
Supporting Internet-scale multi-agent systems

N.J.E. Wijngaards *, B.J. Overeinder, M. van Steen, F.M.T. Brazier

Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081a,

1081 HV Amsterdam, The Netherlands

Received 14 December 2001; received in revised form 19 December 2001; accepted 19 December 2001

Abstract

The Internet provides a large-scale environment for (intelligent) software agents. Agents are autonomous
(mobile) processes, capable of communication with other agents, interaction with the world, and adapta-
tion to changes in their environment. Current approaches to support agents are not geared for large-scale
settings. The near future holds thousands of agents, hosts, messages, and migratory movements of agents.
These large-scale aspects require a new approach to facilitate the development of agent applications and
support. AgentScape is a scalable agent-based distributed system, described in this paper, that aims at
tackling these aspects. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Large-scale agent systems; Middleware; Scalability; Mobility; Heterogeneity; Interoperability

1. Introduction

Multi-agent systems are subject to much research with a focus mainly on small-scale homo-
geneous systems that are developed for specific domains of applications. In the near future,
however, large-scale agent systems will emerge with vast numbers of agents that communicate,
manipulate objects, and move across machines. Examples of large-scale agent systems include
e-business applications (virtual shopping malls and auctions), Internet-wide data warehouses, and
navigation systems. Unfortunately, current systems cannot simply be expanded to cover large
heterogeneous networks such as the Internet, be managed in a distributed fashion by several
administrative organizations at the same time, and support vast numbers of agents.

www.elsevier.com/locate/datak

Data & Knowledge Engineering 41 (2002) 229–245

*Corresponding author. Tel.: +31-20-444-7756.

E-mail address: niek@cs.vu.nl (N.J.E. Wijngaards).

0169-023X/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.
PII: S0169-023X(02 )00042-3



When considering scalability, there are a number of key aspects in agent systems that need
further attention. First of all, what exactly is an agent is important. Agents form the active entities
and, from a scalability perspective, should be designed to operate in very large systems. Related to
this issue is the way interaction between agents takes place, that is, the communication and co-
ordination among agents. Yet another key aspect is the ability of an agent to adapt to changes in
its environment. In large-scale systems, an obvious assumption is that the environment changes
continuously, imposing specific requirements on agents.
When dealing with an agent system that is geographically dispersed across a wide-area network,

it is also important to take a look at whether and how agents migrate between locations. An
important assumption is that these systems are not closed. Instead, they need to operate in an
open (and thus extendible) way where agents from other agent platforms can arrive and leave,
leading to security considerations. Finally, to support the development of agent systems facili-
tation, tools and platforms to host agents and services for agents, are important as well.
In this paper, agent systems are described from the perspective of two research communities:

Artificial Intelligence (AI) and Computer Systems (CS). Subsequently, an overview is given of
requirements for large-scale agent systems, and more details on scalability issues. Furthermore an
outline of AgentScape is presented; a system explicitly designed to support large-scale agent
systems.
The paper is organized as follows. In Section 2 a brief overview is given of current research on

agents. Aspects of large-scale agent systems are described in Section 3. Current research on a
scalable agent operating system, AgentScape, is described in Section 4. In Section 5 development
of large-scale agent systems is discussed and suggestions for future research are presented.

2. Current agent systems

Agents and agent systems have been studied for over a decade, resulting in many papers from
the AI community as well as from CS researchers. Research from the perspective of AI focuses on
different aspects than CS-based research. This section describes current research on agent systems
from both disciplines.

2.1. Agents from an AI perspective

From the AI perspective agents are (1) autonomous and pro-active, (2) may be mobile, (3) are
capable of communication with other agents, (4) are capable of interaction with the outside
‘‘world,’’ and (5) are most often intelligent (meaning that they may be capable of learning, have
knowledge, can perform complex tasks, and can reason about and with this knowledge). In this
respect, a well-known example of an agent is a human being. An agent (either human or auto-
mated) has its own environment, consisting of other agents and a (material) world. The agent
metaphor offers a means to model situations with distributive activity on a conceptual level (e.g.,
[26]), and is related to research on Distributed Artificial Intelligence.
Different notions of agency have been proposed (e.g., [4,40,60,50]). The characteristics of weak

agency defined by Wooldridge and Jennings [60] provide a means to reflect on the tasks an agent
needs to be able to perform. Pro-activeness and autonomy are related to an agents ability to

230 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



reason about its own processes, goals and plans. Reactivity and social ability are related to the
ability to interact with the material world and to communicate with other agents. The ability to
communicate and cooperate with other agents and to interact with the material world often relies
on an agents ability to acquire and maintain its own knowledge of the world and other agents. In
contrast, the notion of strong agency is based on the characteristics of mentalistic and intentional
notions (related to the notion of intentional stance by Dennett [14]).
The model of weak agency is widely accepted within the agent community and forms a useful

basis for a discussion on agent models. Most models have a degree of genericity: the agent model
is not fully specified, and may be extended for agents in a specific application (e.g. the generic
agent model [6]). A number of these specification languages are specifically developed for speci-
fying BDI-agents, which adhere to the notion of strong agency.
The BDI architecture [46] is organised around the notions of Beliefs, Desires and Intentions.

