
Design and Implementation of a
User-Centered Content Distribution Network

Guillaume Pierre and Maarten van Steen
Vrije Universiteit

De Boelelaan 1081a
1081HV Amsterdam

The Netherlands
�gpierre,steen�@cs.vu.nl

Abstract

Replicating Web documents at a worldwide scale can
help reduce user-perceived latency and wide-area network
traffic. This paper presents the design and implementation
of Globule, a platform that allows Web server administra-
tors to organize a decentralized replication service by trad-
ing Web hosting resources with each other. Globule auto-
mates all aspects of such replication: document replica-
tion, selection of the most appropriate replication strate-
gies on a per-document basis, consistency management and
transparent redirection of clients to replicas. To facilitate
the transition from a non-replicated server to a replicated
one, we designed Globule as a module for the Apache Web
server. Therefore, converting Web documents should re-
quire no more than compiling a new module into Apache
and editing a configuration file.

1. Introduction

Large-scale distributed systems often address perfor-
mance and quality-of-service issues by way of caching and
replication. In the Web, content delivery networks (CDNs)
such as Akamai and Digital Island have emerged as a vi-
able solution to achieve scalability through replication [1].
In this approach, content is replicated to places where user
demand is high. Content itself can vary from simple static
pages to bandwidth-demanding video streams.

Content delivery networks are quite popular among ad-
ministrators of large Web sites. However, servers hold-
ing open-source content and small businesses may prefer
a cheaper, yet efficient, solution. We believe that such users
are willing to contribute their unused resources to the com-
munity in exchange for improved performance for their own
site. We propose a decentralized scheme where the owner

of a Web site can accept to host replicas from other sites,
and obtain in return the ability to deploy replicas of his own
documents at remote places. This allows administrators to
independently organize a service similar to that of commer-
cial CDNs. This approach is attractive, since it allows one
to acquire valuable remote resources in exchange for rela-
tively cheap local resources.

Globule is a user-centered content delivery network that
our group is developing [6]. It allows Web servers to host
each other’s replicated Web documents. To favor integra-
tion into existing Web systems, it is designed as a module
for the popular Apache server. Making use of our system
should require no more than compiling a new module into
Apache and editing a configuration file.

This paper presents the design and implementation of
Globule, together with performance measurements. Un-
like most Web replication systems, Globule does not ap-
ply a fixed replication policy to all documents. As we have
shown in previous research, there is no single policy that is
best in all cases [5]. This statement is true even for simple
Web documents that are constructed as a static collection of
HTML files, images, icons, and so on. As a consequence,
Globule contains a multitude of replication policies, and as-
sociates each document with the policy that suits it best.
This is realized with an object-based approach in which
each document is encapsulated in an object that is fully re-
sponsible for its own distribution. In other words, each Web
document is considered as an object which does not only
encapsulate its state and operations, but also the implemen-
tation of a replication policy by which that state is delivered
to clients. This allows a document to monitor its own access
patterns and to dynamically select the replication policy that
suits it best. When a change is detected in access patterns, it
can re-evaluate its choice and switch policies on the fly [7].

We evaluate the relative performance of Globule versus
Apache, and show that Globule has a constant overhead of

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



about 200 �s per request, which accounts for at most 10% of
the total request latency. The throughput of Globule is also
acceptable, in the worst case between 5% and 17% below
that of unmodified Apache.

Whereas [6] described the overall architecture of Glob-
ule, in this paper we concentrate on the details of its de-
sign and implementation, in particular as an Apache mod-
ule. Our main contribution is that we demonstrate how a
user-centered CDN can be developed with existing compo-
nents, and that it supports per-document replication policies
at virtually no cost.

This paper is organized as follows: Section 2 describes
our document and server model; Section 3 details the im-
plementation of Globule; Section 4 presents a performance
evaluation; finally, Section 5 discusses related work and
Section 6 concludes.

2. The Globule model

Our system is made of servers that cooperate in order to
replicate Web documents. This section describes our docu-
ment and server models.

