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Locating mobi le  objects in a wor ldwide system requires a scal- 
able locat ion service. An object can be a te lephone or a note-  

b o o k  c o m p u t e r ,  b u t  a lso a s o f t w a r e  or da ta  ob jec t ,  such a s  a f i l e  or an e lec t ron ic  
document. Our service strictly separates an object’s name f rom the addresses where i t  can 
be contac ted .  This i s  done  by i n t r o d u c i n g  a l oca t i on - independen t  ob jec t  handle.  An 
object’s name i s  b o u n d  t o  i ts un ique  object  handle, which,  in  tu rn ,  is mapped t o  t h e  
addresses where the object can be contacted. To locate an object, w e  need only its object 
handle. We present a scalable locat ion service based on  a wor ldw ide  distr ibuted search 
tree t h a t  adapts dynamical ly t o  an object’s migra t ion  pa t te rn  t o  opt imize lookups and 
updates 

n the near future we can expect hundreds of mil- 
lions of users to have access to a global Informa- 

tion Superhighway. A large part of that information network 
will be mobile: telephones, faxes, notebook computers, per- 
sonal assistants, and so on. We can also expect software and 
data to be mobile. For example, a Web page may move as its 
owner changes computers; likewise, a shared electronic docu- 
ment may travel between its users. Another example is a 
mobile agent that moves through the network in search of 
specific resources for its owner. Components in a network 
capable of changing locations, and which may be implemented 
in software, hardware, or a combination thereof, are collec- 
tively referred to as mobile objects. 

Supporting mobile objects means that a client should be 
able to contact an object even if he does not know its current 
location. Moreover, locating the object should be completely 
hidden from the client. For example, in personal communica- 
tions systems (PCS), a user should only have to dial a tele- 
phone number to contact the callee. It should not be necessary 
to know the callee’s present location or how the callee is 
tracked. However, mobile objects also need to contact other 
(possibly nonmobile) objects. When a mobile object moves to 
a new location, the object will have to find out which facilities 
it can use there. For example, a mobile computer may need to 
use the local printer; likewise, it may want to contact the local 
Web server instead of having to use the server at its home 
location. 

Being able to contact objects, mobile or not, is traditionally 
supported by a naming service which maintains a binding 
between an object’s name and one or more addresses where 
the object can be contacted. As an analogy, a naming service 
is like a telephone book: a binding corresponds to one of its 
entries. With mobile objects, names should always be resolved 
to a current address. To illustrate, a name such as pcs://dept. 
univ.edu/Mary may be dynamically bound to the network 
address of Mary’s mobile computer. No matter where in the 
world that name is used, it should always be resolved to her 
computer’s current address, which changes as she moves. In 
addition, applications on her mobile computer may use the 
name local://usr/addr/lpr for the local printer. In this case, as 
Mary travels around the world, the printer’s name on her 
computer needs to be dynamically rebound to the address of 
the nearest printer server. Thus, unlike the world of cellular 
telephony with its fixed bindings of device to telephone num- 
ber, in the  computer world the addresses used to reach 

objects change as they move, and the 
mapping of names to addresses must 
also change. 

Changing the address of an object 
affects the name-to-address bindine. If ” 

such changes hardly ever occur, constructing a worldwide scal- 
able naming service is feasible, as demonstrated by the Inter- 
net’s Domain Name System [8] and the X.500 Directory 
Service [lo]. However, if bindings change frequently, as in the 
case of mobile objects, we have a much more difficult prob- 
lem. 

In this article, we focus on a wide-area naming service that 
provides flexible and easily adaptable name-to-address bind- 
ings. The service is currently being developed as part of 
Globe, an object-based worldwide distributed system aimed at 
supporting a billion users, each having thousands of objects 
[3] .  The article is organized as follows. In the second section 
we explain and motivate the basic architecture of the Globe 
naming service. The main goal of this article is to explain how 
objects are located, which is described in the third section. 
Related work is discussed in the fourth section. We give our 
conclusions in the fifth section. 

