
Maarten van Steen, Vrije Universiteit

Franz J. Hauck, University of Erlangen-Nurnberg

Philip Homburg and Andrew S. Tanenbaum, Vrije Universiteit

Locating mobi le objects in a wor ldwide system requires a scal-
able locat ion service. An object can be a te lephone or a note-

b o o k c o m p u t e r , b u t a lso a s o f t w a r e or da ta ob jec t , such a s a f i l e or an e lec t ron ic
document. Our service strictly separates an object’s name f rom the addresses where i t can
be contac ted . This i s done by i n t r o d u c i n g a l oca t i on - independen t ob jec t handle. An
object’s name i s b o u n d t o i ts un ique object handle, which, in tu rn , is mapped t o t h e
addresses where the object can be contacted. To locate an object, w e need only its object
handle. We present a scalable locat ion service based on a wor ldw ide distr ibuted search
tree t h a t adapts dynamical ly t o an object’s migra t ion pa t te rn t o opt imize lookups and
updates

n the near future we can expect hundreds of mil-
lions of users to have access to a global Informa-

tion Superhighway. A large part of that information network
will be mobile: telephones, faxes, notebook computers, per-
sonal assistants, and so on. We can also expect software and
data to be mobile. For example, a Web page may move as its
owner changes computers; likewise, a shared electronic docu-
ment may travel between its users. Another example is a
mobile agent that moves through the network in search of
specific resources for its owner. Components in a network
capable of changing locations, and which may be implemented
in software, hardware, or a combination thereof, are collec-
tively referred to as mobile objects.

Supporting mobile objects means that a client should be
able to contact an object even if he does not know its current
location. Moreover, locating the object should be completely
hidden from the client. For example, in personal communica-
tions systems (PCS), a user should only have to dial a tele-
phone number to contact the callee. It should not be necessary
to know the callee’s present location or how the callee is
tracked. However, mobile objects also need to contact other
(possibly nonmobile) objects. When a mobile object moves to
a new location, the object will have to find out which facilities
it can use there. For example, a mobile computer may need to
use the local printer; likewise, it may want to contact the local
Web server instead of having to use the server at its home
location.

Being able to contact objects, mobile or not, is traditionally
supported by a naming service which maintains a binding
between an object’s name and one or more addresses where
the object can be contacted. As an analogy, a naming service
is like a telephone book: a binding corresponds to one of its
entries. With mobile objects, names should always be resolved
to a current address. To illustrate, a name such as pcs://dept.
univ.edu/Mary may be dynamically bound to the network
address of Mary’s mobile computer. No matter where in the
world that name is used, it should always be resolved to her
computer’s current address, which changes as she moves. In
addition, applications on her mobile computer may use the
name local://usr/addr/lpr for the local printer. In this case, as
Mary travels around the world, the printer’s name on her
computer needs to be dynamically rebound to the address of
the nearest printer server. Thus, unlike the world of cellular
telephony with its fixed bindings of device to telephone num-
ber, in the computer world the addresses used to reach

objects change as they move, and the
mapping of names to addresses must
also change.

Changing the address of an object
affects the name-to-address bindine. If ”

such changes hardly ever occur, constructing a worldwide scal-
able naming service is feasible, as demonstrated by the Inter-
net’s Domain Name System [8] and the X.500 Directory
Service [lo]. However, if bindings change frequently, as in the
case of mobile objects, we have a much more difficult prob-
lem.

In this article, we focus on a wide-area naming service that
provides flexible and easily adaptable name-to-address bind-
ings. The service is currently being developed as part of
Globe, an object-based worldwide distributed system aimed at
supporting a billion users, each having thousands of objects
[3] . The article is organized as follows. In the second section
we explain and motivate the basic architecture of the Globe
naming service. The main goal of this article is to explain how
objects are located, which is described in the third section.
Related work is discussed in the fourth section. We give our
conclusions in the fifth section.

