforward.

super-peer_local_search(s : super-peer, f : file_name)

1: if (an entry <f,g> exists in cache s.F)
2 increase the priority of <f,g> in s.F
3: return q

4: else

5 return ERROR "File f not found"

The local search succeeds only if a pointer to file f is in the local cache of s
(line 1). Before returning the location of the file, the super-peer increases the
priority of the corresponding cache item (line 2).



The global super-peer search protocol is as follows.

super-peer_search(s : super-peer, f : file_name)

1: perform a search in the super-peer network trying to locate
a super-peer t which has an entry <f,q> in its cache

2 if (the search did not succeed)

3 return ERROR "File f not found"

4: else

5 insert <f,q> into s.F

6 return <q,t>

The function super-peer_search is a wrapper for the search in the underlying
super-peer network (line 1). Upon receipt of the search results, the pointer to
the located file with the identity of the content provider peer q are added to the
cache s.F' (line 5) and the pair < ¢,t > is returned (line 6).

2.4 Imnsert protocol

Our insert protocol is very simple. Each peer p once in a while sends informa-
tion on the files which it possesses to one of the super-peers in its super-peer
cache. This super-peer is selected randomly with a probability proportional to
its priority in p’s super-peer cache.

2.5 Cache management

The super-peer and file caches are controlled differently. Whenever peer p re-
ceives positive feedback from super-peer s, the priority of s in cache p.S is
incremented by one which leads to the in-cache least frequently used (LFU) [5]
cache management policy. The advantage of this method is the inherent memory
property, which means that the priority of the super-peer is based on the amount
of successful feedback it has provided in the past. The priority changes slowly, so
one positive response from a completely unknown super-peer will not influence
much the peer to super-peer assignment (this would be the case if we used one
of the memoryless strategies [13] such as least recently used — LRU).

The management policy of the file caches should have two properties. First,
it should enable the super-peers to adapt fast to the changing needs of their
client peers. This is important, particularly in the initial stage of the super-peer
lifetime, when it is contacted by random peers. Second, the cache management
strategy should not ignore unpopular files. The cost of the search in the underly-
ing super-peer network incurred by a cache miss is much higher for an unpopular
file. In flooding protocols like Gnutella, looking for a file with only a few replicas
in the whole network is much more expensive than searching for a popular file.
The strategy proposed here is very simple. If the recently accessed file is in the
cache, we increment its priority by one. Otherwise, we add this file with priority
one higher that the highest priority of all cached items. This approach combines
the fast adaptation of LRU with the memory property of LFU (in the remainder



of the paper we call this caching method the mized strategy). The high initial
priority of the inserted item and the slow adaptation of the priorities of items in
the cache prolong the caching period of less popular items.

3 Performance evaluation

This section presents the results of the evaluation of the system described in
Section 2. We start with a description of the method which we used for modeling
of the semantic structure. Then we explain the simulation parameters. Finally,
we compare the performance of our system with the one offered by a system
that uses only one level of semantic caches.

3.1 Model of the semantic structure

In our experiments we use a synthetic data model similar to the one introduced
in [27]. This model assumes the existence of a number of (semantic) types for
both files and peers labeled by n € {1,..., N}, with N denoting the number of
types. The number of files of type n is denoted by d,,, and the number of peers
associated with type n is denoted by u,,.

Each peer periodically generates a request. The target file satisfying this
request is selected randomly, according to a distribution that depends on the
peer’s type only. This distribution is specified by two parameters: the probability
pn(m) that a request generated by a peer of type n will be targeted at a file of
type m, and the probability ¢,,(k) that a request for a file of type m will target
the k-th file of this type. The distribution of ¢, (k) follows Zipf’s distribution,
which has been found to occur in real data traces [24].

The formulas for p,(m) can be written as follows

pn(m) I_TQ/Z ;m=1,...N, m#n, (1)
po(n) = (a+5%)/Z

where Z is the normalizing constant chosen so that ), p,(m) equals 1. Z is
given by (1—«)Hy + «, where Hy = 22:1 1/m is the N-th harmonic number.
Note that Z does not depend on n. The parameter a characterizes how strong
the interest of users is for files of their own type.

Furthermore, we assume that our model satisfies two conditions. First, the
number u,, of users of type n follow Zipf’s law. Second, we require that the
numbers of files d,, are all equal to M, independent of n. This second assumption
may be controversial, but assuming that d,, follows Zipf’s law as in [27] does not
seem to be appropriate. This claim is based on our experience gained during
our long-term measurements of BitTorrent, which is nowadays (March 2005)
the most popular P2P network [20]. According to the statistics provided by one
of the biggest .torrent distribution sites [4] in March 2005, the most popular
content categories, which are movies and games, have much fewer items than
the relatively unpopular music files. In this case the uniform distribution of d,,



seems to be a better approximation of the real situation than Zipf’s distribution,
as it is at least independent from the popularity of individual categories.

It can be shown that the above assumptions imply that the popularity of file
k of type m is proportional to 1/(mk), which is the same as in [27].