The beliefs are concerned with information on the environment (the world and other agents).
Desires and intentions are concerned with the goals and plans of an agent. Specific (formal) agent
model have been developed for BDI-agents [47,34], among which a refinement of the generic agent
model for BDI-agents [5].
Agents typically interact with other agents. Agent communication languages (ACLs) and co-

operation models are actively being researched.
An ACL describes ‘‘speech acts’’ in the form of message exchanges. KQML was a first attempt

to come to a standardized ACL [16]. More recently, FIPA [11] is providing standards for ACLs
and protocols [17]. Interesting is that the semantics of a message in an ACL is generally left open
to the extent that it is associated with an ontology. For example, in the Semantic Web 1 effort [3] a
rich ontology language is developed by which machines may understand information.
The many different ACLs and ontologies leads to an interoperability problem [61]. Solutions to

this problem include the use of intermediary agents that find agents capable of translating between
ontologies. Another approach is to devise information brokering agents that essentially act as
intermediaries or gateways [32,31,53]. Mediating agents have also been the object of study in the
area of security and privacy [58], where they are called ‘‘Alter-ego’s’’, to emphasize their role as
intelligent carriers of private information of human beings.
A completely different approach to interoperability is to replace message exchange by specific

coordination models. Coordination models may be used to set up and maintain aggregates of
cooperating agents. The purpose of a coordination model is to enable the integration of a number
of agents in such a way that the resulting ensemble executes as a whole. However, the temporal
and referential coupling between agents in message-based systems is replaced by an associative
memory that decouples communicating parties in time and space [42].
As agent systems grow in complexity the density and diversity of the interconnections between

agents increase rapidly. The global behaviour of these complex systems can be considered to be an
emergent property of the interactions between the different agents. An alternative way to manage
this form of agent-based system is to utilize emergent properties to make self-organizing and self-
regulating multi-agent systems [24].

1 See also the article by Klein et al. in this special issue on the Semantic Web.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 231



Agents operate in a dynamic environment, making it impossible to statically determine an
agent’s optimal behaviour in advance. Agents have to learn from and adapt to their environment.
Multi-agent learning and adaptation, that is, the ability of agents to learn how to cooperate and
compete, become crucial [29]. Adaptive and learning agents are often employed to maintain
profiles of (human) agents. For example, a consumer agent maintains a profile of the personal
assistant agent, and adapts this profile on the basis of interaction with the personal assistant agent
(e.g. as also encountered in negotiation settings [10,12]). Adaptation may entail mobility of an
agent: an agent may migrate to a specific ‘‘place’’ to access locally available resources.
Agents, as studied within AI, are (to some extent) intelligent, and interact to solve complex

problems. The overall behaviour of multi-agent systems is an important topic of current research.
However in AI, the implementation of agents is not of great importance, usually only for dem-
onstration purposes. Efficiency and performance is not usually considered to be important.

2.2. Agents from a CS perspective

An agent from a CS perspective is often considered to be just a process [54], a piece of running
code with data and state. The functionality of these agents can most often be described in terms of
human behaviour, and to which the predicate intelligent is associated. Agents are processes that
are autonomous and pro-active (capable of making ‘‘their own’’ decisions when they like), in-
teracting, and may be mobile.
Agents are often related to objects, where the latter are generally considered to be passive [27].

In other words, an object needs to be invoked in order to perform a function, and performs only
during an invocation. Agents, on the other hand, receive messages and autonomously decide if,
when, and how to (re)act. The only way to influence an agent is by sending requests; the agent
stays in complete control and may perform functions even if not requested to do so.
Agents usually interact by exchanging messages, where message delivery is subject to different

‘‘qualities of service.’’ For example, the message paradigm described by FIPA prescribes reliable
and ordered point-to-point communication between agents [18].
Agents in CS are often mobile. The decision to migrate is taken autonomously by the mobile

agent itself. The ability of migration provides mobile agents a means to overcome the high latency
or limited bandwidth problem of traditional client–server interactions by moving their compu-
tations to required resources or services. The current evolution of intelligent and active networks
in system and network management, for example, is based on this technology. A similar tendency
is observed in the search and filtering of globally available information such as in the electronic
marketplaces, e-commerce, and information retrieval on the World Wide Web [23].
A distinction can be drawn based on whether the execution state is migrated along with the unit

of computation or not [20]. Systems providing the former option are said to support strong
mobility, as opposed to systems that discard the execution state across migration, and are hence
said to provide weak mobility. In systems supporting strong mobility, migration is completely
transparent to the migrated program, whereas with weak mobility, extra programming is required
in order to save part of the execution state.
Strong mobility as found in NOMADS [51], Ara [44], and D’Agents [22], requires that the

entire state of the agent, including its execution stack and program counter [25], is saved before
the agent is migrated to its new location. Despite the advantages of strong mobility, many agent

232 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



systems support weak mobility (like Ajanta [56] and Aglets [30]). Most of the agent systems are
implemented on top of the Java Virtual Machine (JVM), which provides with object serialization
basic mechanisms to implement weak mobility. The JVM does not provide mechanisms to deal
with the execution state.
Security is of great importance in agent systems, not only in electronic monetary transactions,

but also that mobile agents should not become the next generation of viruses. Current research on
secure agent systems concentrates mainly on protecting hosts against hostile mobile agents. The
problem of security stems from the fact that untrusted code needs to be executed. Modern so-
lutions are based on the notion of protection domains by which a security policy for accessing
local resources can be enforced [21]. Only very few systems also provide facilities for protecting
mobile agents against hostile hosts [28].

2.3. Agent systems

Agents are used in a wide variety of applications [27]: process control, manufacturing, air traffic
control, information management, e-commerce, business process management, patient monitor-
ing, health care, games, and interactive theater and cinema. Deploying an agent system (or
prototype thereof) includes not only modelling autonomous, interactive, intelligent agents, but
also actually implementing these agents as well as an underlying infrastructure.
Agents can exist only by virtue of some kind of agent platform. Such a platform runs on a

relatively small collection of machines and provides basic facilities such as creating and running
an agent, searching for an agent, migrating agents to other platforms, and enabling the basic
communication with other platforms that host an agent. Platforms and the facilities for modelling
agents integrate the AI and CS perspective of agents, leading to what we refer to as agent systems.
Facilitation of (intelligent) agents commonly includes tools to model and develop agents, and

an agent platform. Most agent frameworks provide some tools for modelling and developing
agents, ranging from code libraries to interactive agent-design tools, with which AI specifications
of agents are transformed into executable descriptions of agents.
It can be argued that only relatively few agent systems exist that integrate the AI and CS

perspective as discussed above. ZEUS [39], NOMADS [51], Sensible Agents [2] and Ajanta [56]
are approaches to agent systems in which tools for developing agents are combined with agent
platforms. Basic facilities such as communication, creation and deletion of agents, as well as
mobility are provided by most agent platforms. Aspects such as interoperability, efficiency and
performance, but also security, are part of the current research.