INDING ES TO RESSES
To discuss name-to-address binding in wide-area systems, we
assume that all (hardware and software) objects have symbolic
ASCII names, such as pcs://dept.univ.edu/Mary. Also, each
object is assumed to have one or more addresses where a
client can contact it. By way of analogy, an owner of a cellular
telephone is also assumed to have a name which can be regis-
tered in a telephone directory. The owner’s telephone number
corresponds to the address where he can be reached. Unlike
cellular telephones, computer objects often have two or more
addresses. For example, a replicated file will be known to its
users under one name, which is mapped to several addresses,
one for each copy. A user asking for the file generally does
not care which copy is selected.

To make name resolution efficient for wide-area systems,
names often contain location information. For example, the
uniform resource locator (URL) ftp://ds.internic.net/nic/rfc/
rfc1737.txt is the name of a Web page containing the text of
RFC 1737. The name reflects where the page is stored (dsinter-
nicnet), allowing part of the name resolution process to take
place at that location. Similarly, telephone numbers also con-
tain location information: a worldwide number like +31-20-
444-7784 gives the country (31 is the Netherlands), the city (20
is Amsterdam), and a specific telephone exchange (the 444
exchange of Vrije Universiteit in Amsterdam-Buitenveldert).

However, using location information in names can make it

104 0163-6804/98/$10.00 0 1998 IEEE IEEE Communications Magazine January 1998

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

ftp://ds.internic.net/nic/rfc

difficult to handle migration. If an object moves we may
have to change its name or otherwise make that name
become a forwarding reference. In wide-area systems, the
latter can lead to long chains of references, which are
inefficient and susceptible to network failures. What is
needed is a naming facility that hides all aspects of an
object’s location. Users should not be concerned where
an object is located or whether it can move.

These requirements can be met by introducing a two-

level naming hierarchy as shown in Fig. 1. The first level
deals with hierarchically organized, user-defined name
spaces. These name spaces are handled by what we call a
distributed object naming service. A name is bound to an
object haizdle, which is a globally unique and location-indepen-
dent object identifier.

The second level deals with mapping each object handle to
a set of contact addresses, and is handled by a distributed
object location service. In contrast to traditional naming ser-
vices, a location service is designed to support frequent
updates and lookups of contact addresses such as needed for
mobile objects. It is not concerned with naming.

As an illustration, consider an officeless company whose
employees are located across the country, normally working at
home or visiting customers. Using our approach, we assign a
lifetime location-independent telephone number to the com-
pany. This number corresponds to an object handle. A naming
or directory service would maintain a mapping between the
company’s name and its lifetime telephone number. The tele-
phone number is used by a location service to redirect incom-
ing calls to, for example, the nearest employee currently
working. An employee’s own telephone number is registered
at the location service when he or she starts work, and is
unregistered again when he or she finishes. An employee’s
telephone number corresponds to a contact address. Note that
how the company is named, and in which directories its name
is registered, is no longer important. Naming has been fully
separated from how and where we contact the company.

In distributed systems, this way of locating a service is also
known as anycasting: a client requires a particular service, but
is really not interested in which server will handle the request.
Using our approach, the service is assigned a unique object
handle, and each server registers its network address under
that object handle. A client has the service’s name resolved to
the object handle, which is then subsequently resolved to the
address of any server that can handle the request.

An object handle is designed specifically for the location
service. It contains a globally unique service-independent object
identifier which is very similar to a UUID in DCE [ll]. Addi-
tionally, an object handle may contain information that can be
used to assist in locating the object. For example, it may be
known that an object will move only within a certain region.
Instead of conducting a global search for such an object, it is
more efficient to start the search process in that specific
region. Therefore, it makes sense to encode this information
into the object handle.

REQUIREMENTS FOR A LOCATION SERVICE
Clearly, our two-level approach makes sense only if we can
indeed provide a scalable and efficient naming and location
service. The feasibility of developing scalable naming services
has been demonstrated by systems such as DNS. This is not
yet the case for location services, for which the following
requirements will have to be met.

Scalability - The service should allow clients and objects to
be located anywhere in the world, and be able to support a
huge number of objects. We anticipate that eventually, one

Figure 1. A two-level naming hierarchy that allows an object’s name
and contact addresses to be independently changed.

billion users with 1000 objects each will be registered with the
location service, adding up to lOI2 objects.