2.1. Document model

In contrast to most Web servers, we do not consider
a Web document and its replicas only as a collection of
files. Instead, we take a more general approach and con-
sider a document as a physically distributed object whose
state is replicated across the Internet. All replication mecha-
nisms are hidden from clients behind the object’s interfaces.
There is one standard interface containing methods such as
get() and put() to allow for delivering and modifying a
document’s content.

The design of Globule is inspired by that of Globe, a
platform for large-scale distributed objects [10]. Its main
novelty is the encapsulation of issues related to distribution
and replication inside the objects. In other words, an ob-
ject fully controls how, when, and where it distributes and
replicates its content.

We have shown in previous papers that significant per-
formance improvements can be obtained over traditional
replicated Web servers by associating each document with
the replication strategy that suits it best [5, 7]. Such per-
document replication policies are made possible by the en-
capsulation of replication issues inside each document.

The selection of the best replication policy for each doc-
ument is realized internally by way of trace-based simula-
tions. Replicas transmit logs of the requests they received
to their master site. At startup or when a significant access
pattern modification is detected, the master re-evaluates its
choice of replication strategy. To do so, it extracts the most

recent trace records and simulates the behavior of a num-
ber of replication policies with this trace. Each simulation
outputs performance metrics such as client retrieval time,
network traffic and consistency. The “best” policy is cho-
sen from these performance figures using a cost function.
More details about these adaptive replicated documents can
be found in [7].

2.2. Cooperative servers

One important issue for replicating Web documents is
to gain access to computing resources in several locations
worldwide (CPU, disk space, memory, bandwidth, etc.). On
the other hand, adding extra resources locally is cheap and
easy. Therefore, the idea is to trade cheap local resources
for valuable remote ones. Server administrators negotiate
for resource peering. The result of such a negotiation is for
a “secondary server” to agree to allocate a given amount of
its local resources to host replicas from a “primary server.”
The primary server keeps control of the resources it has
acquired: it controls which clients are redirected to which
secondary server, which documents are replicated there and
which replication policies are being used.

Of course, servers may play both primary and secondary
server roles at the same time: a server may host replicas
from another server, and replicate its own content to a third
one. We use these terms only to distinguish roles within a
given cooperation session.

Each document is made of one primary replica located at
its primary server, and a number of secondary replicas lo-
cated at various secondary servers. In our model, all docu-
ment updates are performed at the primary replica, and then
propagated to the secondaries according to the document’s
own replication policy.

2.3. Security issues

The design of Globule raises two different security is-
sues: security of a secondary server against malicious repli-
cas, and security of a primary server against malicious sec-
ondary servers.

For a secondary server, hosting a replica from a remote
site is acceptable only if the replica cannot interfere with
its other operations. In particular, foreign code should be
isolated so that in cannot compromise the security of the
server. In the case of Globule, no code is ever shipped be-
tween servers. All replicated objects belong to the same
class, namely the static document class. Every Globule
server contains an implementation of this class, so it is not
necessary to ship it. This is also true for policy objects:
every Globule server contains an implementation of every
policy that is likely to be used, so it is enough for a primary

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



HttpRequest
events

Front−end

Registration
events

FileUpdate events

etc.
Alarm events

Event Manager

HttpRequest
events

’Primary’ Resource Pool

HeartBeat monitor

FileUpdate monitor

’Monitor’ Resource Pool’Secondary1’ Resource Pool

HTTP requests

HttpRequest e
vents

master replica
Document’s

slave replica
Document’s

Registration events

Figure 1. Server Architecture

to associate each of its documents with the identifier of the
replication policy that should be used.

The other issue is that a primary server must make sure
that secondary servers are trustworthy, so that, for exam-
ple, they do not deliver modified documents to the clients.
This is a very difficult problem, because the primary can-
not control its secondaries’ behavior. We currently address
this issue by requiring administrators to setup cooperations
explicitly with partners whom they trust. We plan to relax
this model by allowing servers to negotiate peering relation-
ships autonomously, and by using a trust model to address
the associated security risk.