INDING ES TO RESSES 
To discuss name-to-address binding in wide-area systems, we 
assume that all (hardware and software) objects have symbolic 
ASCII names, such as pcs://dept.univ.edu/Mary. Also, each 
object is assumed to have one or more addresses where a 
client can contact it. By way of analogy, an owner of a cellular 
telephone is also assumed to have a name which can be regis- 
tered in a telephone directory. The owner’s telephone number 
corresponds to the address where he can be reached. Unlike 
cellular telephones, computer objects often have two or more 
addresses. For example, a replicated file will be known to its 
users under one name, which is mapped to several addresses, 
one for each copy. A user asking for the file generally does 
not care which copy is selected. 

To make name resolution efficient for wide-area systems, 
names often contain location information. For example, the 
uniform resource locator (URL) ftp://ds.internic.net/nic/rfc/ 
rfc1737.txt is the name of a Web page containing the text of 
RFC 1737. The name reflects where the page is stored (dsinter- 
nicnet), allowing part of the name resolution process to take 
place at that location. Similarly, telephone numbers also con- 
tain location information: a worldwide number like +31-20- 
444-7784 gives the country (31 is the Netherlands), the city (20 
is Amsterdam), and a specific telephone exchange (the 444 
exchange of Vrije Universiteit in Amsterdam-Buitenveldert). 

However, using location information in names can make it 
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difficult to handle migration. If an object moves we may 
have to change its name or otherwise make that name 
become a forwarding reference. In wide-area systems, the 
latter can lead to long chains of references, which are 
inefficient and susceptible to network failures. What is 
needed is a naming facility that hides all aspects of an 
object’s location. Users should not be concerned where 
an object is located or whether it can move. 

These requirements can be met by introducing a two- . .  ... .. 

level naming hierarchy as shown in Fig. 1. The first level 
deals with hierarchically organized, user-defined name 
spaces. These name spaces are handled by what we call a 
distributed object naming service. A name is bound to an 
object haizdle, which is a globally unique and location-indepen- 
dent object identifier. 

The second level deals with mapping each object handle to 
a set of contact addresses, and is handled by a distributed 
object location service. In contrast to traditional naming ser- 
vices, a location service is designed to support frequent 
updates and lookups of contact addresses such as needed for 
mobile objects. It is not concerned with naming. 

As an illustration, consider an officeless company whose 
employees are located across the country, normally working at 
home or visiting customers. Using our approach, we assign a 
lifetime location-independent telephone number to the com- 
pany. This number corresponds to an object handle. A naming 
or directory service would maintain a mapping between the 
company’s name and its lifetime telephone number. The tele- 
phone number is used by a location service to redirect incom- 
ing calls to, for example, the nearest employee currently 
working. An employee’s own telephone number is registered 
at the location service when he or she starts work, and is 
unregistered again when he or she finishes. An employee’s 
telephone number corresponds to a contact address. Note that 
how the company is named, and in which directories its name 
is registered, is no longer important. Naming has been fully 
separated from how and where we contact the company. 

In distributed systems, this way of locating a service is also 
known as anycasting: a client requires a particular service, but 
is really not interested in which server will handle the request. 
Using our approach, the service is assigned a unique object 
handle, and each server registers its network address under 
that object handle. A client has the service’s name resolved to 
the object handle, which is then subsequently resolved to the 
address of any server that can handle the request. 

An object handle is designed specifically for the location 
service. It contains a globally unique service-independent object 
identifier which is very similar to a UUID in DCE [ll]. Addi- 
tionally, an object handle may contain information that can be 
used to assist in locating the object. For example, it may be 
known that an object will move only within a certain region. 
Instead of conducting a global search for such an object, it is 
more efficient to start the search process in that specific 
region. Therefore, it makes sense to encode this information 
into the object handle. 

