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Abstract
Thispaperdescribesa novelpeer-to-peer(P2P)environ-

ment for running distributed Java applicationson the In-
ternet. Thepossibleapplicationareasincludesimpleload
balancing, parallel evolutionarycomputation,agent-based
simulationand artificial life. Our environmentis basedon
cutting-edge P2P technology. We introduce and analyze
theconceptof long termmemorywhich providesprotection
againstpartitioning of thenetwork.We demonstratethepo-
tentials of our approach by analyzinga simpledistributed
application. We presenttheoretical and empirical evidence
thatour approach is scalable, effectiveandrobust.

1. Introduction

This paperdescribesa novel framework for running dis-
tributedexperimentsontheInternet.It is beingdevelopedas
partof the DREAM project[9]. In a nutshell,theaim of the
DREAM projectis to developacompleteenvironmentfor de-
velopingandrunningdistributedevolutionarycomputation
experimentson the Internet in a robust and scalablefash-
ion. The presentwork focuseson the network engine,i.e.
the overlaynetwork on which theseexperimentswill even-
tually berun.

Although our project focuseson evolutionary computa-
tion theenvironmentsupportsany applicationthat
� is massively parallelizable

� usesasynchronouscommunication

� haslittle communicationbetweenits subprocesses

� haslargeresourcerequirements�
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� and is robust (the successof the applicationdoesnot
dependon thesuccessof any givensubprocess).

This list might seemquite restrictive but in fact it includes
many interestingfields.Goodexamplesarerunningindepen-
denttaskswith loadbalancing,islandmodelsin evolutionary
computation(EC), heuristicoptimization,modelingswarm
intelligenceandothersystemswith emergentbehaviour, etc.

In essencewe relax strict requirementsconcerningreli-
ability of computationsandsynchronizationandcontrol of
subprocesses.This allows usto applyscalableP2Ptechnol-
ogy basedon epidemicprotocolsthatcanbeusedon unreli-
ableWANs. This approachhastheadvantageof beingable
to accessapotentiallyhugeamountof idle resources.

To our knowledge,usingaP2Pnetwork thatdeploysepi-
demic protocols for distributing computationaltasks in a
fully decentralizedmanneris new. ExistingP2Psystemsare
mainly usedfor data-orientedapplicationsmanagementlike
maintainingdiscussiongroupsor to distribute information
(e.g.[4, 6, 1]). CurrentsystemsthatuseWANs for solving
computationalproblemsgenerallydeploy a server/worker
paradigmthat requirescentralcomponents,which maylead
to scalabilityor availability problems.(e.g.[3, 10, 11]). The
Java platform offers a natural way to distribute computa-
tional tasksby allowing runtimelinking of executablecode
to anapplication.It providesrich securityfeaturesandatlast
but not leastcompleteplatform independence. This made
Javaanobviouschoicefor us.

To summarize: our environment can be thought of as
a virtual machineor distributed resource machine (DRM)
madeup of computersanywhereon theInternet.Theactual
setof machinescan(andgenerallywill) constantlychange
andcan grow immenselywithout any specialintervention.
Apart from securityconsiderations,anyone having access
to the Internetcanconnectto the DRM andcaneither run
his/herown experimentsor simplydonatethesparecapacity
of hisor hermachine.

Theoutlineof thepaperis asfollows: Section2.discusses



name this is theuniquekey
address theIP addressandportof thenode
date timestampof theentry
agents[] namesof agentsliving at thenode
map optionalinformationin ahashmap

Table 1. Structure of an entry in the database
of a node.

theDRM from analgorithmicandtheoreticalpoint of view.
Wewill illustratethescalabilityandrobustnessof theunder-
lying epidemicprotocol.

Section3. givessimulationresultsfor largenetworks.We
show a shortcomingof the algorithm suggestedin [5] and
suggestandanalyzea solution.

Section4. describesanapplicationdevelopedfor our en-
vironment. This applicationperformsexecutesa setof in-
dependenttaskswith load balancingover the nodesof the
network. While this is only a simpleapplicationanddoes
not at all make useof all the possibilities,it is suitablefor
illustratingthefeaturesof theDRM. Section5. describesthe
resultsof ourexperimentsonarealDRM underdifferentcir-
cumstances.Section6. concludesthepaper.