3. System architecture

We first describe the overall architecture of Globule, then
we show how this architecture has been implemented as a
module for the Apache Web server.

3.1. Internal architecture

3.1.1. Server architecture

Figure 1 shows the general architecture of a Globule server.
The system is based on events: events can represent an
incoming HTTP request or a variety of internal signals such
as a registration to a component to monitor file updates or a
time-triggered alarm.

All document replicas and monitors can receive events.
Monitors may receive registration events. For example, a
document can register to the HeartBeat monitor in order
to be sent alarms at a given periodicity. Document replicas
can receive HttpRequest events which represent incoming
HTTP requests, as well as alarms sent by monitors.

Event receivers that belong together are grouped into
logical entities called resource pools. Every Globule

Policy object Replication object

data
Replica

metadata
Replica

(HttpRequest, FileUpdate)
Incoming events

HTTP requests
External

Figure 2. Document Replica Architecture

server contains two standard resource pools. The first one
contains monitors such as the HeartBeat monitor to send
periodic alarms and the FileUpdate monitor to send alarms
when a specific file has been updated. The second resource
pool contains all objects representing primary replicas of
local documents.

Globule servers can have an arbitrary number of addi-
tional resource pools, each one of them containing the set
of secondary replicas belonging to a specific primary server.
Figure 1 shows a server that contains a resource pool for
secondary replicas from site ‘Secondary1’, in addition to
the two standard resource pools.

The Event Manager is in charge of delivering events
to their destination. Each event is addressed to a specific
element of the system using a two-level scheme. Addresses
are made of the name of the resource pool of the destination,
and a resource-pool-dependent name that identifies the final
destination.

A front-end component is in charge of transforming in-
coming HTTP requests into HttpRequest events. Other
types of events can be sent by any system component, under
the condition that it provides a destination address. Some
destination addresses are fixed in the system, such as those
of monitors. Document addresses are made of the name
of their primary server and their URL. For example, the
internal address for document http://www.foo.com/
bar will be the pair (pool="www.foo.com";name=
"http://www.foo.com/bar").

3.1.2. Document replication

The internal architecture of a replica is depicted in Fig-
ure 2. The core of a replica is formed by the replication
object. This object receives incoming HttpRequest events
directed at the replica and ensures that the appropriate ac-
tions are taken to allow the replica data to be delivered in
the response. Such actions can range from fetching a fresh
copy of its document at the primary server, compare the lo-
cal copy to the primary, registering to or sending invalida-

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



tions, or even simply doing nothing.
The nature of tasks that must be performed before a de-

livery takes place is dictated by the replication policy ob-
ject. There are different kinds of policy objects, each rep-
resenting a specific policy. All policy objects implement a
standard interface used by the (generic) replication object.
Basically, this interface allows the replication object to ask
the policy object for instructions each time a request is re-
ceived. Depending on the policy it represents, the policy
object then returns a list of actions that must be performed
before the delivery can take place. The actions themselves
are performed by the replication object.

Globule contains a number of simple policies, such as
“TTL.” This policy allows a secondary replica to deliver a
copy to a requester without any consistency check during a
fixed amount of time since a fresh copy had been fetched. If
the period has expired, a consistency check is required. To
implement this policy, the policy object of each secondary
replica must simply maintain the date of the last retrieval
for that document. When requested, it checks whether the
delay has expired. It subsequently allows the immediate
delivery of the local copy, or otherwise first requests the
primary to check for consistency. The policy object located
at the primary replica is even simpler: it allows all transfers
without any former action.