REQUIREMENTS FOR A LOCATION SERVICE 
Clearly, our two-level approach makes sense only if we can 
indeed provide a scalable and efficient naming and location 
service. The feasibility of developing scalable naming services 
has been demonstrated by systems such as DNS. This is not 
yet the case for location services, for which the following 
requirements will have to be met. 

Scalability - The service should allow clients and objects to 
be located anywhere in the world, and be able to support a 
huge number of objects. We anticipate that eventually, one 

Figure 1. A two-level naming hierarchy that allows an object’s name 
and contact addresses to be independently changed. 

billion users with 1000 objects each will be registered with the 
location service, adding up to lOI2 objects. 

Locality - Assuming that the cost for looking up an address 
generally increases with the  length of the route to that 
address, we require the location service to exploit locality. 
This means, for example, that if an object has an address near 
the client, finding the object should be fairly cheap. 

Stability - Objects may differ with respect to their migration 
patterns. For example, a Web page may move through the 
entire network in a seemingly random way, whereas a mobile 
computer may move only within a city. An object is said to be 
stable with respect to a region if its addresses are most often 
in that region. If an object is stable with respect to region R, we 
require that searching or updating one of its addresses in R is 
cheaper than when the object is not stable with respect to R. 

Fault Tolerance - The location service should be resilient to 
node and link failures, and should continue to operate in the 
presence of network partitions. The service should, at the least, 
degrade gracefully in terms of performance and functionality. 

Location services are not new and have been shown to be 
relatively easy to implement in local distributed systems. How- 
ever, they become much more complicated when scalability is 
taken into account, as we discuss next. 

TRACKING DISTRIBUTED O B J E C T S  IN GLOBE 
In this section we discuss the architecture of Globe’s scalable 
location service. We shall provide only an outline of the archi- 
tecture; further information can be found in [13]. 

BASIC OPERATIONS 
In our model for tracking objects, we assume hierarchical 
decomposition of a (worldwide) network into regions. This 
decomposition is relevant only to the location service. With 
each region we associate a directory node capable of storing 
addresses that lie within that region. This leads to a logical 
tree-based organization, as shown in Fig. 2. Addresses are 
assumed to be location-dependent: the region in which an 
address lies is encoded in the address itself. 

The location service normally stores new addresses at the 
leaf node representing the region in which the address lies. 
For each new object, it constructs a path of forwarding point- 
ers from the root to each leaf node where an address is 
stored. Addresses and forwarding pointers are stored in con- 
tact records. An implication of this design is that in the worst 
case it is always possible to locate every object by following 
the chain of pointers from the root node. In practice, we can 
do much better than this, as described later. 

In principle, a request for insertion of a previously unregis- 
tered object begins at a leaf node and is propagated up the 
tree to the root. Then a path of forwarding pointers is estab- 
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re 2. The logical organization of the location service as a virtual search tree. 

although no ordering is guaranteed 
when requests are issued at different 
nodes. In particular, we have the fol- 
lowing consistency rule: 

~ e ~ ~ e s t  C o ~ s j s ~ ~ ~ ~ ~  - Update 
requests issued at the same leaf node 
are completed in the order in which 
they were issued. Update operations 
issued at  different leaf nodes a re  
completed in an arbitrary order. 

The location service has full control 

lished from the root to the leaf node where the insertion takes 
place. A contact record containing a forwarding pointer is cre- 
ated at each intermediate node. The address itself is finally 
stored only in the leaf node. When a part of the path already 
exists, for example, when inserting a second address in a dif- 
ferent region, only the missing pointers are established. This is 
shown in Fig. 3. In the case that there is already a contact 
record for the object at the leaf node, the new address is sim- 
ply added to that record. 