2. The distributed resource machine

TheDRM is a P2Poverlaynetwork on theInternetforming
anautonomousagentenvironment. Computationsareimple-
mentedasmulti-agentapplications. The exact way an ap-
plicationis implementedin themulti-agentframework is not
a priory restricted,althoughwe intendto suggesttemplates
andexamplesin thefuture(oneof whichis discussedin Sec-
tion 4.) to facilitatedevelopment.

2.1. Self-organizing structure

The DRM is a network of DRM nodes.In the DRM every
nodeis completelyequivalent.Thereareno nodesthatpos-
sessspecialinformation or have specialfunctions. Nodes
mustbeableto know enoughabouttherestof thenetwork in
orderto beableto remainconnectedto it andto provide in-
formationaboutit to theagents.Spreadinginformationover
andaboutthenetwork is basedonepidemicprotocols[2].

Every nodemaintainsan incompletedatabaseaboutthe
restof thenetwork. This databasecontainsentrieson some
othernodes(seeTable1). We call thesenodesthe neigh-
bours of the node. The databaseis refreshedusinga push-
pull anti-entropy algorithm. Every node � choosesa living
addressfrom its databaseregularly oncewithin a time in-
terval. An addressis living if thereis a working node � � at
that addressThenany differencesbetween� and � � arere-
solved so that after the communication� and � � will both
have the union of the two original databases(choosingthe
fresheritem if bothcontainitemswith a givenkey). Besides
this, � will receive a freshitem on � � (with a new timestamp
of course)and � � will alsoreceiveanitemon � with theactual

timestamp.As mentionedbefore,thesizeof thedatabaseis
limited. This limitation is implementedby keepingonly the
freshestitemsthat fit in (accordingto the timestampin the
entries).Note thatwe assumeherethat the local time at the
differentnodesdoesnot differ significantly.

Fortunately, thetheoreticalandpracticalresultsdiscussed
below show that limiting the sizeof the databasedoesnot
affect the power of the epidemicalgorithm. Essentiallythe
sameapproachwasadoptedby [5].

To connecta new nodeto the DRM oneneedsonly one
living address.The databaseof the new nodeis initialized
with theentrycontainingtheliving addressonly, andtherest
is takencareof by theepidemicalgorithmdescribedabove.
Removal of a nodedoesnot needany administrationat all.
Notethatanodemightevenchangeits IP addressand/orport
while running,socomputerswith dynamicIP addressesare
alsoautomaticallysupportedwithout any specialmodifica-
tion of thealgorithm.

2.2. Theoretical properties

The theory of epidemicalgorithmsis well known [2]. To
applyit to our limited-sizedatabaseswehaveto assumethat
agivennodehasanequalprobabilityof beingin thedatabase
of any othernode. In Section3. we will examinea special
casewhenthis assumptiondoesnot hold.

Let � bethenumberof nodesin thenetwork,
�

thesizeof
thedatabasein eachnodeandlet a nodeinitiate exactly one
informationexchangesessionin every � seconds.

We know that informationspreadsvery fastover thenet-
work if thenetwork is connected.But whatis theprobability
thatthenetwork is connected?

Let �
	��� ��� denotearandomdirectedgraphof � nodesin
which the outdegreeof eachnodeis exactly

�
andthese

�
arcsgo to randomnodes.Let ��	 � ��� � denotetheprobability
that thereis a directedpathfrom a givennodeto any other
nodein ��	��� ��� . Thefollowing theoremholds[7]:

Theorem 1 Consider the sequenceof random graphs��	��� ����� with
����������� � �"!#�%$&	(' � , where ! is a constant.

We have �*)�+��,.- ��	 ��� ��� ���0/�13254�6

It is notablethat '879��	 � � ��� �.: '<; 1>=@? if ��ACB�D . The
theoremtells usthat for a largenetwork of size � if thesize
of thedatabaseis

�E�0����� �F�G! wheree.g. !8AHB�D wehavea
connectednetwork with anextremelylargeprobability. For
examplefor

�I� 'J;�; we can have �LKM'J;�N5N . Empirical
analysisshows that the constantspredictedby the theorem
providetheexpectedperformance[7, 5].