3. Large-scale agent systems

Large-scale agent systems currently do not exist. A number of agent-based simulation systems
involves larger numbers of agents, e.g. [37]. Often in agent-based simulation systems, the agents
involved are kept small and/or simple (to facilitate simulation). However, with the advent of the
Internet, large-scale agent systems will become more prevalent.
Ideally, multi-agent systems are highly dynamic open systems, with an ever-changing popula-

tion of agents: new agents emerge (or are created), existing agents die, move, learn/forget etc.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 233



The dynamics of such systems are hard to predict when considering the number of messages sent,
migrationary movements of agents, birth and death of agents, etc. The number of agents in large-
scale distributed applications such as e-business applications (virtual shopping malls and auc-
tions), Internet-wide data warehouses, and navigation systems, can vary considerably over time.
The systems need to be able to scale (in terms of the number of agents and available resources)
almost immediately without noticeable loss of performance, or considerable increase in admin-
istrative complexity [38].
This problem of scalability is not an AI problem in itself. It is a problem with which the dis-

tributed computing community is still wrestling. A solution requires collaboration between these
two disciplines. In the next section the topic of scalability in large-scale agent systems is addressed
from the agents’ perspective and the systems’ perspective [8].

3.1. Agent-level scalability

Scalability is an important, yet under-researched, aspect of agent platforms. A number of multi-
agent frameworks and environments have been developed to construct multi-agent systems, but
not for systems with (very) large numbers of agents. Not only does the number of agents increase,
but also the number of agent interactions, movements of agents, agents inserted into the system,
agents deleted from the system, etc. All of these issues require a scalable solution; solutions that
may conflict.
One aspect of current research on multi-agent systems is that a large system is deemed to consist

of hundreds of agents, maybe a thousand, but not millions. The claim that Auctionbot is scalable,
for example, is supported by an experiment with only 90 agents [62]. Larger numbers of agents
require scalable development frameworks and support environments.
The term ‘‘scalability’’ is not always used to refer to architecture, services and performance. In

some cases it is used to refer to scalable functionality. For example, the SAIRE approach [41]
claims to be scalable because it supports heterogeneous agents. Shopbot [15] claims to be scalable
because its agents can adapt to understand new websites. In both cases, the term extensible
functionality would seem to be more appropriate.
Researchers and developers of multi-agent frameworks are beginning to realize that scalability

is an issue. Some multi-agent frameworks rely on another framework to solve the problem of
scalability. For example, scalability in the CoABS (DARPA Control of Agent Based Systems)
approach [55] is based on adequate support from computational grids in providing a plug-in
infrastructure for agents [19].
In other multi-agent frameworks, aspects of scalability are specifically addressed. In ZEUS [13]

scalability is defined to be the growth rate of the maximum communication load, that is, the
number of messages sent across a single link grows at worst linearly with the number of agents.
This addresses a loss of performance problem, and is a step towards developing scalable multi-
agent frameworks. In open agent architecture (OAA) [33] matchmaking agents are described that
can handle larger number of agents. The RETSINA MAS infrastructure [52] is designed to
support multi-agent systems that run on a number of LANs and to avoid single-point of failures
(e.g. in agent name services).
Turner and Jennings [57] propose to (automatically) change the organisation of agents in the

multi-agent system as a response to an increase in the population of a multi-agent system. For

234 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



example, more middle agents or matchmakers are introduced to reduce overhead. Their approach
is a possible step towards addressing administrative problems related to scalability.
None of the aforementioned approaches addresses minimizing the loss of performance as well

as minimizing administrative overhead. Research on fully automated creation and adaptation of
agents, open (extensible) agent systems, or large-scale agent life-cycle management, has yet to
begin.
Research on specific services in multi-agent systems such as directory services also addresses

scalability. The approach taken by Shehory [49] is an example of a theoretical analysis in which
agents locate agents based on each agent’s own caching lists of agents they know. No experiments
have yet been conducted.

3.2. Systems-level scalability

A varying number of (heterogeneous) platforms may require some form of automated linking
(and unlinking) of the platform to a large-scale agent system. Platforms, of course, differ exten-
sively in the facilitation of the development of agents, and the support and functionality offered
for agents and objects. Machines may be added or removed and machines may differ in the
availability of resources (consider, e.g., Unix and Windows NT systems versus hand-held devices).
A platform provides services for agents. Location services are used to obtain the address of an

agent (or object) on the basis of the name of the agent (or identifier of the object). Directory
services are used for attribute-based searching and matching by which names of agents (or
identifiers of objects) are acquired. An increase in the number of agents and objects plus the
number of updates requires scalable solutions [1].
Agents need to be managed with respect to their creation, deletion, and migration. When

needed, agents may be created by other agents, and become part of the agent system. The creation
service may clone an agent or create an agent on the basis of an available description. Similarly,
an object-creation service is needed. The number of agents migrating from machine to machine
(and possibly across platforms) is greatly increased.
Within a large-scale agent system, agents are heterogeneous, and so are platforms supporting

agents. Migration of an agent involves migrating its code (and data) from one platform to another.
Four migration scenarios of agents can be distinguished [7]. (1) Homogeneous migration is when
an agent migrates to another host without any changes to the format of its executable code or its
interfaces to the agent platform. (2) Cross-platformmigration is when an agent migrates to another
host with a different agent platform, but that offers the same (virtual) machine interface. (3) Agent-
regeneration migration is when an agent migrates to a host running a different (virtual) machine
requiring that the agent is regenerated, resulting in different executable code. (4) Heterogeneous
migration is when an agent migrates to another host with a different agent platform and offering a
different (virtual) machine. In this case, regeneration of the agent is necessary. The migration
scenarios in which the agent is regenerated may be realized by using an agent factory [9]. Instead of
migrating the ‘‘code’’ (including data and state) of an agent, a blueprint of an agent’s functionality
and its state is transferred. An agent factory generates new code on the basis of this blueprint.
From the systems point of view, scalability problems generally manifest themselves as per-

formance problems. Three scaling techniques are discussed which may be used to minimize loss of
performance: (1) hiding communication latencies, (2) distribution, and (3) replication.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 235