Deleting a contact address is straightforward and is done 
as follows. First, the address is found through a search path 
up the tree, starting at the leaf node representing the region 
in which the address lies (note that this information is encod- 
ed in the address). Once the contact record in which the 
address is stored has been found, it is removed from that 
record. If a contact record no ionger contains contact address- 
es or forwarding pointers, it is deleted. The parent directory 
node is informed that it should delete its forwarding pointer 
to that record, possibly leading to the (recursive) deletion of 
the object’s contact record at the parent node. 

Looking up a contact address is done as follows. A client 
process passes an object handle to the leaf node of the region 
where that process resides. (We require that there be exactly 
one such leaf node.) As shown in Fig. 4, a search path is 
established starting at the client’s leaf node and going upward 
to the first directory node where the object is already known. 
In the worst case, this means propagating the request up to 
the root. The path then continues downward to a leaf node, 
whose addresses are then returned to the requester. 

Concurrent update and lookup operations are allowed, 

over the placement of addresses in 
contact records. Consequently, if we 

can place addresses in stable locations, we can make effective 
use of pointer caches during lookup operations. By default, an 
object’s address is stored in its contact record at the leaf node 
where it was initially inserted. Now, consider some region R as 
shown in Fig. 5 ,  and assume that an object 0 is changing its 
addresses regularly between subregions SI, Sz, and S3. For 
simplicity, assume that there is always at least one address 
somewhere in R, so there will always be a nonempty contact 
record for 0 at directory node dir(R). 

Each time the object moves to a new subregion Sk ,  the 
location service creates a path of forwarding pointers from 
dir(R) to a leaf node in Sk. Likewise, when moving out of Sk 
the path has to be deleted. If migration occurs regularly, it 
makes sense to store the address in the object’s contact record 
at dir(R). This not only saves the cost of path maintenance, 
but more important is that addresses from any of the subre- 
gions are now stored at a stable place, namely at the directory 
node dir(R). 

By storing addresses in stable contact records, our model 
leads to the construction of a search tree per object, in which 
contact records tend to remain in place, even for mobile 
objects. This permits us to effectively shorten search paths by 
caching pointers to contact records, since they are stable, even 
if the corresponding objects are not. Specifically, a pointer to 
the directory node with a contact record containing addresses 
is cached at each node of the search path when returning the 
answer to the leaf node where a lookup request originated. 

The combined effect of pointer caches and stable contact 
records should not be underestimated. An object that moves 
primarily within region R can be tracked by just two succes- 
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sive lookup operations: the first at the leaf node ser- 
vicing the requesting process, and the second at the 
directory node for region R. Moreover, our solution 
forwards a request in the direction of an address. 
This is a considerable improvement over existing 
approaches. 

Of course, the migration behavior of an object 
may change. For example, assume the contact record 
at dir(R) has contained an address for subregion S k  
for quite some time. In that case, the address will be 
propagated to a directory node in s k ,  because appar- 
ently stability occurs in a smaller region than R. Sta- 
bility is measured by timestamping addresses and 
forwarding pointers, as well as recording how long an 
object has not been in a specific region. In all cases, 
history is taken into account by weighted accumula- 
tion of old and new timing information. 

FAULT TOLERANCE 
Any service available in a wide-area distributed system should 
mask failures of the underlying network to its clients. This is 
not always possible, because, for example, network partitions 
may last for hours. Fault-tolerant behavior for our location 
service can be partly expressed in terms of the following infor- 
mal progress rules. 

Global Progress - The effect of an update operation initi- 
ated at an arbitrary leaf node is eventually visible to a lookup 
operation initiated at any of the leaf nodes of the search tree. 

Local Progress - The effect of an update operation at a 
directory node D should immediately be visible at each direc- 
tory node in the (connected) subtree rooted at D. 

The second rule states that an update operation should 
come into effect at a particular directory node as soon as it is 
issued at that node, and perhaps before the operation com- 
pletes. The completion of an operation may depend on the 
response of the parent node, which may temporarily be 
unreachable. In other words, update operations are to be han- 
dled in an asynchronous fashion. Satisfying the progress rules 

effectively means that our service is resilient to nodes being 
unreachable, either caused by network partitioning or because 
a node has crashed. 