3. Recovery after partitioning

In Section2.2.it wasassumedthatagivennodehasanequal
probability of being in the databaseof any othernode. In
practicethis assumptionis often unrealistic. For instance
if for somereasona subsetof the nodesin the DRM (e.g.
the oneswithin a university intranet)is separatedfrom the



restof theDRM dueto thefailureof theunderlyingInternet
connection,then this equaldistribution assumptioncannot
be expectedto hold. We show that the DRM (andthusthe
architecturein [5, 7]) is very sensitive to this problemand
wewill suggesta cheapandsimplesolutionin theform of a
stochasticlong termmemory.

3.1. The partitioning problem

We illustrate the problemthrougha simpleexamplewhich
we will uselaterfor thesimulationexperimentsaswell. Let� be the numberof nodesin a DRM. Let us assumethat
initially the equaldistribution assumptionis true. At some
point a clusterof �POQB nodeslosesphysicalconnectionwith
theotherclusterof �POQB nodeswhile connectionis preserved
within theclusters.Let usdenotetheseclusterswith R = andR
S respectively. This resultsin a situationwhennodesex-
changeinformationonly with nodesfrom their own cluster.

Dueto lack of spacewe do not detail this partof our ex-
perimentsbut simulationsof up to � � '<;�;�;�; anddatabase
size100show thatwithin a coupleof time stepstheconnec-
tivity of thenetwork is lost,i.e.theclusterscompletelyforget
eachother. This alsomeansthatafterrestoringthephysical
connectionbetweenthe clustersthe DRM is not ableto re-
cover its integrity; we endup with two independentDRMs.
In realnetworks this would happenwithin at mosta couple
of minutes.

Note that entriesare never removed from the databases
explicitly basedon e.g. availability tests. Items “die out”
only whentheir timestampsaretoo old to be includedinto
thelimited-sizeddatabases.This is a negative sideeffect of
thequick adaptivity of thenetwork which is in facta major
advantagein othersituations.

3.2. Stochastic long term memory

Oursolutionto thepartitioningproblemis thestochasticlong
term memory. We addan additionalsetof addresses(long
termmemory)to every nodebesidethedatabase.Whenthe
nodecommunicateswith a peer(accordingto the epidemic
algorithm)theaddressof thepeeris storedin this setwith a
givenprobability TVUXW�Y . If thesizeof thesetexceedsa fixed
limit, a randomelementis removed.

Theepidemicalgorithmpicksarandomelementfrom the
long term memory insteadof the databasewith the same
probability T UZW�Y . Theideais that this way old addressesare
tried time to time which helpsto make the connectivity of
theDRM robustto physicalconnectionfailures.Notethat—
unlikeapproachesbasedon theunderlyingphysicalnetwork
topologylike [8]—this approchis topologyindependent.

Let usgivesometheoretialpropertiesof thissolution.Let
out	[R = � be the numberof long term memoryentriesin the
whole R = clusterthatpoint to nodesfrom cluster R�S . Let !
be the sizeof the long term memory. Let out	[R = �\�^] at
time 0. Let us further assumethat the physicalconnection
betweenR = and R S is lost at time 0 aswell. Thenafter the� -th cycle of the epidemicalgorithmout	[R = � follows a bi-
nomialdistribution with parameters_`	(	Ja 13=a

� W�b<c d*e � ]f� . For

examplefor T UZW�Y � ;hg*' , ]i� 'J;�; , ! � '<;�; and � � '<;�;�;
theexpectedvalueis still D�jhg j .

Another interestingquestionis how much time elapses
until theexpectedvalueof out	[R = � becomes1. After some
elementarytransformationswe getthefollowing equation:

�kT UXW�Y �
�*��� =Y����� a 1>=a

Kl! ������]

This tells us that the sizeof the memoryis muchmoreim-
portantfor preservinginformationthantheoriginal amount
of information.We will seelaterthatevenif out	mR = � is only
one,i.e. if only oneof thenodeshasonly oneaddressin its
long termmemoryfrom cluster R S this is oftensufficient to
restorefull connectivity.

Notethatthesizeof memorycanbemuchlargerthanthe
sizeof thedatabasebecausethememoryis neverexchanged
betweennodes(it never travels throughthe network) andit
containsonly addresses,no additional information (unlike
thedatabase).