Hiding communication latencies is applicable in the case of geographical scalability, that is,
when an agent system needs to span a wide-area network. To avoid waiting for responses to
requests that have been issued to remote agents or services, the requesting agent is programmed to
do other useful work. This approach does require that an agent can be interrupted when the
expected response (if any) is to be delivered.
Distribution generally involves partitioning a (large) set of data into parts that can be handled

by separate servers. A well-known example of distribution is the natural partitioning of the set of
Web pages across the approximately 25 million Web servers that are currently connected through
the Internet. Other examples of distribution include the vertical or horizontal partitioning of
tables in distributed databases [43].
When considering large-scale networks like the Internet it becomes crucial to combine distri-

bution with latency hiding. Unfortunately, this is not always possible, for example when an agent
simply needs an immediate response.
A third, and widely-applied technique is to place multiple copies of data sets across a network,

also referred to as replication. The underlying idea is that by placing data close to where they are
used, communication latency is no longer an issue, so that agent-perceived performance is high.
Having multiple copies means that such performance is good for all agents, no matter where they
are located.
Unfortunately, replication introduces a serious problem. Whenever a replica is updated, that

replica becomes inconsistent with the other replicas. Matters become worse when multiple con-
current updates need to be carried out simultaneously, because all replicas have to be the same
after all updates have been processed. Keeping replicas consistent introduces a consistency
problem that can be solved only by means of global synchronization. However, global syn-
chronization in a large-scale network is inherently nonscalable, as it requires communication
between all parties that are to be synchronized.
The only solution to the consistency problem is to allow replicas to be somewhat out of synch

with respect to updates. In other words, a weak consistency model is adopted. The form of, and to
what extent weak consistency can be tolerated is highly application dependent. As a consequence,
scalable multi-agent systems will need to support configurable and perhaps even adaptive repli-
cation strategies. No single strategy will show to be optimal under all conditions. Even for rel-
atively simple systems such as the Web, differentiating strategies can make a lot of difference [45].
Scalability in large-scale agent systems is a difficult and challenging problem. Models for se-

curity in large-scale agent systems are not common yet. In fact, security by itself introduces in-
herent scalability problems as we often need to set up secure point-to-point channels, introducing
referential and temporal coupling of agents. When dealing with security within groups, providing
scalable solutions turns out to be even harder (see e.g. [48]).

4. AgentScape

The aspects of large-scale agent-based systems as described in the previous section, form the
basis for the design goals of the AgentScape agent platform. The rationale behind the design
decisions are (1) to provide a platform for large-scale agent systems, (2) support multiple code
bases and operating systems, and (3) interoperability with other agent platforms. The conse-

236 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



quences of the design rationale with respect to agents and objects, interaction, mobility, security
and authorization, and services are presented in the next sections.

4.1. Approach

AgentScape is a middleware layer that supports large-scale agent systems. The overall design
philosophy is ‘‘less is more,’’ that is, the AgentScape middleware should provide minimal but
sufficient support for agent applications, and ‘‘one size does not fit all,’’ that is, the middleware
should be adaptive or reconfigurable such that it can be tailored to a specific application (class) or
operating system/hardware platform.
Agents and objects are basic entities in AgentScape. Thus any multi-agent application in

AgentScape is composed of agents and objects. Agents are active entities in AgentScape that
interact with each other by message-passing communication. Furthermore, agent migration in the
form of weak mobility is supported (see Section 2.2). Objects are passive entities that are only
engaged into computations reactively on an agent’s initiative.
Basic services in AgentScape are naming and location services for agents, objects, and loca-

tions. These services enable agents to find and contact other agents or objects in the distributed
multi-agent system, and to migrate to other locations.
Scalability, heterogeneity, and interoperability are important principles underlying the design

of AgentScape. The design of AgentScape includes the design of agents and objects, interactions,
migrations, security and authorization, as well as the agent platform itself. For example, scala-
bility of agents and objects is realized by distributing objects according to a per-object distribution
strategy, but not agents. Instead, agents have a public representation that may be distributed if
necessary.

4.2. AgentScape model

The design goal of AgentScape is to define a minimal set of functionality and services that
should be supported by the middleware of a scalable agent-based distributed system. However,
AgentScape must be extensible and useable as a kernel for other agent platforms. For develop-
ment of agent applications, an application programming interface (API) and a runtime system
(RTS) are provided. However, the default API and RTS can be extended to provide a higher-level
application programming interface with, for example, a model that offers more structure and
semantics to the agent application developer.