Locality - Assuming that the cost for looking up an address
generally increases with the length of the route to that
address, we require the location service to exploit locality.
This means, for example, that if an object has an address near
the client, finding the object should be fairly cheap.

Stability - Objects may differ with respect to their migration
patterns. For example, a Web page may move through the
entire network in a seemingly random way, whereas a mobile
computer may move only within a city. An object is said to be
stable with respect to a region if its addresses are most often
in that region. If an object is stable with respect to region R, we
require that searching or updating one of its addresses in R is
cheaper than when the object is not stable with respect to R.

Fault Tolerance - The location service should be resilient to
node and link failures, and should continue to operate in the
presence of network partitions. The service should, at the least,
degrade gracefully in terms of performance and functionality.

Location services are not new and have been shown to be
relatively easy to implement in local distributed systems. How-
ever, they become much more complicated when scalability is
taken into account, as we discuss next.

TRACKING DISTRIBUTED O B J E C T S IN GLOBE
In this section we discuss the architecture of Globe’s scalable
location service. We shall provide only an outline of the archi-
tecture; further information can be found in [13].

BASIC OPERATIONS
In our model for tracking objects, we assume hierarchical
decomposition of a (worldwide) network into regions. This
decomposition is relevant only to the location service. With
each region we associate a directory node capable of storing
addresses that lie within that region. This leads to a logical
tree-based organization, as shown in Fig. 2. Addresses are
assumed to be location-dependent: the region in which an
address lies is encoded in the address itself.

The location service normally stores new addresses at the
leaf node representing the region in which the address lies.
For each new object, it constructs a path of forwarding point-
ers from the root to each leaf node where an address is
stored. Addresses and forwarding pointers are stored in con-
tact records. An implication of this design is that in the worst
case it is always possible to locate every object by following
the chain of pointers from the root node. In practice, we can
do much better than this, as described later.

In principle, a request for insertion of a previously unregis-
tered object begins at a leaf node and is propagated up the
tree to the root. Then a path of forwarding pointers is estab-

IEEE Communications Magazine * January 1998 105

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

re 2. The logical organization of the location service as a virtual search tree.

although no ordering is guaranteed
when requests are issued at different
nodes. In particular, we have the fol-
lowing consistency rule:

~ e ~ ~ e s t C o ~ s j s ~ ~ ~ ~ ~ - Update
requests issued at the same leaf node
are completed in the order in which
they were issued. Update operations
issued at different leaf nodes a re
completed in an arbitrary order.

The location service has full control

lished from the root to the leaf node where the insertion takes
place. A contact record containing a forwarding pointer is cre-
ated at each intermediate node. The address itself is finally
stored only in the leaf node. When a part of the path already
exists, for example, when inserting a second address in a dif-
ferent region, only the missing pointers are established. This is
shown in Fig. 3. In the case that there is already a contact
record for the object at the leaf node, the new address is sim-
ply added to that record.

Deleting a contact address is straightforward and is done
as follows. First, the address is found through a search path
up the tree, starting at the leaf node representing the region
in which the address lies (note that this information is encod-
ed in the address). Once the contact record in which the
address is stored has been found, it is removed from that
record. If a contact record no ionger contains contact address-
es or forwarding pointers, it is deleted. The parent directory
node is informed that it should delete its forwarding pointer
to that record, possibly leading to the (recursive) deletion of
the object’s contact record at the parent node.

Looking up a contact address is done as follows. A client
process passes an object handle to the leaf node of the region
where that process resides. (We require that there be exactly
one such leaf node.) As shown in Fig. 4, a search path is
established starting at the client’s leaf node and going upward
to the first directory node where the object is already known.
In the worst case, this means propagating the request up to
the root. The path then continues downward to a leaf node,
whose addresses are then returned to the requester.

Concurrent update and lookup operations are allowed,

over the placement of addresses in
contact records. Consequently, if we

can place addresses in stable locations, we can make effective
use of pointer caches during lookup operations. By default, an
object’s address is stored in its contact record at the leaf node
where it was initially inserted. Now, consider some region R as
shown in Fig. 5 , and assume that an object 0 is changing its
addresses regularly between subregions SI, Sz, and S3. For
simplicity, assume that there is always at least one address
somewhere in R, so there will always be a nonempty contact
record for 0 at directory node dir(R).