We can thuscalculatethe amountof available informa-
tion asa functionof time during the time interval whenthe
physicalconnectionis missing.But whathappenswhenthe
physicalconnectionis restoredbetweenR = and R�S ? Ta-
bles2 and3 givesimulationresultsthatanswerthisquestion
for network sizes1000and10000respectively. The tables
show statisticsfrom 10 runsfor eachparametersettingwithThUXW�Y � ;�g�' . T a@n

�
is the probability of restoringthe con-

nectivity betweenthetwo clusters,and � is theaveragetime
necessaryfor this.

Themostinterestingphenomenonthatwe canobserve is
that a very small amountof information is sufficient to re-
cover thenetwork. As little as1 item is sufficient in almost
half of theoccasions.Notethat for a network sizeof 10000
and ! � '<; thelong termmemoriesof thenodesin R = hold
50000itemsaltogether. Whenonly 3 of thesepointsto the
otherclusterweexperiencedsuccessfulrecoveryin 10outof
the10 cases.

3.3. A last note

The conceptof long term memorycan easily be extended
by applyingmoresophisticateddatastructuresandmachine
learningalgorithms.Nodescanbuild a representationof the
DRM while communicatingwith the many differentnodes
which canincreasethechancesof thesurvival of theDRM,
evenundervery poor conditionsof the underlyingphysical
network.

4. The test application

Theapplicationitself hastwo layers. The lower layer is an
abstractloadbalancingframework on top of theDRM. The
higherlayer is theapplicationconsistingof a setof tasksto
beexecuted.Theonly interestingfeatureof the tasksetwe
usedfor testingin the presentexperimentis thatevery task
needsexactly thesameamountof resources(CPUtime and
memory)if run on a singlefixed machinebut the tasksare
sensitive to theresourcesactuallybeingavailable.



]
= 1 2 3 4 5 6 9 15 27! = 10 T a@n

�
40% 60% 80% 90% 100% 100% 100% 100% 100%� 70.25 89.17 27.88 30.89 13.90 27.60 15.30 7.70 5.00

! = 20 T a@n
�

40% 60% 100% 90% 90% 100% 100% 100% 100%� 106.75 119.67 108.50 51.67 57.78 40.00 20.20 20.10 12.10
! = 50 T a@n

�
20% 90% 100% 100% 100% 100% 100% 100% 100%� 188.50 200.56 277.60 165.50 88.80 153.20 60.70 73.40 21.80! = 90 T a@n

�
50% 70% 90% 80% 100% 100% 90% 100% 100%� 229.40 410.14 209.89 269.38 254.10 186.80 95.22 40.40 39.80

Table 2. Results for a network size of 1000.
]

= 1 2 3 4 5 6 9 15 27
! = 10 T a@n

�
50% 90% 100% 80% 100% 100% 100% 100% 100%� 60.20 65.89 29.40 64.50 43.90 24.70 12.40 7.00 5.80! = 20 T a@n

�
70% 70% 90% 70% 90% 100% 100% 100% 100%� 119.43 34.29 65.78 93.14 33.56 60.70 62.80 10.70 12.10

! = 50 T a@n
�

50% 80% 80% 80% 90% 100% 100% 100% 100%� 126.40 197.13 211.38 69.50 119.89 88.70 68.20 59.80 17.50

Table 3. Results for a network size of 10000.

4.1. The load balancing algorithm

In this paperwe choseto considerthesimplestpossibleap-
plication on the DRM, a load balancingframework. This
framework doesnot make useof the messagingfeaturesof
theDRM (at leastnot on theapplicationlevel) i.e. thetasks
do not communicatewith eachother. This applicationsuf-
ficesfor illustratingthereliability, scalabilityandrobustness
of ourDRM system.

We assumethat our applicationis composedof o tasks
that have to be run independentlyof eachother as fast as
possible.Thetaskshaveto bedistributedefficiently overthe
available resourcesin a way that toleratesthe unreliability
andhigh communicationcostsof WANs, andthe dynamic
natureof theDRM, in thesensethatmachinescancomeand
goat any time.

