
Formalizing A Design Technique For Distributed Programs

Mark Polman
Erasmus University, Rotterdam

polman@few.eur.nl

Maarten van Steen
Vrije Universiteit, Amsterdam

steen@cs.vu.nl

Arie de Bruin
Erasmus University, Rotterdam

adebruin@few.eur.nl

Abstract

ADL-d is a graphical design technique for parallel and dis-
tributedsoftware, in which communicationmodeling plays a
central part. Recently, we have used formal methods to de-
fine ADL-d’s semantics. The original objective was to pro-
vide well-defined guidelines for future implementations of
ADL-d’s communication constructs, but, as it turned out,
significant feedback resulted to the notation itself. We give
an outline of the ADL-d notation and its intuitive semantics.
Also, we introduce the formal semantics, and discuss what
impact this formalization has had on the original notation.

1 Introduction

With the increasing popularityof off-the-shelf networked
hardware as a platform for distributed computing, a renewed
interest can be observed in design support for parallel and
distributedsoftware. We have developed ADL-d, a graphical
distributed design technique, with ease of usage, elegance,
completeness, and suitability for automated code generation
as its main objectives.

ADL-d offers notations to model an application in terms
of a process hierarchy, in which processes communicate
through gates over channels by message passing. A wide
range of communication constructs and facilities for mod-
eling dynamic process creation belong to its features. In
Section 2, we discuss the ADL-d technique, avoiding details
(which can be found in [11, 9, 10]) to save space and to re-
main focused on the main theme (see below).

At a fairly advanced stage in ADL-d’s development, we
started using formal methods in describing the semantics
of the ADL-d notations, primarily as a basis for automated
code generation. As it turns out, the use of formal methods
has helped in meeting all four of the aforementioned objec-

tives. In Section 3, we give a brief introduction to the for-
mal method we have used, an ‘operational semantics’ spec-
ified through a transitionsystem. We then explain how ADL-
d diagrams can be fitted into this method. In Section 4, we
discuss the formal ADL-d semantics in greater detail, and
explain how the use of formal methods has been helpful
in further developing ADL-d, revealing unrealistic assump-
tions, unelegant constructs, and, very importantly, providing
a model for an ADL-d runtime system implementation.

Section 5 discusses related work, whereas in Section 6,
we briefly state our conclusions and discuss future research
directions.

2 ADL-d

In ADL-d, an application is modeled as a process, which
can consist of subprocesses, consisting of other subpro-
cesses, etc. For each complex process, the internal structure
is modeled through a set of subprocesses, communicating to
each other through gates over channels.

Whenever a process wants to send a message, it places
the message in one of its output gates. The output gate is
attached to a communication channel, which, according to
some algorithm (see below), allows attached output gates
to communicate to attached input gates. An input gate is
opened by its owner, whenever the owner wants to receive
a message through it. Notice that with opening an input
(output) gate, nothing is specified about the intended sender
(receiver). Channels are responsible for the distribution of
messages. In Figure 1(a), the communication structure is
modeled of an application Appl, describing a popular com-
munication pattern. One process, the Contractor, is sup-
posed to generate work and distribute it over Workers, which
process the work and send the results back. To this end,
Contractor communicates through output gate c out (small
square) over channel Chan cw. On the receiving end of
Chan cw are three Worker processes, with input gates w in.



Appl

Appl

Chan_cw Chan_wc

Chan_wcChan_cw

? ?

?

?

3

analyzegenerate

c_out

a_out

process

a_out

(e)c_in

c_in

c_out

(d)

result

work

Worker 

a_in

c_in w_outw_inc_out

=1=1

03Contractor

a_in

w_out

w_outw_in

w_in

0

=1

CalculatorAnalyzera_in
w_in

a_out c_in c_out
w_out

Chan_ac
Worker

Contractor 3 0

=1 =1

c_out w_in w_outc_in

Worker 

Worker 

Worker 

(a)

(b)

(c)

Figure 1. (a) Example ADL-d application structure; (b) Semantical equivalent of (a) with expansion;
(c) Internal structure of Worker process; (d) State-transition diagram for Contractor process; (e)
State-transition-diagram for Analyzer process



From within a Worker process, output can be sent back to
Contractor through w out over Chan wc.