4.2.1. AgentScape model from an AI perspective
Central entities in AgentScape are agents and objects. An agent may communicate with other

agents and interact with objects. All inter-agent or agent–object interaction is realized via inter-
faces that are bound to the calling (or interaction initiating) agent. Agents and objects reside at a
location, which is an abstraction from a physical location. A location contains a set of resources:
host(s), disks, network, main memory, etc. For a consistent model, a location comprising
the AgentScape middleware and resources presents itself as an agent and a set of objects. The
AgentScape middleware is represented by a location manager agent, and the resources by their
respective objects. Hence, the AgentScape middleware interface presents itself as a normal agent

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 237



interface on which operations or methods can be called upon. The difference between the location
manager and an arbitrary other agent is the authority of the location manager when it comes to
matters such as creating, destroying, and moving agents and objects.
Fig. 1 presents a model of AgentScape from the agent perspective, that is, the location com-

prising the middleware and the resources are represented by a location manager agent and re-
source objects. Calls from an agent to the middleware are modeled by requests to the location
manager agent to, for example, create an agent or move an agent. Information about resources
residing at the location can be retrieved by binding to the resource objects, which are local dis-
tributed objects. These objects can be accessed only within the location they reside, not from
outside the location.
The terms location manager and middleware are used interchangeably, depending on the

context. We use the term location manager for the agent representation of the middleware to-
wards the agents, and the term middleware in the context of system architecture.

4.2.2. AgentScape model from a CS perspective
The basic idea in the AgentScape model is that most of the functionality is provided by the

agent interface implementations such that the middleware (or the agent representation of the
middleware) can be designed to perform basic functions. This approach has a number of ad-
vantages. First as the middleware must provide basic functionality, the complexity of the design of
the middleware can be kept manageable and qualities like robustness and security of the mid-
dleware can be more easily asserted. Additional functionality can be implemented in the agent-
specific interface implementation. Fig. 2 depicts a model of the agent-specific interface and the

Fig. 1. The AgentScape model from the perspective of agents.

238 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



location-manager interface, and how agent interface calls can be broken down in more basic
location-manager (middleware) calls.
For example, the interface call to migrate an agent can have different specific implementations

of agent migration. With basic agent migration, the agent can be suspended and be in transit to
another location for an arbitrary period of time. However, if there is a high availability re-
quirement for the agent, another agent-migration interface implementation can be provided that
realizes an ‘‘instantaneous’’ move of the agent to the new location (e.g. by first creating and
starting the remote agent, then informing name and location servers of the new contact address,
then start forwarding messages to the new agent, and finally ask the location manager to cleanup
or kill the old agent).
Agent–agent interaction is exclusively via message-passing communication. Asynchronous

message passing has good scalability characteristics with a minimum of synchronization between
the agents. Tuple spaces also provide a mechanism for communication that does not enforce
synchronization between the communicating partners, but cannot enforce the actual receipt of the
information.
Agent migration between locations is based on weak mobility. The state of the agent is captured

(e.g. the variables referenced by the agent) but not the context of the agent (e.g. stack pointer and
program counter). Requests for migration are directed by message passing to the agent. Hence,
the agent always receives requests for migration and has to agree to participate in the migration
activities by serializing its state. The middleware also sends requests for migration to agents, as
message passing is the only supported communication/interaction mechanism.

Fig. 2. The AgentScape model from the perspective of agents.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 239



Global and local distributed objects in AgentScape are Globe objects [59]. Global distributed
objects have their own replication strategy to distribute and replicate their internal state across
multiple locations.

4.3. AgentScape experimental framework

AgentScape provides a framework for research on a number of AI and CS topics. The design
and realization of an Internet-scale multi-agent platform should consider scalability as a leading
design requirement. With respect to agents and objects, this implies the support of scalable
methods for agent management, including creation and deletion of agents, migration, and agent
name and location services [1]. With the dynamic creation of many agents, effective support is
necessary for keeping track of the agents during their lifespan. For example, during a certain
phase of the computation, such as when new results become available, distributed mobile agents
may need to be recalled and may have to either migrate back to the originating location or may
need to be destroyed.
In large-scale systems, latency hiding and loose synchronization are important qualities of

agent interaction. Unnecessary blocking and synchronization between distant agents that com-
municate over wide-area Internet connections, nullifies the performance of any multi-agent sys-
tem. Hence, support for asynchronous (non-blocking) communication mechanism is essential,
although in some situations synchronous interaction is desirable and should be included in the
model (e.g. for service requests to the middleware like name lookup).
Scalable security services can be based on public key infrastructures and authorization dele-

gation (by proxy). Authentication of agents and objects can be verified by the signatures that are
attached to them. With public-key infrastructures this authentication can be realized locally (once
the public key of the entity is locally available). Delegation of authorization enables other entities
(agents) to act on your behalf such that there is no central entity where all requests have to be
directed to.
Within AgentScape, management of large-scale agent systems is an important issue, including

not only life-cycle management of agents, but also management of security and authentication,
middleware configuration, and resources. As centralized management mechanisms are not ap-
plicable (scalability), other approaches need to be considered such as law-governed coordination
mechanisms [36].
The code base and operating system independence requirement implies that agents can be, for

example, Java, Python, or C programs, and run on, e.g., Unix or Windows NT operating systems.
The consequence is that the runtime support for the agents must hide the details of the underlying
language and operating system details. The middleware already abstracts from many aspects of
the operating system, for example, it supports the creation and deletion of agents and objects.
Language specific aspects are hidden by the runtime support, for example, the runtime support
solves the peculiarities of creating a communication channel with the middleware. Another
consequence of code base and operating system independence is that the system cannot rely on,
for example, the Java security infrastructure. The security architecture should be platform in-
dependent. Furthermore, the security architecture must be an integral part of the design of the
AgentScape agent platform, and should not be regarded as an add-on and of a later concern. With
respect to mobility of agents, the migration of agents (suspend, migration, and restart) must be

240 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



language independent from the middleware perspective. Thus from the middleware concern, an
image of an agent is transported to another location, and at the new location it is handed over to
an appropriate interpreter to recreate and restart the agent.
Interoperability between agent platforms can be realized in two ways. First by conforming to

standards like FIPA [11] or OMG MASIF [35]. These agent platform standards define interfaces
and protocols for interoperability between different agent platform implementations. For exam-
ple, the OMGMASIF standard defines agent management, agent tracking (naming services), and
agent transport amongst others. The FIPA standard is more comprehensive in that it defines also
agent communication and agent message transport, and even defines an abstract architecture of
the agent platform. A second approach to interoperability is realized by reconfiguration or ad-
aptation of the mobile agent. This can be accomplished by an agent factory as described in Section
3.2 (see also [7]), which regenerates an agent given a blueprint of the agent’s functionality and its
state, using the appropriate components for interoperability with the other agent platform.