3.2 Optimal caching performance

Having a well-defined semantic structure of the data, we now analyze the caching
performance for a given static assignment of peers to super-peers. We aim to
identify the optimal assignment of peer to super-peers, or in other words the
optimal arrangement of pointers to super-peers in the super-peer caches. It is
generally not obvious how to define the optimality of a particular setup. We
describe the optimality in terms of performance and fairness stating that optimal
means Pareto optimal [11]. An arrangement of items in super-peer caches is
Pareto optimal if it is not possible to modify the contents of the cache of one
peer in such a way that the fraction of requests produced by this peer that can
be satisfied by the super-peers in its super-peer cache increases, while for all
other peers this fraction does not decrease.

We can now prove that the semantic data model described in Section 3.1 has
the following property.

Theorem A. There exists an optimal arrangement of items in the super-peer
caches such that the contents of the caches of all weak peers of the same semantic
type are the same.

PROOF. See the appendix.

This theorem can be shown to hold also in other models including the one
defined in [27].

Theorem A can be used to prove the quality of the caching policies. The
policy of the super-peer caches tends to group similar peers under the same
super-peers. As a consequence, the caches of the weak peers of one type are very
similar, and in an optimal situation they are the same. Furthermore, weak peers
constantly look for super-peers that guarantee better hit ratios. Theorem A says
that the system based on such relationships established between peer caches
converges to an optimal setup.

3.3 Experimental setup

We simulate a system consisting of 100,000 peers, 100 super-peers, 10,000 files,
and 20 semantic types. The value of the parameter o in Eq. 1 is set to 0.8. The
size of the super-peer cache in the weak peers is set to 10, and the size of the file
cache in the super-peers to 1,000. Before the simulation starts, all the super-peer
caches have been filled with the identities of super-peers selected randomly and
uniformly from the set of all super-peers. The file caches are initially empty.



Each peer stores 50 files selected randomly, taking into account the types of files
and peers as explained in Section 3.1.

The super-peers are organized into a Gnutella-like network. Simple request
flooding was employed for locating files which were not found in the local super-
peer caches. Note that this choice does not influence our results.

The simulation is performed in phases. At the beginning of each phase we
select randomly and uniformly one of the peers. This peer generates a search re-
quest. Additionally, in every 1,000,000th phase, each of the 100,000 peers sends
information about one of the files which it stores locally to a super-peer selected
randomly from its super-peer cache (the file insert protocol). Note that the situ-
ation in which file inserts are performed by all peers simultaneously is the worst
possible. During the whole experiment, 10,000,000 phases are performed. The
first 1,000,000 phases are treated as the bootstrap. The statistics are collected
starting from phase 1,000,001 on.

For comparison, we measure the performance of one-level caching. This refer-
ence system does not make use of super-peers. Similarly as in [27], each peer has a
semantic cache of peers that answered the peer’s queries in the past. The caching
policy used here is the same as the one deployed in the super-peer caches. The
size of a peer’s semantic cache is set to 300. Note that the total size of the caches
used in the reference model, which is 30,000,000 (100,000 peers with caches of
size 300 each) is almost thirty times higher than the total size of the caches used
in our super-peer architecture, which is 1,100,000 (100,000 super-peer caches of
size 10 and 100 file caches of size 1,000).

3.4 Results

This section presents the results of the experimental evaluation of the two-level
caching architecture.

Figure 2 presents a comparison between the performance of our two-level
caching architecture and the reference system which deploys one level of caches.
For each file we compute the fraction of search requests targeting this file that
is satisfied by one of the peer’s direct neighbors. The direct neighbors in the
reference model are the nodes stored in the peer’s cache. In the two-level in-
frastructure the direct neighbors are defined as the super-peers contained in the
super-peer cache. The files are sorted according to their semantic type. The set
of 10,000 files is equally divided into 20 semantic types, with 500 files per type.
Each file is assigned a unique identifier which we call its file rank — file k of type
m has rank (m — 1)M + k. The top left subplot of Figure 2 shows the hit ratios
observed for our two-level caching architecture. The top right plot depicts results
of the same experiment performed in a system with only one level of semantic
caches. The bottom subplot presents the comparison of the efficiency of both
caching schemes. It was obtained by applying curve fitting based on nonlinear
regression [2] to the points showed in the above plots.

In most of the cases the super-peer algorithm outperforms the one-level de-
sign, even though the total number of items cached in the two-level system is
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Fig. 2. The hit ratios of the two-level and one-level semantic caches.

much lower than in the reference model. Only for a small number of the most pop-
ular files the two approaches achieve comparable results. The average cache hit
ratio defined as the percentage of the requests that were satisfied from the cache
during the whole simulation for our super-peer architecture was 71% against
56% for the one-level caching scheme.

In order to investigate the properties of the mixed caching method we repeat
the series of experiments described in Section 3.3 for LRU and LFU policies ap-
plied to the file caches. The results of the comparison are presented in Figure 3.
The plot is divided into two subplots. The top subplot of Figure 3 shows the
statistics for the files in the ten most popular categories, while the bottom sub-
plot presents the hit ratios for the rest of the files. Also in this case we performed
curve fitting to improve the clarity of the plot.