Loadbalancingis basedon epidemicalgorithmsjust like
theDRM itself. Theapplicationstartsby initiating an island
which is implementedanautonomousagent.This islandcan
be startedon any nodewithin the DRM. The goal of this
islandis to completeo tasks.The islandachievesthis goal
by startingto work onataskandatthesametimelisteningto
thecommunicationsof its hostnode.Whenthenodewhere
theislandcanbefoundexchangesinformationwith another
node(accordingto the epidemicprotocolof the DRM) the
islandchecksif the peernodealreadyhasan island(recall
thatthedatabaseentryof a nodecontainsinformationabout
theagentsrunningthere).If not it sendshalf of its remaining
tasksto thepeernodein theform of anew islandwhich then
runs the samedistribution mechanismon the peernodein
orderto completeits tasks.In thisway thetasks“infect” the
network. Note that it meansthat thereis at mostoneisland
oneverynode.

Whenan islandarrivesat its hostnodeit sendsa confir-

mationmessageback. This is the only communicationthat
is taking place. It ensuresthat the processingof the setof
taskssentto anothernodewasat leaststarted.Confirmation
of finishing tasksdoesnot make sensesincethe senderis-
landmight not exist anymoreat that time. This might result
in loosingtasksbut this is not a seriousdisadvantageunder
ourassumptionsdescribedin Section1..

The performanceof the nodesdoesnot have to be taken
into accountwhensendingout taskssinceif themachineis
too slow, it will sendmost of its taskson nodesthat fin-
ish earlier. Also, no mechanismis neededto indicatethat
nodeshave becomeavailablebecausethey will be infected
very quickly anyway by simply communicatingwith peers.
Thesevaluablepropertiesresultform the natureof our epi-
demicprotocolunderlyingtheDRM discussedearlier.

4.2. Some theoretical properties

We do not needto develop a separatetheoryto explain the
behaviour of the architecturebecauseresultsdescribingthe
epidemicalgorithmsapply. In thefollowing webriefly sum-
marizetheseanalogies.

Let o bethenumberof tasksand � thenumberof nodes.
We have to differentiatebetweenthreecases.If o0pq� then
taskspreadingfollows thebehaviour of thestartingphaseof
informationspreadingin an epidemicnetwork. If osrt�
then the behaviour of the end-phaseof the pull versionof
anti-entropy is relevant. In this casetheexpectednumberof
tasksan islandhasis muchmorethanone. Whenin sucha
network anemptynodeconnectsto a randompeer(accord-
ing to theepidemicalgorithm)it is very likely that this peer
will have sometasksto send. Thus it is very unlikely that
any noderemainsemptyfor a long time.

Finally ouKv� is themostproblematiccase,astherewill



be a momentwhena considerablenumberof islandswork
only ononetask.Theseislandscoveraconsiderablepropor-
tion of theDRM. As a consequence,islandsrunningseveral
taskswill only slowly discover idle nodes.However in the
first phasethespreadingof tasksacrossnodesis fast;it slows
down only in theendphase.But evenin thiscaseif thecom-
pletiontime of anaveragetaskis muchlongerthanthetime
betweentwo informationexchangesbetweenthenodesthen
thisdisadvantagebecomesalmostinvisible.

5. Empirical results

We implementedtwo different scenarioson a cluster of
workstationsto substantiateour claims. For both of them,
afixednumberof tasks(here:1500)wascomputed.

Optimistic scenario: The experiment is running on an
undisturbedcluster, no node is added, deleted or
restarted.

Cluster addition scenario: After the experimenthasbeen
running for a time, an additional cluster of nodesis
addedto anddeletedfrom theDRM severaltimes.The
addednodesarealwaysempty, i.e. they have no tasks,
they do not remembertheir previousstatein theDRM.

We are interestedin the performancebehaviour of the
DRM underthesedifferentconditions,andwould like to see
a speedupfactorthat doesnot vary muchover the two sce-
narios. Note thatwe do not want to show robustnessin the
senseof gettingall of thetasksdone,this is hinderedby the
layoutof theloadbalancingsystemandwould in any casebe
verydifficult to achieveona large-scaledistributedP2Psys-
tem.Fromourexperiments,wecannotconcludemuchabout
scalabilityof theperformancebehaviour becausethenumber
of machinesavailablefor testinghasbeenquitelimited.

It mustbe statedthat even for the optimistic scenarioit
is very difficult, if not impossible,to repeatan experiment
in exactly thesameway. However, we considertheaverage
resultsovermany experimentsrelatively stable.