Each time the object moves to a new subregion Sk , the
location service creates a path of forwarding pointers from
dir(R) to a leaf node in Sk. Likewise, when moving out of Sk
the path has to be deleted. If migration occurs regularly, it
makes sense to store the address in the object’s contact record
at dir(R). This not only saves the cost of path maintenance,
but more important is that addresses from any of the subre-
gions are now stored at a stable place, namely at the directory
node dir(R).

By storing addresses in stable contact records, our model
leads to the construction of a search tree per object, in which
contact records tend to remain in place, even for mobile
objects. This permits us to effectively shorten search paths by
caching pointers to contact records, since they are stable, even
if the corresponding objects are not. Specifically, a pointer to
the directory node with a contact record containing addresses
is cached at each node of the search path when returning the
answer to the leaf node where a lookup request originated.

The combined effect of pointer caches and stable contact
records should not be underestimated. An object that moves
primarily within region R can be tracked by just two succes-

106 IEEE Communications Magazine e January 1998

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

sive lookup operations: the first at the leaf node ser-
vicing the requesting process, and the second at the
directory node for region R. Moreover, our solution
forwards a request in the direction of an address.
This is a considerable improvement over existing
approaches.

Of course, the migration behavior of an object
may change. For example, assume the contact record
at dir(R) has contained an address for subregion S k
for quite some time. In that case, the address will be
propagated to a directory node in s k , because appar-
ently stability occurs in a smaller region than R. Sta-
bility is measured by timestamping addresses and
forwarding pointers, as well as recording how long an
object has not been in a specific region. In all cases,
history is taken into account by weighted accumula-
tion of old and new timing information.

FAULT TOLERANCE
Any service available in a wide-area distributed system should
mask failures of the underlying network to its clients. This is
not always possible, because, for example, network partitions
may last for hours. Fault-tolerant behavior for our location
service can be partly expressed in terms of the following infor-
mal progress rules.

Global Progress - The effect of an update operation initi-
ated at an arbitrary leaf node is eventually visible to a lookup
operation initiated at any of the leaf nodes of the search tree.

Local Progress - The effect of an update operation at a
directory node D should immediately be visible at each direc-
tory node in the (connected) subtree rooted at D.

The second rule states that an update operation should
come into effect at a particular directory node as soon as it is
issued at that node, and perhaps before the operation com-
pletes. The completion of an operation may depend on the
response of the parent node, which may temporarily be
unreachable. In other words, update operations are to be han-
dled in an asynchronous fashion. Satisfying the progress rules

effectively means that our service is resilient to nodes being
unreachable, either caused by network partitioning or because
a node has crashed.

To handle operations asynchronously while satisfying the
rule for request consistency, incoming requests are first
appended to a queue and subsequently forwarded to the par-
ent node. Queued operations at a particular node are evaluat-
ed in the order in which they have been appended, and yield a
tentative result. As soon as ihe parent agrees with the update,
the operation is completed by removing it from the queue and
making its result authoritative. If the parent disagrees with the
update, for example, when a new address should be stored at
a higher-level directory node, the operation is only removed
from the queue.

There are several benefits to this approach. First, queuing
operations allows us to maintain a consistent, albeit tentative,
view of the data maintained at a node without having to block
any requests until the associated operation is fully completed.
This makes the location service resilient to network partitions.

Recovering from node crashes is harder, and is subject to fur-
ther research. However, a crashed node can easily reinvoke
incomplete operations by having its children reissue their

Contact addresses are regularly
inserted and deleted !

Figure 5. The situation of an object regularly moving between subreagions. The solu-
tion is to store its changing address in dir(R).

requests, although this is clearly not enough
to restore the node’s original data set.
This approach is very similar to sender-
based message logging, discussed in [4],
or using queued remote procedure calls
(RPCs) as in the Rover toolkit [5] . By
replicating authoritative data among the
directory nodes in each subtree, the loca-
tion service can be made resilient against
a single node failure in each path origi-
nating at the root.