The LFU strategy promotes the most popular files, performing much worse
that the other two strategies for unpopular files. The mixed method, while still
providing lower cache miss rates for the popular items, performs much better for
the unpopular content. We computed also the average cache hit ratios for LFU,
LRU, and the mixed strategy, which are 62%, 63%, and 71%, respectively.

According to the protocol presented in Section 2.3, if the requested file is
not cached by one of the super-peers known to the request initiator, a search in
the underlying super-peer network is performed. It is possible that some of the
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files possessed by the weak peers are not cached by any of the super-peers, and
as a consequence, cannot be found during the super-peer search. We investigate
the influence of different file cache management strategies on the number of files
that are not cached by any super-peer. Figure 4 shows the fraction of requests
addressing files of a particular type that could not have been satisfied because
the located file was not indexed by any super-peer (the smaller the better).

We can clearly see that the mixed strategy in most of the cases outperforms
the other two. The strong preference of the most popular files exhibited by the
LFU policy is visible in the statistics for types 5 and 6. LRU is more fair than
LFU for less popular files, but still falls behind the mixed strategy.

4 Conclusions and future work

Semantic caches as well as super-peers are meant to improve the performance
and scalability of unstructured, symmetric P2P network designs. We showed
that both these mechanisms can be integrated in a very natural way resulting
in much higher performance than when deployed independently of each other.
The semantic caching model for a content sharing P2P network proposed in
this paper is based on, and derives its advantages from three key issues. First, we
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use the heterogeneity of the nodes by placing the semantic caches of file pointers
only at the super-peers — selected nodes with higher capacities. These file caches
are used by multiple peers at the same time, which shortens the cache warm-up
period and increases the utilization of the cache. Second, weak peers maintain
caches of super-peers which are most likely to know the location of the files they
are interested in. Third, we introduce the mixed cache management policy for
the file caches that achieves much higher cache hit ratios for less popular files
being still very efficient for the most popular items. Furthermore, the probability
that a file is not known to any super-peer in the network is much lower for the
mixed policy than for LRU or LFU.

The analysis and the experimental evaluation on the artificially created data
set give us an idea about the performance gain of using the proposed infras-
tructure. However, in order to determine how a super-peer architecture based
on semantic caches performs in a real environment, more elaborate experiments
are needed. For this purpose, we plan to use 2-year traces of the suprnova.org
website which contain popularity statistics of the content distributed in the Bit-
Torrent P2P network [20].

We consider also extensions of the cache adaptation algorithms. Interesting
results may be achieved by allowing peers to adapt not only content but also
sizes of the caches.
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Appendix

PRrOOF OF THEOREM A. Consider the file cache s.F' of super-peer s, and denote
by r,(s) the fraction of all requests submitted to s that are issued by peers
of type n. Assuming the Independent Reference Model [26] of requests and a
reasonable caching policy at the file caches, the cache hit ratio of a peer of type
n is non-decreasing function of r,,(s) — the more requests are produced by peers
of type n, the better cache s.F' adapts to the needs of peers of this type.

We say that an arrangement of items in the super-peer caches is structured
if the caches of all peers of the same semantic type are the same.

Consider a non-optimal structured arrangement of items in the super-peer
caches. Non-optimal means (see Section 3.2) that it is possible to modify a super-
peer cache of one of the peers, say p, in such a way that two conditions hold.



First, the fraction of requests produced by p that can be satisfied by the super-
peers in p’s super-peer cache increases. Second, for all other peers this fraction
does not decrease.

A cache modification for a peer p of type n influences the values of the
rn(s) of some of the file caches at the super-peers. Removing any super-peer s
from p’s cache decreases (or does not influence) r,,(s), and increases (or does not
influence) 7, (s), where n is the type of p and m is different than n. Subsequently
adding any super-peer s to p’s cache has the opposite effect — r,(s) increases
(or does not change), and r,,(s) decreases (or does not change). Furthermore, if
r1(s) increased (decreased) after modifying p’s cache, then it will also increase
(decrease) when we perform the same modification to the cache in p’, where p’
is a peer of the same type as p. We showed earlier that the cache hit ratio of
a peer of type [ at super-peer s is a monotonic function of r;(s). We conclude
that if a certain modification in p’s cache improves the hit ratios at some peers
and does not decrease the hit ratios at all other peers, then applying the same
modification to the cache in p’ will improve the same hit ratios, and will not
decrease the other.

We have just shown that if a certain modification of a super-peer cache of
peer p improves the non-optimal, structured arrangement of super-peer caches,
then by applying the same modification to the super-peer caches of all peers
of the same type as p the arrangement can be improved by at least the same
amount. Such a modification results in an arrangement that is again structured.
There is, however, a finite number of (structured) arrangements, which means
that we cannot endlessly improve. At some point we will end up with a structured
arrangement which is optimal.