A more complex policy is “Invalidation.” In this scheme,
the primary replica sends a message to all registered sec-
ondary replicas when the document is updated so that they
drop their outdated copy. To do so, each primary replica
must maintain a list of its secondaries. This list is con-
structed dynamically: when the primary’s policy object re-
ceives a request from a not-yet-registered secondary, it ex-
tracts the secondary’s callback address from the request and
adds it to its local list. A similar mechanism is used when
a secondary replica is destroyed: a special request is sent
to the primary replica to remove the deleted replica from
the invalidation list. In addition to maintaining a list of sec-
ondaries, the primary replica must also subscribe to events
from the FileUpdate monitor. Whenever the file containing
the document is updated, the monitor sends a FileUpdate
event to the master replica. Upon reception of this event,
the replication object requests its policy object for the list
of registered secondary replicas to send them an invalida-
tion. Keep in mind that this is only one possible implemen-
tation, and that a server may contain several invalidation
policies which have different approaches to issues such as
unreachable replicas and invalidation propagation among a
large number of replicas.

Policy objects can use arbitrary internal state to perform
their task. Examples include no state at all, the date of the
last consistency check, and a list of secondary replica ad-
dresses. Each replica is given a ‘meta-data’ file to store this
internal state. This is necessary when unloading replica ob-

jects from memory. Objects are then given a chance to save
their state, which is used again when the object is brought
back into memory. Such state changes take place when the
server needs to reclaim memory, or when the server is being
stopped. State changes are discussed in more detail in the
next section.

3.1.3. Resource management

Maintaining replicated documents requires more resources
than hosting regular non-replicated documents. To achieve
replication, we use replication and policy objects to han-
dle requests to replicas; replicas are given a meta-data file
to store their internal state; and finally, secondary servers
must store copies of document replicas. These elements ob-
viously require storage in memory or on disk, which brings
us to resource management.

Two issues have to be addressed. First, servers must be
able to control the amount of disk storage that they use for
secondary replicas. We expect that the negotiation involved
between the administrators of a primary and a secondary
server will decide on a disk quota that can be used to host
replicas. However, in many cases this quota will be sig-
nificantly smaller than the total set of documents that may
be replicated there. To address this problem, each resource
pool at a secondary server keeps track of the storage space
its replicas are using, and maintains its usage below the
quota. This is done using standard replacement policies:
when the disk usage is rising above quota, then the least
recently used replicas are simply deleted.1

The second issue is that of memory management. Both
primary and secondary servers must maintain replication
and policy objects in memory across multiple requests to
avoid the overhead of (un)loading them at each request. It
is therefore necessary to control the number of loaded ob-
jects so that they do no not exceed the memory capacity of
the server. The management of loaded objects is again re-
alized on a per-resource pool basis: each resource pool is
given a maximum number of loadable documents. A re-
placement mechanism similar to that of disk resources is in
charge of unloading replicas from memory when necessary.
Note that these objects can save their state to disk before
being unloaded. This allows to unload objects representing
primary as well as secondary replicas.

To keep track of resources used by replicas, resource
pools provide replicas with an allocation layer that inter-
cepts all resource-consuming or -releasing requests. In par-

1Deleting arbitrary secondary replicas is acceptable because they can
always be re-created from the primary server. On the other hand, one
should not delete primary replicas, since they hold irreplaceable data. We
do not consider this as a problem, since the storage space for holding pri-
mary replicas would be used on this server anyway, even if it was not
replicated. This is the reason why primary resource pools are given no
disk quota.

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



ticular, this layer allows replicas to request the creation of
new files, as well as read, write, and release them. By doing
so, resource pools can keep track of their current disk usage
while giving all freedom to replicas to behave according to
various policies. In addition, resource pools keep track of
resource ownership. This allows them to prevent replicas to
access each other’s resources, and to release all resources
associated to replicas that are being destroyed.

3.2. Globule as an Apache module

3.2.1. The Apache module model

Apache is an HTTP server structured as a set of modules.
The original distribution contains a number of modules, but
third-party modules can be provided as well. This enables
one to easily add new features [3].