SCALABILITY
Clearly, to construct a worldwide scalable
location service it is necessary to adopt
hierarchical solutions. For example, non-
hierarchical solutions such as the
read/write sets proposed in [9] will not do,
since it is much harder to exploit locality.
However, our search tree described so
far obviously does not yet scale. In particu-
lar, higher-level directory nodes not only
have to handle a relatively large number of
requests, they also have enormous storage
demands. Our solution is to partition a
directory node into one or more directory
subnodes such that each subnode is

IEEE Communications Magazine January 1998 107

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

Figure 6. A search tree and a cowesponding logical tree afterpauti-
tioning the directory nodes into subnodes.

responsible for a subset of the records originally stored at the
directory node.

As an example, we can use the first n bits of an object’s
handle to identify the subnode responsible for that object.
Subnodes of a particular directory node need not communi-
cate with each other since they maintain different subsets of
objects, and all operations are performed on a per-object
basis. Communication between directory nodes in the original
search tree takes place only between their respective sub-
nodes. To illustrate, Fig. 6 shows a search tree in which the
root node has been partitioned into four subnodes based on
the first two bits of the object handle (n = 2), and each of the
leaf nodes into two subnodes (n = 1). (We note that we have
developed more realistic hashing-based methods than
explained here. For example, we also have to take into
account that the total number of links between parent and
children subnodes remains manageable.)

Because communication between directory nodes in the origi-
nal search tree now takes place between their respective sub-
nodes, each subnode should be aware of how the directory node
with which it communicates is actually partitioned. This infor-
mation is contained in a separate tree management service.
This service also maintains the mapping of subnodes to physi-
cal nodes. Partitioning and mapping information is assumed to
be relatively stable so that it can be easily cached by subnodes.
This assumption is necessary to avoid having to query the
management service each time a subnode needs to communi-
cate with its parent or children, which would turn the manage-
ment service into a potential communication bottleneck.

WORK
Location services are becoming increasingly important as
mobile telecommunication and computing facilities become
more widespread. So far, mobility is almost invariably con-
nected to mobile hosts. A characteristic feature of these hosts
is that their mobility is directly coupled to that of their user.
This has two important consequences which do not apply to
our location service. First, the speed of migration is limited to
the maximum speed at which a person can move (typically
1000 kmihr in an airplane), making it possible to adopt a
strategy in which data structures gradually adapt as the object
moves. This has been successfully applied to several models
for location services (e.g., [1, 7]) , but these techniques cannot
be used in our case. Second, a host is always at precisely one
location. There is no notion of multiple addresses per object
as we have introduced in our model. In contrast to current
approaches, we can effectively deal with replication.

The situation becomes entirely different when dealing with
mobile software objects. An important distinction in keeping
track of mobile hosts is that there are many more objects than
hosts, immediately leading to a scalability problem. Also, to
ensure scalability it is necessary to take mobility patterns of an
individual object into account as well. In Emerald [6], mobile

objects are tracked through chains of forwarding point-
ers, combined with techniques for shortening long chains,
and a broadcast facility when all else fails. Such an
approach does not scale to worldwide networks. An alter-
native approach to handle worldwide distributed systems
is the Location Independent Invocation (LII) described
in [2] . However, LII uses a global naming service as a
fallback mechanism, where it assumes that the update-to-
lookup ratio is small. Designing a global location service
not based on such an assumption is an important goal of
our research.

A seemingly promising approach that has been advocat-
ed for large-scale systems are switching service process

(SSP) chains [12]. SSP chains allow object references to be
transparently handed over between processes, at the expense of
gradually constructing a chain of forwarding references to the
object. A serious drawback of this approach is that exploiting
locality is completely neglected. In particular, a home must keep
track of where the object is during its entire lifetime, possibly years
after the object last lived there. Also, it is unclear how fault toler-
ance can be efficiently dealt with. SSP chains therefore do not
seem to scale to worldwide systems.