5. Discussion

Multi-agent systems are becoming more prevalent. Although current research on agent systems
is focused on small-scale agent systems, soon vast numbers of agents will be deployed in large-scale
agent systems. The basic infrastructure is already available: the Internet is a large heterogeneous
network managed in a distributed fashion. Support for large-scale agent systems is not present yet.
Large-scale agent systems pose additional requirements on agents and support for agents.
The main aspects of large-scale agent systems are their extendibility, heterogeneity, inter-

operability, and scalability. A large-scale agent system is a highly dynamic system, in which the
numbers and availability of agents, languages, ontologies, etc. may vary over time. The entities
present in a large-scale agent system are very different from one another, leading to interoper-
ability issues among agents and migrationary problems. As not only the number of entities but
also the number of (inter)actions by agents is on a larger scale in large-scale agent systems,
scalability is of paramount importance.
AgentScape addresses some important research issues regarding the realization of large-scale

agent systems, such as scalability, language/platform independence, and interoperability. From
the AI point of view, AgentScape is an extensible framework for the development of large-scale
agent systems, such as more structured models for the environment of agents. From the CS point
of view, AgentScape provides an experimental framework for studying (validation and verifica-
tion) of new approaches in large-scale agent systems, such as scalable directory services, security,
and interaction and coordination models.
The AgentScape model presented effectively supports both AI and CS research interests. On the

AI side: extensible interfaces can be easily adopted to provide new development models for agent
systems. On the CS side: the integrated modular approach, where platform dependent and in-
dependent parts are separated, and new functionality can be easily integrated or replaced with
different designs makes AgentScape a flexible framework.
Supporting large-scale agent systems involves solving numerous problems on both the agent-

level and the system-level. In this research area, much progress may be achieved by cooperation
between researchers from both the AI and CS communities.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 241



Acknowledgements

This work was supported in part by NLnet Foundation, http://www.nlnet.nl/. Discussions on
the use of AgentScape with Andrew Tanenbaum and Guido van’t Noordende were fruitful and
led to a number of insights.

References

[1] G. Ballintijn, M. van Steen, A.S. Tanenbaum, Scalable user-friendly resource names, IEEE Internet Computing

5 (5) (2001) 20–27.

[2] K.S. Barber, R. McKay, A. Goel, D. Han, J. Kim, T.H. Liu, C.E. Martin, Sensible agents: the distributed

architecture and testbed, IEICE Transactions on Communications, vol. 5, 2000, pp. 951–960, IECIA/IEEE Joint

Special Issue on Autonomous Decentralized Systems, E83-B.

[3] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American 5 (2001).

[4] J.M. Bradshaw (Ed.), Software Agents, AAAI Press/MIT Press, Menlo Park, CA, 1997.

[5] F.M.T. Brazier, B.M. Dunin-Keplicz, J. Treur, L.C. Verbrugge, Modelling internal dynamic behaviour of BDI

agents, in: J.-J.C. Meyer, P.Y. Schobbes (Eds.), Formal Models of Agents (Selected papers from final ModelAge

Workshop) vol. 1760 of Lecture Notes in AI, Springer Verlag, 1999, pp. 36–56.

[6] F.M.T. Brazier, C.M. Jonker, J. Treur, Compositional design and reuse of a generic agent model, Applied Artificial

Intelligence 14 (2000) 491–538.

[7] F.M.T. Brazier, B.J. Overeinder, M. van Steen, N.J.E. Wijngaards, Agent factory: generative migration of mobile

agents in heterogeneous environments, in: Proceedings of the 2002 ACM Symposium on Applied Computing (SAC

2002), Madrid, Spain, 2002, pp. 101–106.

[8] F.M.T. Brazier, M. van Steen, N.J.E. Wijngaards, On MAS scalability, in: T. Wagner, O. Rana (Eds.), Proceedings

of Second International Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal, Canada,

May 2001, pp. 121–126.

[9] F.M.T. Brazier, N.J.E. Wijngaards, Automated servicing of agents, AISB journal 1 (1) (2002) 5–20.

[10] H.H. Bui, D. Kieronska, S. Venkatesh, Learning other agents’ preferences in multiagent negotiation, in: Proceedings

of the National Conference on Artificial Intelligence (AAAI-96), 1996, pp. 114–119.

[11] J. Dale, E. Mamdani, Open standards for interoperating agent-based systems, Software Focus 2 (1) (2001) 1–8.

[12] M. Dastani, N. Jacobs, C.M. Jonker, J. Treur, Modeling user preferences and mediating agents in electronic

commerce, in: F. Dignum, C. Sierra (Eds.), Agent-Mediated Electronic Commerce, vol. 1991 of Lecture Notes in

AI, Springer Verlag, 2001, pp. 164–196.

[13] P. De Wilde, H.S. Nwana, L.C. Lee, Stability, fairness and scalability of multi-agent systems, International Journal

of Knowledge-Based Intelligent Engineering Systems 3 (2) (1999) 84–91.

[14] D.C. Dennett, The Intentional Stance, MIT Press, Cambridge, MA, 1987.

[15] R.B. Doorenbos, O. Etzioni, D.S. Weld, A scalable comparison-shopping agent for the World Wide Web, in:

Proceedings of the First International Conference on Autonomous Agents (Agents’97), Marina del Rey, CA, 1997,

pp. 39–48.