The integer below the Worker process indicates its initial
multiplicity. An equivalent diagram is given in Figure 1(b).

Decomposition

In Figure 1(c), the internal structure of a Worker process is
given. Apparently, Workers consist of an Analyzer and a Cal-
culator, communicating over Chan ac. The association with
Figure 1(a) lies in the Worker gates: while on a higher ab-
straction level, only w in and w out are seen to be attached
to Chan cw and Chan wc, respectively, we see that, in fact,
a in of Analyzer is attached to Chan cw and c out of Calcu-
lator is attached to Chan wc.

Dynamic Behavior

On the lowest level of the decomposition hierarchy are the
simple (i.e. nondecomposed) processes, that actually display
dynamic behavior. In ADL-d, this behavior is modeled in
state-transitiondiagrams (STDs) per simple process. The no-
tations used in these diagrams are derived from those used
in SDL [2], but have different semantics.

ADL-d distinguishes between processing states and gate
actions in its STDs. In Figure 1(d), the dynamic behavior of
the Contractor is given. Roughly, the Contractor executes a
loop of generating work, sending it away and receiving the
results back. From its initial state (ellipsis), it proceeds by
entering the processing state generate work. After that, it
opens c out for sending the work and c in for receiving the
results, and blocks for an event on one of the two gates. If
this has happened, it can check what it was by means of a
test, which has two possible outcomes, success or timeout.
First, c in is tested. In case communication over c in was
successful, the solid transition is taken, and the message is
processed in process result. Otherwise, the dashed transi-
tion fires. Finally, c out is tested. If the message on c out
could actually be sent, the process starts all over. Otherwise,
no new work is generated; instead, a new attempt is made to
send the old work.

Figure 1(e) models the dynamic behavior of an Ana-
lyzer process, in which it executes a loop of receiving work
through a in, analyzing it, and forwarding it through a out.
Without actually giving the STD, we assume that a Calcula-
tor process performs a similar loop.

Intuitive Communication Semantics

The annotations to channels in Figure 1(a), (b) and (c), and
to blocking actions in Figure 1(d) and (e) are used to es-
tablish the semantics of communication, which becomes in-
creasingly important as a design moves on from logical to
more technical phases.

The annotations within the channel symbols refer to the
channel’s buffering capacity. For example, the symbol 3 in
Chan cw indicates a buffer size of three messages. Roughly,
a channel accepts a message from an open output gate, only
if the buffer is not full, and copies a message from its buffer
to an open input gate, only if its buffer is not empty. For the
open gate, communication then succeeds. If a channel has
zero buffering capacity (e.g. Chan wc), it gets the semantics
of a synchronous channel: communication succeeds only if
input and output gates are open simultaneously.

Annotations below channel symbols refer to the distribu-
tion semantics of the channel, i.e. how many receivers each
sent message must reach. In the figure, all channels have
‘=1’ as an annotation, meaning that communication is com-
pleted if and only if a message has been delivered to one re-
ceiver. However, other annotations are possible as well. In
Figure 2 a few of them are listed. In case each message is

criterion meaning
=1 exactly one receiver must be reached
>1 at least one receiver must be reached
=50% fifty procent of all potential receivers

must be reached
=100% all potential receivers must be reached

Figure 2. Example success criteria

possibly intended for multiple receivers, a distinctioncan be
made between postmedium and premedium replication se-
mantics. In case of postmedium semantics, a sufficiently
large number of attached input gates must be open simulta-
neously, before a message is transferred to all of them. With
premedium semantics, open input gates can get the message
one by one, until a sufficiently large number of them re-
ceived it. The symbols for pre- and postmedium are given in
Figure 3. Finally, in Figure 1(d) and (e), annotations are pro-

premedium postmedium

Figure 3. Pre- and postmedium

vided with blocking actions. These indicate the maximum
amount of time that a process is prepared to block for com-
munication through the corresponding gate to succeed (1 in
our example). When an event (success or timeout) occurs on
at least one gate in a blocking state, the rest of the gates are
retimed to zero, in order to end communication as soon as
possible (i.e. to make them timeout). This way, after leaving
a blocking state, every gate involved has either succeeded or
failed.