5.1. Optimistic scenario

In this casenodeswererun on workstationsspreadall over
Europe. We hadmachinesfrom Paris, Edinburgh, Amster-
damandDortmund. The numberof nodesis stablefor this
scenario,theexperimentrunsundisturbedby externalinflu-
ences. This can easily be confirmedvisually from Fig. 1.
It alsoshows that the numberof working nodesvariesbe-
tween9 and11 until mostof the tasksaredone. At around
3500seconds,the taskdistribution seemsto get morediffi-
cult,sothatre-balancingthesystembeginsto takelongerand
morenodesremainwithout work. At this point, 83%of the
tasksaredone.But aslong asthenumberof tasksavailable
exceedsthe numberof nodesby far, the DRM canrecover
from this situation.Neartheend,thenumberof tasksleft to
computeapproachesthe numberof nodesandthe subopti-
mal behaviour describedin Section4.2.( oIKw� ) appearsas
predicted.Theslowestof thenodesthatstill haveonetaskto
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computedeterminestheendof theexperiment.In this case,
all of the1500taskshavebeenexecuted.Notethatthenum-
berof active islandsdiffersslightly from theworkingnodes.
That is becauseislandsperformingtasksetupanddistribu-
tion areconsideredactive, but their nodeis not considered
workingduringthisadministrationtime.

Figure 2 shows a very similar structure. It displaysthe
usedresourcesrelative to the availablecapacityin termsof
tasksperhour. Thesenumbersaredeterminedby usingthe
tasksthemselvesasabenchmarkandcomputingtheapproxi-
matemaximumspeedof a nodevia theaveragetimeneeded
to finish a task. The accumulatedpower usageshown asa
separateline proves that the available total capacityof all
nodesin theexperimentis usedto morethan86%.

5.2. Cluster addition scenario

Here we used the samecluster as in the optimistic sce-
nario. The additionalclusterwas locatedin Dortmunden-
tirely within asingleLAN but it containedworkstationswith
highly diverseperformances.
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It can be visually perceived from Figure 3 that 9 addi-
tional nodeshave beenaddedto theDRM afteraround300
seconds.They arequickly found andexploited by placing
new islandson them. After 750 secondshave elapsed,the
nodesare removed again. This is repeatedwith 10 nodes
later on, this time removing them stepby stepand not at
once. Despitethe expectationthat this scenariodepictsa
veryextremecourse,theDRM copesquitewell with thesit-
uation.Availableresourcesareutilized rapidly andeventhe
deletionof half of thenodesdoesnot hindertheexperiment
from continuing.

For this experiment,thedifferencebetweenthetwo types
of charts(Figures3 and4) is clearer. Thereasonis that the
capacityof theaddednodesis lower thanthecapacityof the
startingnodes.This is indicatedby thesmallerstepsvisible
in Fig. 4. Bothchartssuggesthoweverthatmostof theavail-
ableresourcesareused.At theend,theaccumulatedpower
usageis 80%. It is however importantto note that not all
tasksareactuallycompletedin this scenario.As the islands
own their tasksafter confirmation(they arenot memorized
anywhereelsein theDRM), thetasksof a prematurelyshut
down islandarelost. Thus,the numberof taskscompleted
in this experimentis only 1104of the1500.

6. Conclusions

In thispaperwediscussedadistributedP2Penvironmentfor
running specialdistributed applicationsfrom domainslike
evolutionary computation,social modeling, artificial life,
etc.

Theconceptof long termmemorywasintroduced.Simu-
lationresultsonlargenetworkswerepresentedtogetherwith
theoreticalconsiderationswhich show us that the proposed
architectureis stableevenif theunderlyingnetwork is parti-
tionedfor a long time.

Empirical resultson a real network werealsopresented.
Probablythesimplestpossibleapplication(loadbalancingof
agivennumberof independenttasks)waschosento illustrate
thepotentialsof thesystem.Theapplicationreactedrapidly
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to changesin the systemresultingin good load balancing.
High utilization of availableresourceswasalsoobserved.
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den,2001.

[6] Gnutella.http://gnutella.wego.com/.
[7] A.-M. Kermarrec, L. Massoulíe, and A. J. Ganesh.
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