[16] T. Finin, Y. Labrou, J. Mayfield, KQML as an agent communication language, in: J. Bradshaw (Ed.), Software

Agents, MIT Press, Cambridge, 1997, pp. 291–316.

[17] FIPA. FIPA ACL message structure specification, 2000. http://www.fipa.org.

[18] FIPA. FIPA agent platform, 2001. http://www.fipa.org.

[19] I. Foster, C. Kesselman (Eds.), Computational Grids: The Future of High Performance Distributed Computing,

Morgan Kaufman, San Mateo, CA, 1998.

[20] A. Fuggetta, G.P. Picco, G. Vigna, Understanding code mobility, IEEE Transactions on Software Engineering 24

(5) (1998) 342–361.

[21] L. Gong, R. Schemers, Implementing protection domains in the Java development Kit 1.2, in: Symposium

Network and Distributed System Security, San Diego, CA, Internet Society, March 1998.

242 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



[22] R.S. Gray, G. Cybenko, D. Kotz, R.A. Peterson, D. Rus, D’Agents: applications and performance of a mobile-

agent system. Software: Practice and Experience, 2002, in press.

[23] V.N. Gudivada, V.V. Raghavan, W.I. Grosky, R. Kasanagottu, Information retrieval on the World Wide Web,

IEEE Internet Computing 1 (5) (1997) 58–68.

[24] J.H. Holland, Hidden Order: How Adaptation Builds Complexity, Perseus Books, Cambridge, MA, 1995.

[25] K.A. Iskra, F. van der Linden, Z.W. Hendrikse, B.J. Overeinder, G.D. van Albada, P.M.A. Sloot, The

implementation of dynamite: an environment for migrating PVM tasks, Operating Systems Review 34 (3) (2000)

44–55.

[26] N.R. Jennings, On agent-based software engineering, Artificial Intelligence 117 (2) (2000) 277–296.

[27] N.R. Jennings, W.J. Wooldridge (Eds.), Agent Technology: Foundations Application and Markets, Springer-

Verlag, Berlin, 1998.

[28] N. Karnik, A. Tripathi, Security in the ajanta mobile agent system, Software: Practice and Experience 31 (4) (2001)

301–329.

[29] D. Kudenko, E. Alonso, Learning in agents and multi-agent systems, Knowledge Engineering Review, 2002, in

press.

[30] D.B. Lange, M. Oshima, G. Karjoth, K. Kosaka, Aglets: programming mobile agents in Java, in: Worldwide

Computing and Its Applications, Lecture Notes in Computer Science, vol. 1274, Springer-Verlag, Berlin, 1997,

pp. 253–266.

[31] A.Y. Levy, Y. Sagiv, D. Srivastava, Towards efficient information gathering agents, in: Software Agents,

Proceedings of the AAAI 1994 Spring Symposium, 1994, pp. 64–70.

[32] P. Maes, Agents that reduce work and information overload, Communications of the ACM 37 (7) (1994) 31–40.

[33] D. Martin, A. Cheyer, D. Moran, The open agent architecture: a framework for building distributed software

systems, Applied Artificial Intelligence 13 (1/2) (1999) 91–128.

[34] J.-J.C. Meyer, P.-Y. Schobbens, in: Formal Models of Agents, ESPRIT Project Model Age Final Workshop,

Selected Papers, Springer Lecture Notes in AI, vol. 1760, Springer-Verlag, 1999.

[35] D. Milojicic et al., in: MASIF: the OMG mobile agent system interoperability facility, the Second International

Workshop on Mobile Agents Lecture Notes in Computer Science, vol. 1477, Springer-Verlag, Berlin, September

1998, pp. 50–67.

[36] N. Minsky, V. Ungureanu, Law-governed interaction: a coordination and control mechanism for heterogeneous

distributed systems, ACM Transactions on Software Engineering and Methodology (TOSEM) 9 (3) (July 2000)

273–305.

[37] S. Moss, Critical incident management: an empirically derived computational model, Artificial Societies and Social

Simulation 1 (4), October 1998. http://www.soc.surrey.ac.uk/JASSS/1/4/1.html.

[38] B. Neuman, Scale in distributed systems, in: T. Casavant, M. Singhal (Eds.), Readings in Distributed Computing

Systems, IEEE Computer Society Press, Los Alamitos, CA, 1994, pp. 463–489.

[39] H. Nwana, D. Ndumu, L. Lyndon, J. Collis, ZEUS: a toolkit and approach for building distributed multi-agent

systems, in: Proceedings of the Third International Conference on Autonomous Agents (Autonomous Agents’99),

1999, pp. 360–361.

[40] H.S. Nwana, Software agents: an overview, The Knowledge Engineering Review 11 (3) (1996) 205–244.

[41] J.B. Odubiyi, D.J. Kocur, S.M. Weinstein, N. Wakim, S. Srivastava, C. Gokey, J. Graham, SAIRE: a scalable

agent-based information retrieval engine, in: Proceedings of the First International Conference on Autonomous

Agents, Marina del Rey, CA, February 1997, pp. 292–299.

[42] A. Omicini, G.A. Papadopoulos, Coordination models and languages in AI, Applied Artificial Intelligence 15 (1)

(2001) 11–103.

[43] T. €OOzsu, P. Valduriez, Principles of Distributed Database Systems, second ed., Prentice Hall, Upper Saddle River,
NJ, 1999.

[44] H. Peine, T. Stolpmann, The architecture of the Ara platform for mobile agents, in: Proceedings of the First

International Workshop on Mobile Agents (MA’97), Lecture Notes in Computer Science, vol. 1219, Springer-

Verlag, Berlin Germany, April 1997, pp. 50–61.

[45] G. Pierre, I. Kuz, M. van Steen, A. Tanenbaum, Differentiated strategies for replicating Web documents,

Computer Communications 24 (2) (2001) 232–240.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 243



[46] A.S. Rao, M.P. Georgeff, Modeling rational agents within a BDI architecture, in: R. Fikes, E. Sandewall (Eds.),

Proceedings of the Second International Conference on Knowledge Representation and Reasoning, Morgan

Kaufman, 1991, pp. 473–484.