Other Features

ADL-d has a number of additional features, which are im-
portant from a software engineering point of view, but which
are slightly beyond the scope of this paper (see also Sec-
tion 3). They include the ability to model dynamic cre-
ation of both complex and simple processes, which is done
by means of creation channels, and the ability to model
connection-oriented communication, using which request-
reply and other forms of directed communication can be
captured. For this latter feature, so-called connection chan-
nels and gates are used. Details with regard to these con-
cepts can be found in [11].

3 Operational Semantics

As was stated in the introduction, the use of formal meth-
ods to describe the semantics of ADL-d was primarily moti-
vated by the need for rigid implementation guidelines. This
implied that the formal description had to be on a level of
abstraction that:� hides implementation details, but� is still easy to derive implementations from.

A first consequence of this is the choice for an ‘operational
semantics’ as opposed to denotational semantics [1]. Using
an operational semantics has the advantage over an actual
implementation, that we are free to abstract from many im-
plementation details that are of less importance, or that we
simply do not want to fill in yet. Still, we can choose a level
of abstraction that is still sufficiently close to ‘reality’ to re-
veal problems as well as opportunities for distributed imple-
mentation.

3.1 Basic Concepts

In our operational semantics, a distributed application is
modeled as a set of objects, some of which execute a se-
quence of statements in some language. An object is de-
scribed by a tuple (p;sp;�p), where p is a unique object
identifier, sp (optional) is the list of statements still to be ex-
ecuted by p, and �p is a function of p’s variables to values
in some domain, i.e. �p defines p’s state.

As an example, a simple language for objects
could be defined as follows:s ::= v := e j skip j if e then s else s fi j

while e do s od j (s;s) jE
implying that a statement can be an assignment to
a variable (v denotes a variable name and e de-
notes an expression), a skip, a conditional state-
ment, a conditional loop, a sequence of state-
ments, or the empty statement E.

A parallel, distributed application at some point in its execu-
tion can now be described as a set of tuples according to the
above sketch. How the application executes from there is
determined by a set of transition rules, which fire dependent
on the state of the application (or a subset thereof), thereby
bringing one or more objects into a different state and pos-
sibly a step further in the execution of their statements.

As an example, consider the following transition
rule:f(p; if e then s1 else s2 fi;�)g ! f(p;s1;�)g
if V(e)(�) = tt
which tells us that if there is an object in the appli-
cation set willing to execute a statement s1, condi-
tional on an expression e, and if, given the state ofp, e evaluates to tt (=true), then this rule can fire,
causing p to move on to executing s1.

Concurrency in an application is, in fact, modeled through
the possibility of multiple transitions (concerning different
objects) being enabled at the same time.

The following rule formalizes this:r1 ! r2r1[r ! r2[r
Translated into English this rule tells us, that if
any subset (r1) of objects in a running application
matches the left side of a transition rule, resulting
in r2, then this rule can fire, leaving the rest of the
objects (r) unaffected.

Roughly, a run of a parallel and distributed application,
modeled in the above way, is determined by repeatedly se-
lecting nondeterministically one of the enabled transitions.
The set of all possible runs, generated in this way, can be
seen as ‘the semantics’ of the application.

Obviously, a formalism as introduced above is most in-
teresting when the objects interact, in other words, when
there are transition rules involving tuples of more than one
object. This is discussed later.

3.2 Translating Diagrams Into Object Structures

From Diagram Objects to Formal Objects

If we are going to translate ADL-d diagrams into objects in
the formal notation introduced above, we have to ask our-
selves which concepts in the ADL-d notation domain should
return as concurrent objects (tuples) in the translation. A
simple OMT-like ([12]) analysis of the ADL-d domain gives
us the diagram of Figure 4. Obvious candidates for concur-
rent objects are channels and processes. However, from the
informal descriptions of ADL-d, it appears that gates have a



gate

message

stdprocess

channel

input output

receives

sends

formulates

executes

distributes

Figure 4. Simple OMT diagram of ADL-d domain

state as well (open, closed, succeeded, etc.), which can be
modified by both processes and channels. For this reason,
we model gates as tuples as well, despite the fact that they
seem to be so closely linked to processes. Finally, we have
also chosen to model messages as tuples. However, this was
primarily driven by a search for elegance.