The treatment for each request is decomposed into sev-
eral steps, such as access checking, actually sending a re-
sponse back to the client, and logging the request. Modules
can register handler functions to participate in one or more
of these steps. When a request is received, the server runs
the registered handlers for each step. Modules can then ac-
cept or refuse to process the operation; the server tries all
the handlers registered for each step until one accepts to
process it.

The architecture of Apache provides us all the tools nec-
essary to implement a replication module: Globule can in
particular intercept requests before being served by the stan-
dard document delivery modules to let replication objects
check for consistency. Likewise, servers can communicate
with each other by HTTP to transfer document copies or
invalidations.

3.2.2. MPMs and memory management

One problem that we ran into when implementing Glob-
ule concerns the interaction between Apache’s multi-
processing and Globule’s memory management.

Apache implements several strategies to treat concurrent
requests, called Multi-Processing Modules (MPMs). De-
pending on the operating system, the server is automatically
compiled with the MPM that works best for it. Examples
of MPMs are a module that treats each request in a sepa-
rate process, one that implements multiple threads inside a
single process, and a hybrid MPM that maintains multiple
processes, each of which contains multiple threads.

The choice of one MPM over another should be trans-
parent to all other modules. However, Globule is a special
case in that respect because it needs to maintain objects in
memory across multiple requests. These objects must be
accessible to any request-serving thread or process, even if
they were created by another thread or process. The prob-

lem is that by default memory is shared among threads of
the same process, but not among different processes.

The solution is obviously to make use of shared mem-
ory. However, objects that need to be shared are of various
sizes, and they can be created or destroyed at any time. This
makes it difficult to use simple structures like an object ta-
ble allocated in shared memory. This lead us to implement
our own shared memory management scheme.

At startup, Globule creates a chunk of shared memory
where shared objects will be stored. It is associated with
its own memory allocator similar to that of the standard
C libraries, except that it (de)allocates pieces of the shared
memory chunk.

3.3. Client redirection

Like all CDNs, Globule must direct client requests to the
replica that can best serve them. It does so by means of
“DNS redirection”: before sending an HTTP request, the
client needs to resolve the DNS name of the service. The
DNS request eventually reaches the authoritative server for
that zone, which is configured to identify the location of
the client and return the IP address of the replica closest to
it [4].

Globule incorporates such a custom DNS server as part
of its implementation. Although Apache has originally been
designed to handle only the HTTP protocol, its versions
starting from 2.0 allow one to write modules that imple-
ment other protocols. It is therefore possible, with mini-
mum changes to Apache, to integrate a DNS server inside
Apache. More details on this aspect can be found in [9].

4. Performance evaluation

We evaluate the overhead introduced by Globule in ad-
dition to regular document delivery by Apache. The experi-
mental setup consists of two dual-processor 1GHz Pentium
III machines connected by 100Mbit/s Ethernet. The first
machine is used to run Apache either with or without the
Globule module. The second machine is used to send re-
quests to the server.

We measure Globule’s overhead independently from the
particular effects of specific replication policies by manu-
ally selecting a policy that always allows the delivery of
the local replica without any prior action. We then com-
pare the resulting performance with the same requests sent
to an Apache server running without Globule. More com-
plex replication policies may of course introduce additional
costs, but these costs are already taken into account as one
aspect of the cost/benefit analysis that selects replication
policies [7].

We compare the relative performances of Globule and
Apache from two points of view: request latency mea-

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



1000

10000

100000

10 100 1000 10000 100000 1e+06

R
eq

ue
st

 la
te

nc
y 

(m
ic

ro
−

se
co

nd
s)

Document size (bytes)

Globule with object creation
Globule without object creation

Apache

Figure 3. Request latencies

sures reflect the performance as seen by the clients, whereas
server throughput reflects the performance as seen by the
servers.

We stress that we are interested in measuring the over-
head introduced by Globule, and as such concentrate on
micro benchmarks for our Apache implementation. The
overhead introduced by Globule as a whole is relevant only
when considering the effects of individual replication poli-
cies, which has been discussed at length in [5]. For this
reason, we did not perform wide-area experiments at this
point.