CONTRIBUTIONS OF OUR APPROACH
One of the main advantages of our approach is that our

location service can handle objects that have several contact
addresses and show arbitrary migration patterns. We do not
adapt update and search strategies to migration patterns, but
adapt the search tree on a per-object basis instead. By register-
ing contact addresses in the smallest region in which (part of)
the object is moving we can make effective use of pointer
caches. The combined effect is an extremely short search
path, in the optimal case of only length two, from a client to
the object. In just two hops it is possible to locate even seem-
ingly randomly migrating objects. This is a considerable
improvement over existing approaches.

The use of pointer caches instead of data caches has also
been proposed for PCS. The main reason to apply caching in
those cases is to avoid excessive network traffic to the home
location of a host, which forms the root of a two-level search
tree such as in GSM. Caching is done at the second level, by
pointing to locations where the host is expected to be found.
Cache consistency is achieved either by invalidation on
demand or through active updates. However, caches in PCS
do not account for update patterns. A distinctive feature of
our approach compared to PCS is that we have several levels,
allowing us to exploit locality more effectively by inspecting
succeeding expanded regions at linearly incrementing costs.
On the other hand, locality is also exploited in location
updates, making our pointer caches highly effective.

ONCL
The Globe location service offers a novel approach to locating
objects in a worldwide context, using location-independent
object identifiers instead of user-defined names. Our approach
allows an object to update its contact addresses independent
of how users have named the object. Locating an object pro-
ceeds through a worldwide search tree which dynamically
adapts itself on a per-object basis. By storing addresses at sta-
ble locations and subsequently caching pointers to those loca-
tions, it is possible to contact an object in just two steps,
irrespective of the object’s migration pattern. An important
distinction from current approaches is that the search path is
directed toward the object’s present location.

Presently, our research is continuing in two directions.
First, we are building a prototype implementation for experi-

108 IEEE Communications Magazine * January 1998

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

mentation and validation of our approach. Second, we are
enhancing the basic algorithms described in this article to
include fault tolerance. Also, algorithms for selecting the most
appropriate nodes for storing an object's contact addresses
need to be further improved.

REFERENCES
[I] B. Awerbuch and D. Peleg, "Online Tracking of Mobile Users,"I. ACM,

vol. 42, no. 5, Sept. 1995, pp. 1021-58.
[21 A. Black and Y. Artsy, "Implementing Location Independent Invocation,"

/€E€ Trans. Par. Dist. Sys., vol. 1, no. 1, Jan. 1990, pp. 107-19.
[31 P. Homburg, M. van Steen, and A. Tanenbaum, "An Architecture for a

Scalable Wide Area Distributed System," Proc. 7th SIGOPS Euro. Wksp.,
Connemara, Ireland, Sept. 1996, ACM, pp. 75-82.

[41 D. Johnson and W. Zwaenepoel, "Sender-Based Message Logging,"
Proc. 17th Annual Int'l. Symp. Fault-To/erant Comp., Pittsburgh, PA,

[5] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek, "Mobile Computing
with the Rover Toolkit," /E€€ Trans. Comp., vol. 46, no. 3, Mar. 1997,
pp. 337-52.

[61 E. Jul et al., "Fine-Grained Mobility in the Emerald System," ACM Trans.
Comp. Sys.. vol. 6, no. 1 , Feb. 1988, pp. 109-33.

171 P. Krishna, N. Vaidya, and D. Pradhan, "Location Management in Distribut-
ed Mobile Environments," Proc. Par. Dist. Info. Sys., 1994, pp. 81-88.

[SI P. Mockapetris, "Domain Names - Concepts and Facilities," RFC 1034,
Nov. 1987.

[91 S . Mullender and P. Vitanyi, "Distributed Match-Making," Algorithmica,
vol. 3, 1988, pp. 367-91.

[I 01 S . Radicati, X.500 Directory Services: Technology and Deployment,
London: international Thomson Computer Press, 1994.

[I l l W. Rosenberry, D. Kenney, and G. Fisher, Understanding DCE,
Sebastopol, CA: O'Reilly & Associates, 1992.

[I21 M. Shapiro, P. Dickman, and D. Plainfosse, "SSP Chains: Robust, Dis-
tributed References Supporting Acyclic Garbage Collection," Tech. rep.
1799, INRIA, Rocquencourt, France, NOV. 1992.