From STDs to Statements

The next thing to do is to provide the ADL-d process, chan-
nel, and gate tuples with statements, and after that with vari-
ables and state functions.

Obviously, the statement sp in a process tuple (p;sp;�p)
should be a textual representation of p’s STD. To this end,
we adopt the language definition from the previous section
for representing what can be done in processing states, and
make extensions to represent gate actions:

Gset ::= � j (g; t) j (g;e; t) j(g; t);Gset j (g;e; t);Gset
Block ::= block(Gset)
Test ::= test(g;v) succ s fail s j

test(g) succ s fail ss ::= v := e j skip j if e then s else s fi j
while e do s od j (s;s) j Block j Test

As can be seen, we extended the definition of s with block
and test statements. The block statement has a sequence of
tuples as its arguments, where each tuple consists of a gate
identifier and a timer value, and, in case of an output gate,
the expression to be sent. A test has a gate identifier and, in
case of an input gate, a variable name as its arguments (for
storing a received value). The success and timeout transi-
tions from the STDs are given their textual representations
as well.

For channels and gates (and also messages), we do not
give statements in some language to express their behav-
ior. The reason for this is that doing so would come too
close to providing an actual implementation, which, as we

stated above, was something we wanted to avoid. Instead,
the semantics of communication are expressed by transition
rules that transform the states of (sets of) gates and chan-
nels. This, in fact, resembles a declarative way of specifying
things: for a transition rule to fire, channels and gates must
be in state X; afterwards, they will be in state Y .

From Attachments and Annotations to Variables and
States

The third entry in an object tuple is its state function, assign-
ing a value to each of its variables. We distinguish between
two types of variables: the ones that refer to other objects,
and the ones that do not. The first group is used to define the
structure of the application (the attachements from gates to
channels, from gates to processes, etc.). For example, ev-
ery gate has a variable proc, which, through the gate’s state
function, refers to the identifier of the process object that the
gate belongs to. Likewise, it has a chan variable pointing to
the channel that it is attached to 1.

These and the other variables are given in Figure 5, where
a process, a channel, a gate and a message are given as object
classes with attributes. Notice that all annotations used for
implementing the communication semantics, as discussed
in the previous section, are represented here. For example,
channels have a capacity variable, and gates have a timer
(which is set in blocking actions). Notice also the stat at-
tribute of gates. The possible values represent open, closed,succeeded, and failed for input gates and output gates, re-
spectively.

1Actually, since ADL-d supports dynamic creation of processes, the
system is more complicated than suggested here. More specifically, in
real ADL-d, processes in ADL-d diagrams are process prototypes, which,
through their structure variables, describe an application’s structure on a
meta level, such that every prototype and the structure between them can
be instantiated. Here, we have abstracted from this to simplify matters.



[ ]

var type
GATE

mess
proc
chan
stat
timer

message ID
process ID
channel ID

integer

var type

sender
recvrs
val

gate ID
list of gate ID

MESSAGE

any

CHANNEL

buf
type
cap
crit

list of mess ID

integer
[post, pre]

var
PROCESS

var

g1...gn gate ID

type type

[=x, >x, =x%, >x%]
other vars any
blockset set of gate ID

Figure 5. Conceptual ADL-d objects

4 Transition Rules and Results

Now that we have a formal tuple representation of ADL-
d diagrams, both structure models and STDs, we can de-
scribe ADL-d semantics through a set of transition rules as
discussed above. In order to keep the system elegant and
easy to derive implementations from, we strive to:� keep the number of objects involved in any single tran-

sition rule as low as possible, and� keep the total number of transitions as low as possible.

Keeping the number of different object tuples per transition
rule low has the advantage of simplicity. But more important
is that it is a success test for the modularity of the approach.
The fewer objects per transition rule, the less information on
various objects is needed for it to fire. This is clearly benefi-
cial for a straightforward distributed implementation. Con-
versely, if we can find no such elegant way of describing the
intended ‘intuitive’ semantics of a concept, e.g. postmedium
broadcast, then this might be a reason to reconsider the in-
tuitive semantics themselves. We will look at an example of
this later.

Below, we first state and explain some of the transition
rules, and use these to illustrate the subsequent discussion
on the benefits of our formal method.