4.1. Request latency

We measure the latency of requests as seen by the client,
i.e., the duration between when a TCP connection is ini-
tiated by the client and when the response has been fully
received. To reproduce a realistic request access pattern,
our client is configured to reproduce requests taken from
the log file of our department’s Web server. Document sizes
are reproduced as well. To load the server to its maximum
capacity, we replay the trace file as fast as possible.

Figure 3 shows the request latencies observed by the
client when document size varies. To make the graph read-
able, we did not plot the performance of each request that
was performed, but instead, showed only the median latency
values for requests to documents of each size.

Note that because we are making use of a high-speed
network, we are measuring pure-server performance. This
setup can be considered as a worst-case scenario compared
to a realistic wide-area setting.

We split Globule latency measures into two curves. The
first one concerns the first request that Globule receives for
a document, and the second one concerns all subsequent
requests. When receiving the first request for a given docu-

ment, Globule must create a replication object, a policy ob-
ject and a meta-data file to hold the replica’s internal state.
As can be seen in the graph, these operations have a fixed
cost of about 400 �s. Note that this cost is incurred only
once for each document.

When no object creation is required, the latency of re-
quests to Globule replicas is approximately 200 �s higher
than that of the same requests to unmodified Apache. This
fixed cost is mostly due to Globule finding the replication
object that must be forwarded each HttpRequest event.

The additional cost for delivering Globule replicas is pri-
marily visible only for small documents. When the docu-
ment size is greater than a few kilobytes this cost becomes
negligible compared to the time needed to actually transfer
the document over the network. We expect this latency dif-
ference between Globule and Apache to become even lower
when requests are sent over a wide-area network.

4.2. Server throughput

Figure 4 shows the throughput that a Globule server can
achieve compared to that of Apache. Throughputs are mea-
sured using ab, the standard Apache benchmarking tool.
We use this tool to send requests repeatedly to documents
of different sizes. We measure the throughput of Apache
and Globule when being requested with different levels of
concurrency.

All graphs show a decrease of throughput when docu-
ment size increases: obviously, it takes more time for a
server to deliver a large document than a small one.

When there is no concurrency between requests, Glob-
ule’s throughput is very close to that of Apache: for doc-
ument sizes below 8kB, Globule’s throughput is about 5%
lower than that of Apache. Throughputs for larger docu-
ments show the same effect as in the request latency mea-
surements: the difference becomes negligible because net-
work transfer costs take over any additional cost caused by
Globule.

When we increase the concurrency level to higher val-
ues, we see that the difference in throughputs becomes
larger. The difference is about 5% for a concurrency level
of 1, 9% for a concurrency level of 2 and 17% for a concur-
rency level of 5.

We explain this degradation by the way Globule allo-
cates shared memory. To prevent race conditions, such al-
locations are serialized by a global mutex. Apache imple-
ments such cross-process and cross-thread mutexes by us-
ing one interprocess lock, plus one intraprocess mutex per
process. (Un)locking the global mutex before (after) each
shared memory allocation requires to (un)lock � � � mu-
texes. We can therefore expect that shared memory allo-
cations become slower as the server load increases due to
request concurrency.

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



0

100

200

300

400

500

600

700

1 10 100 1000 10000 100000 1e+06

S
er

ve
r 

th
ro

ug
hp

ut
 (

re
q/

se
c)

Document size (bytes)

Apache
Globule

(a) Concurrency level=1

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 10 100 1000 100001000001e+06

S
er

ve
r 

th
ro

ug
hp

ut
 (

re
q/

se
c)

Document size (bytes)

Apache
Globule

(b) Concurrency level=2

0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000 100001000001e+06

S
er

ve
r 

th
ro

ug
hp

ut
 (

re
q/

se
c)

Document size (bytes)

Apache
Globule

(c) Concurrency level=5

Figure 4. Server Throughput

Like in the latency analysis, these throughput measures
reflect a worst-case scenario because they were performed
over a high-speed network. In a wide-area environment, the
cost for acquiring locks will become negligible compared to
the total request latency, and the throughput of Globule will
likely be much closer to that of unmodified Apache.