To handle operations asynchronously while satisfying the 
rule for request consistency, incoming requests are first 
appended to a queue and subsequently forwarded to the par- 
ent node. Queued operations at a particular node are evaluat- 
ed in the order in which they have been appended, and yield a 
tentative result. As soon as ihe parent agrees with the update, 
the operation is completed by removing it from the queue and 
making its result authoritative. If the parent disagrees with the 
update, for example, when a new address should be stored at 
a higher-level directory node, the operation is only removed 
from the queue. 

There are several benefits to this approach. First, queuing 
operations allows us to maintain a consistent, albeit tentative, 
view of the data maintained at a node without having to block 
any requests until the associated operation is fully completed. 
This makes the location service resilient to network partitions. 

Recovering from node crashes is harder, and is subject to fur- 
ther research. However, a crashed node can easily reinvoke 
incomplete operations by having its children reissue their 

Contact addresses are regularly 
inserted and deleted ! 

Figure 5. The situation of an object regularly moving between subreagions. The solu- 
tion is to store its changing address in dir(R). 

requests, although this is clearly not enough 
to restore the node’s original data set. 
This approach is very similar to sender- 
based message logging, discussed in [4], 
or using queued remote procedure calls 
(RPCs) as in the Rover toolkit [ 5 ] .  By 
replicating authoritative data among the 
directory nodes in each subtree, the loca- 
tion service can be made resilient against 
a single node failure in each path origi- 
nating at the root. 

SCALABILITY 
Clearly, to construct a worldwide scalable 
location service it is necessary to adopt 
hierarchical solutions. For example, non- 
hierarchical solutions such as the 
read/write sets proposed in [9] will not do, 
since it is much harder to exploit locality. 
However, our search tree described so 
far obviously does not yet scale. In particu- 
lar, higher-level directory nodes not only 
have to handle a relatively large number of 
requests, they also have enormous storage 
demands. Our solution is to partition a 
directory node into one or more directory 
subnodes such that each subnode is 
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Figure 6.  A search tree and a cowesponding logical tree afterpauti- 
tioning the directory nodes into subnodes. 

responsible for a subset of the records originally stored at the 
directory node. 

As an example, we can use the first n bits of an object’s 
handle to identify the subnode responsible for that object. 
Subnodes of a particular directory node need not communi- 
cate with each other since they maintain different subsets of 
objects, and all operations are performed on a per-object 
basis. Communication between directory nodes in the original 
search tree takes place only between their respective sub- 
nodes. To illustrate, Fig. 6 shows a search tree in which the 
root node has been partitioned into four subnodes based on 
the first two bits of the object handle (n = 2), and each of the 
leaf nodes into two subnodes (n = 1). (We note that we have 
developed more realistic hashing-based methods than 
explained here. For example, we also have to  take into 
account that the total number of links between parent and 
children subnodes remains manageable.) 

Because communication between directory nodes in the origi- 
nal search tree now takes place between their respective sub- 
nodes, each subnode should be aware of how the directory node 
with which it communicates is actually partitioned. This infor- 
mation is contained in a separate tree management service. 
This service also maintains the mapping of subnodes to physi- 
cal nodes. Partitioning and mapping information is assumed to 
be relatively stable so that it can be easily cached by subnodes. 
This assumption is necessary to avoid having to query the 
management service each time a subnode needs to communi- 
cate with its parent or children, which would turn the manage- 
ment service into a potential communication bottleneck. 

WORK 
Location services are becoming increasingly important as 
mobile telecommunication and computing facilities become 
more widespread. So far, mobility is almost invariably con- 
nected to mobile hosts. A characteristic feature of these hosts 
is that their mobility is directly coupled to that of their user. 
This has two important consequences which do not apply to 
our location service. First, the speed of migration is limited to 
the maximum speed at which a person can move (typically 
1000 kmihr in an airplane), making it possible to adopt a 
strategy in which data structures gradually adapt as the object 
moves. This has been successfully applied to several models 
for location services (e.g., [1, 7 ] ) ,  but these techniques cannot 
be used in our case. Second, a host is always at precisely one 
location. There is no notion of multiple addresses per object 
as we have introduced in our model. In contrast to current 
approaches, we can effectively deal with replication. 