[I31 M. van Steen, F. Hauck, and A. Tanenbaum, "A Model for Worldwide

July 1987, pp. 14-19.

Tracking of Distributed Objects," Proc. TlNA '96, Heidelberg, Germany,
Sept. 1996, pp. 203-12.

B I o G RPAH I E s
MAARTEN VAN STEEN (steen@cs.vu,nl) has been an assistant professor at Vrije
Universiteit in Amsterdam since 1994. He received an M.Sc. in applied
mathematics from Twente University (1983) and a Ph.D. in computer sci-
ence from Leiden University (1988). He has worked at an industrial research
laboratory for several years in the field of parallel programming environ-
ments. His research interests include operating systems, computer net-
works, and distributed systems. He i s a member of the IEEE Computer
Society and the ACM.

FRANZ J. HAUCK graduated in computer science at the University of Erlangen-
Nurnberg, Germany in 1989. After two years of R&D work in industry he
returned to university and attained a Ph.D. in 1994. For a year he was a
postdoctorate fellow at Vrije Universiteit of Amsterdam. He is now an assis-
tant professor at Erlangen University. His research interests include distribut-
ed systems and object-oriented programming. He is a member of the ACM.

PHILIP HOMBURG graduated in 1991 from Vrije Universiteit, Amsterdam.
Before starting his Ph.D. study, he wrote software to transparently connect
multiple Amoeba sites over the Internet as part of the Starfish project. Cur-
rently, he is a Ph.D. student working on the overall design of Globe.

ANDREW S . TANENBAUM [F] has an S.B. from MIT and a Ph.D. from the University
of California at Berkeley. He is currently a professor of computer science at
Vrije Universiteit in Amsterdam and dean of the interuniversity computer sci-
ence graduate school, ASCI. He is the principal designer of three operating
systems: TSS-11. Amoeba, and MINIX. He was also the chief designer of the
Amsterdam Compiler Kit, a system that has been used to produce compilers
for a half-dozen languages on about 10 different machines. In addition,
Tanenbaum is the author of five books and over 80 refereed papers. He has
lectured in a dozen countries on many topics. He is a Fellow of ACM and a
member of the Royal Dutch Academy of Sciences. In 1994 he was the recipi-
ent of the ACM Karl V. Karlstrom Outstanding Educator Award and in 1997
he won the SIGCSE award for contributions to comwter science

Enhance your professional stature by publishing tutorials and surveys
which will be exposed to an unlimited global audience.

IEEE Communications Surveys
Call for Papers

Starting in 1998, the IEEE Communications Society's electronic journal / € E € Communications Surveys wil l provide
researchers and other communications professionals with the ideal venue for publishing online tutorials and surveys.
Each quarter, Surveys will publish online four to seven leading edge tutorials and surveys. These articles will be reviewed
by at least three expert reviewers and evaluated by the editorial board, in order to ensure the highest possible quality.
Roch H. Glitho, the new Editor, and his area editors invite you to submit tutorials and surveys on topics including, but
not limited to:

Network and Service Management Internet Wireless Networks Radio and Satellite Communications
Lightwave Technologies Broadband Networks Data Networks Residential Networks and Services

Traffic Engineering and Management Signalling and Intelligent Networks

Submission instructions
Please submit manuscripts in quadruplicate via mail to the Editor:

Roch H. Glitho
Ericsson Research
8400 Decarie Boulevard
Town of Mount Royal
Quebec H4P 2N2
Canada
Tel: +I-514-345 7900 x2266Fax: +I-514-345 6105
E-mail: roch.glitho@lmc.ericsson.se

An abstract is t o be provided. The maximum paper length is 20 single spaced manuscript pages (excluding figures and
tables).
We are committed to serving the international community of communications researchers and professionals by provid-
ing in our quaterly issues a selection of original, state-of-the art, high quality, peer-reviewed tutorials and surveys. Help
us and enhance your professional stature by contributing high quality articles on current communications topics.

IEEE Communications Magazine January 1998 109

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 17, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