5. Related work

Many systems have been developed to cache or repli-
cate Web documents. The first server-controlled systems
have been push-caches, where the server was responsible of
pushing cached copies close to the users [2]. More recently,
content distribution networks (CDNs) have been developed
along the same idea [1, 8]. These systems rely on a large
set of servers deployed around the world. Consistency is
realized by incorporating a hash value of a document’s con-
tent inside its URL. When a replicated document is mod-
ified, its URL is modified as well. This scheme necessi-
tates to change hyperlink references to modified documents
as well. In order to deliver only up-to-date documents to
users, this scheme cannot use the same mechanism to repli-
cate HTML documents; only embedded objects such as im-
ages and videos are replicated.

Globule presents three major differences with CDNs.
First, since its consistency management is independent from
the document naming scheme, it can replicate all types of
objects. Second, contrary to CDNs that use the same consis-
tency policy for all documents, Globule selects consistency
policies on a per-document basis so that each document uses
the policy that suits it best. Finally, the system does not re-
quire one single organization to deploy a large number of
machines across the Internet: Globule users are encouraged
to trade resources with each other, therefore incrementally
building a worldwide network of servers at low cost.

6. Conclusion

We have presented the design and implementation of
Globule, a user-centered content delivery network. Glob-
ule integrates all necessary services into a single tool: doc-
ument replication, selection of the most appropriate repli-
cation strategies on a per-document basis, consistency man-
agement, and automatic client redirection.

Globule is implemented as a module for the Apache
server. This will enable administrators of non-replicated
Apache servers to switch to replicated documents by sim-
ply compiling an extra module in their server and editing a
configuration file.

Globule will soon be made available from http://
www.globule.org/ under an open-source license.

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 



References

[1] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl. Globally distributed content delivery. IEEE Inter-
net Computing, 6(5):50–58, September-October 2002.

[2] J. Gwertzman and M. Seltzer. The case for geographical
push-caching. In Proc. 5th Workshop on Hot Topics in Oper-
ating Systems (HotOS), Orcas Island, WA, May 1996. IEEE.

[3] B. Laurie and P. Laurie. Apache: The Definitive Guide.
O’Reilly & Associates, Sebastopol, CA., 2nd edition, 1999.

[4] P. R. McManus. A passive system for server selection
within mirrored resource environments using AS path length
heuristics. Technical report, AppliedThory Communica-
tions, Inc., June 1999. http://www.gweep.net/
˜mcmanus/proximate.pdf.

[5] G. Pierre, I. Kuz, M. van Steen, and A. S. Tanenbaum. Dif-
ferentiated strategies for replicating Web documents. Com-
puter Communications, 24(2):232–240, Jan. 2001.

[6] G. Pierre and M. van Steen. Globule: a platform for self-
replicating Web documents. In Proceedings of the 6th Inter-
national Conference on Protocols for Multimedia Systems,
LNCS 2213, pages 1–11, Oct. 2001.

[7] G. Pierre, M. van Steen, and A. S. Tanenbaum. Dynami-
cally selecting optimal distribution strategies for Web doc-
uments. IEEE Transactions on Computers, 51(6):637–651,
June 2002.

[8] M. Rabinovich and A. Aggarwal. RaDaR: A scalable ar-
chitecture for a global Web hosting service. In Proceedings
of the 8th International World-Wide Web Conference, May
1999.

[9] M. Szymaniak. A DNS-based client redirector for the
Apache HTTP server. Master’s thesis, Vrije Universiteit,
Amsterdam, The Netherlands, July 2002. http://www.
globule.org/.

[10] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, 7(1):70–
78, January-March 1999.

Proceedings of the The Third IEEE Workshop on Internet Applications (WIAPP’03) 
1530-1354/03 $17.00 © 2003 IEEE 