The situation becomes entirely different when dealing with 
mobile software objects. An important distinction in keeping 
track of mobile hosts is that there are many more objects than 
hosts, immediately leading to a scalability problem. Also, to 
ensure scalability it is necessary to take mobility patterns of an 
individual object into account as well. In Emerald [6], mobile 

objects are tracked through chains of forwarding point- 
ers, combined with techniques for shortening long chains, 
and a broadcast facility when all else fails. Such an 
approach does not scale to worldwide networks. An alter- 
native approach to handle worldwide distributed systems 
is the Location Independent Invocation (LII) described 
in [2] .  However, LII uses a global naming service as a 
fallback mechanism, where it assumes that the update-to- 
lookup ratio is small. Designing a global location service 
not based on such an assumption is an important goal of 
our research. 

A seemingly promising approach that has been advocat- 
ed for large-scale systems are switching service process 

(SSP) chains [12]. SSP chains allow object references to be 
transparently handed over between processes, at the expense of 
gradually constructing a chain of forwarding references to the 
object. A serious drawback of this approach is that exploiting 
locality is completely neglected. In particular, a home must keep 
track of where the object is during its entire lifetime, possibly years 
after the object last lived there. Also, it is unclear how fault toler- 
ance can be efficiently dealt with. SSP chains therefore do not 
seem to scale to worldwide systems. 

CONTRIBUTIONS OF OUR APPROACH 
One of the main advantages of our approach is that our 

location service can handle objects that have several contact 
addresses and show arbitrary migration patterns. We do not 
adapt update and search strategies to migration patterns, but 
adapt the search tree on a per-object basis instead. By register- 
ing contact addresses in the smallest region in which (part of) 
the object is moving we can make effective use of pointer 
caches. The combined effect is an extremely short search 
path, in the optimal case of only length two, from a client to 
the object. In just two hops it is possible to locate even seem- 
ingly randomly migrating objects. This is a considerable 
improvement over existing approaches. 

The use of pointer caches instead of data caches has also 
been proposed for PCS. The main reason to apply caching in 
those cases is to avoid excessive network traffic to the home 
location of a host, which forms the root of a two-level search 
tree such as in GSM. Caching is done at the second level, by 
pointing to locations where the host is expected to be found. 
Cache consistency is achieved either by invalidation on 
demand or through active updates. However, caches in PCS 
do not account for update patterns. A distinctive feature of 
our approach compared to PCS is that we have several levels, 
allowing us to exploit locality more effectively by inspecting 
succeeding expanded regions at linearly incrementing costs. 
On the other hand, locality is also exploited in location 
updates, making our pointer caches highly effective. 

ONCL 
The Globe location service offers a novel approach to locating 
objects in a worldwide context, using location-independent 
object identifiers instead of user-defined names. Our approach 
allows an object to update its contact addresses independent 
of how users have named the object. Locating an object pro- 
ceeds through a worldwide search tree which dynamically 
adapts itself on a per-object basis. By storing addresses at sta- 
ble locations and subsequently caching pointers to those loca- 
tions, it is possible to contact an object in just two steps, 
irrespective of the object’s migration pattern. An important 
distinction from current approaches is that the search path is 
directed toward the object’s present location. 

Presently, our research is continuing in two directions. 
First, we are building a prototype implementation for experi- 
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mentation and validation of our approach. Second, we are 
enhancing the basic algorithms described in this article to 
include fault tolerance. Also, algorithms for selecting the most 
appropriate nodes for storing an object's contact addresses 
need to be further improved. 
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