[47] A.S. Rao, M.P. Georgeff, BDI agents: from theory to practice, in: Proceedings of the First International

Conference on Multiagent Systems, San Francisco, CA, 1995, pp. 312–319.

[48] M.K. Reiter, How to securely replicate services, ACM Transactions on Programming Languages and Systems

16 (3) (1994) 986–1009.

[49] O. Shehory, A scalable agent location mechanism, in: Intelligent Agents VI, Lecture Notes in Artificial Intelligence,

vol. 1757, Springer-Verlag, Berlin, 1999, pp. 162–172.

[50] Y. Shoham, Agent-oriented programming, Artificial Intelligence 60 (1) (1993) 51–92.

[51] N. Suri, J.M. Bradshaw, M.R. Breedy, P.T. Groth, G.A. Hill, R. Jeffers, T.S. Mitrovich, B.R. Pouliot, D.S. Smith,

Nomads: toward a strong and safe mobile agent system, in: Proceedings of the Fourth International Conference on

Autonomous Agents, 2000, pp. 163–164.

[52] K. Sycara, M. Paolucci, M. van Velsen, J. Giampapa, The RETSINA MAS infrastructure, Autonomous Agents

and Multi-Agent Systems, Journal of Autonomous Agents and Multi-Agent Systems, in press.

[53] K. Sycara, D. Zeng, Multi-agent integration of information gathering and decision support, in: Proceedings of the

Twelvth European Conference on Artificial Intelligence (ECAI’96), 1996, pp. 549–553.

[54] A.S. Tanenbaum, M. van Steen, Distributed Systems: Principles and Paradigms, Prentice Hall, Upper Saddle

River, New Jersey, 2002.

[55] C. Thompson, T. Bannon, P. Pazandak, V. Vasudevan, Agent for the masses, in: Proceedings of the Workshop on

Agent based High Performance Computing: Problem Solving Applications and Practical Deployment, Third

International Conference on Autonomous Agents Seatle, May 1999.

[56] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, R. Singh, Mobile agent programming in Ajanta, in: Proceedings of

the Ninteenth International Conference on Distributed Computing Systems (ICDCS’99), Austin, TX, May 1999,

pp. 190–197.

[57] P.J. Turner, N.R. Jennings, Improving the scalability of multi-agent systems, in: Proceedings of the First

International Workshop on Infrastructure for Scalable Multi-Agent Systems, Barcelone, Spain, June 2000.

[58] R. van de Riet, A. Junk, E. Gudes, Security in cyberspace: a knowledge-base approach, Data and Knowledge

Engineering 24 (1) (1997) 69–98.

[59] M. van Steen, P. Homburg, A.S. Tanenbaum, Globe: a wide-area distributed system, IEEE Concurrency 7 (1)

(1999) 70–78.

[60] M.J. Wooldridge, N.R. Jennings, Intelligent agents: theory and practice, The Knowledge Engineering Review 10

(2) (1995) 115–152.

[61] M.J. Wooldridge, N.R. Jennings, Software engineering with agents: pitfalls and pratfalls, IEEE Internet

Computing 3 (3) (1999) 20–27.

[62] P.R. Wurman, M.P. Wellman, W.E. Walsh, The Michigan Internet AuctionBot: a configurable auction server for

human and software agents, in: Proceedings of the Second International Conference on Autonomous Agents, New

York, 1998, pp. 301–308.

Dr. Niek Wijngaards received his M.Sc. degree in Computer Science and his Ph.D. degree in Artificial
Intelligence from the Vrije Universiteit, Amsterdam. He is currently an assistant professor at the Vrije Uni-
versiteit, Amsterdam. With a strong AI background, his current research focus is to define the types of system
support needed to design large scale, reliable heterogeneous multi-agent systems. One example of such support
is the provision of agent factories. Design is one domain in which requirements for such support are acquired.
All in close collaboration with the Intelligent Interactive Distributed Systems group and the Computer
Systems group.

244 N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245



Dr. Benno Overeinder received his M.Sc. degree (cum laude) and his Ph.D. degree in Computer Science
from the Universiteit van Amsterdam. He is currently an assistant professor at the Vrije Universiteit, Am-
sterdam. His research interest is the interdisciplinary area between computer systems and artificial intelli-
gence. This includes scalable middleware layers for multi-agent systems, resource management and security,
and applications such as distributed information retrieval. All in close collaboration with the Intelligent
Interactive Distributed Systems group and the Computer Systems group.

Prof. Dr. Maarten van Steen is professor of computer science at the Vrije Universiteit, Amsterdam. He has
an MS in applied mathematics from Twente University and a Ph.D. in computer science from Leiden
University. Van Steen worked at an industrial research laboratory for several years before returning to
academia. His research interests include operating systems, computer networks, wide-area distributed systems,
and Web-based systems. He is a member of the IEEE and the ACM.

Prof. Dr. Frances Brazier received her M.Sc. degree in Mathematics and her Ph.D. in Psychology, has
worked as an associate professor in Artificial Intelligence, and currently heads the Intelligent Interactive
Distributed Systems group at the Vrije Universiteit, Amsterdam. She also is research director of the NLnet
foundation, that played a major role in raising European wide network infrastructure. Her current research
focuses on support for the development of large-scale intelligent, interactive, distributed systems. This in-
cludes middleware, services (an agent factory, management services, and directory services), applications
(distributed information retrieval and distributed design) but also consideration of legal implications
(ALIAS). All in close collaboration with the IIDS group and others. She is a member of the IEEE and the
USENIX.

N.J.E. Wijngaards et al. / Data & Knowledge Engineering 41 (2002) 229–245 245