4.1 Gate Actions

Rule 1: Blocking on a Gate

We start off simple, with the opening of and blocking for an
output gate:f(p;block((gvar; e; t);Gset);�p); (g;�g)g !f(p;block(Gset);�0p); (g;�0g); (m;�m)g
if �p(gvar) = g (1)�g(proc) = p (2)�g(stat) 2 f�;�;�g (3)

where �0p = �pf(�p(blockset)[fgg)=blocksetg (4)�0g = �gf�=stat; m=mess; V(t)(�p)=timerg (5)�m(val) = � (6)�= V(e)(�p) (7)�m(sender) = g (8)

This rule tells us that if p blocks on one of its gate variables
pointing to (1,2) output (3) gate g, trying to send � (7), theng is added to p’s blockset (4), and changes state to opened
(5). Also, a new message object is created with val � (6),
and sender g (8).

Condition(4) should be read as follows: �0p equals the old�, with the exception of the blockset variable, which gets g
added to it. A similar reading goes for condition (5).

The rule for blockingon an input gate is very similar, only
with the value of the input gate’s variable stat changing to�, and without generating a new message object. Also, re-
opening a succeeded gate has no effect. First, the delivered
message has to be processed (see below).

Rule 2: Unblocking on a Gate

When an event has occurred on at least one of the gates in
a process’ blockset, then ADL-d semantics prescribe that an
effort is made to close all still open gates as soon as possible
(for reasons discussed below):f(p;block();�p)g [ [ni=1f(gi;�0gi)g!f(p;block();�0p)g [ [ni=1f(gi;�0gi)g
if 8i : �gi(proc) = p (1)9j (1� j � n) : �gj (stat) 62 f�;�g (2)[ni=1fgig= �p(blockset) (3)
where �0p = �pf(�p(blockset)nfgjg)=blocksetg (4)8i (i 6= j) : �0gi = �gif0=timerg (5)

Translated to English this rule says that if for process p there
is at least (2) one gate gj in p’s blockset (3) that is not open
anymore, then all gi are retimed to zero (5), so that they can
timeout quickly. Gate gj is removed from p’s blockset (4).

After this transition, at some point in the future, for every
gate in p’s original blockset, we have that it has either suc-



ceeded or timed out. At that moment, another rule can fire
causing p’s block() statement to end, enabling p to continue
with the next statement.

Rule 3: Testing

After going through a blocking phase, a process can, one by
one, test the gates involved for success or timeout, and make
the appropriate transition. The transition rule for successful
input is as follows:f(p;test(gvar; v) succ s1 fail s2;�p); (g;�g); (m;�m)g !f(p;s1;�0p); (g;�0g); (m;�m)g
if �p(gvar) = g (1)�g(proc) = p (2)�g(stat) =
 (3)�g(mess) =m (4)�m(val) = � (5)
where �0p = �pf�=vg (6)�0g = �gf�=statg (7)

As can be seen, if process p tests on its (1,2) succeeded (3)
input gate g, which points to a message m (4) with value �
(5), then p’s variable v will get value � (6), and g is closed
(7).

4.2 Channel Semantics

Transition rules for channels’ distribution semantics all
bring one or more attached gates into a different state. How
many depends on the channel’s success criteria and whether
it is post- or premedium.

Rule 4: Sending on an Asynchronous Channelf(c;�c); (g;�g)g ! f(c;�0c); (g;�0g)g
if �g(chan) = c (1)�g(stat) =� (2)size(�c(buf)) < �c(cap) (3)
where �0g = �gf�=statg (4)�0c = �cfappend(�c(buf);�g(mess))=bufg (5)

This transition rule describes what happens if a message on
an open output gate is accepted by a channel with nonzero
capacity. If gate g on channel c (1) is open (2), and there is
room in c’s buffer (3), then g succeeds (4), and its message
is appended to c’s buffer (5).

Rule 5: Receiving on a Postmedium Channelf(c;�c)g [ [ni=1f(gi;�gi)g !f(c;�0c)g [ [ni=1f(gi;�0gi)g
if �c(type) = post (1)front(�c(buf)) =m (2)�c(crit) = ‘=n’ (3)8i : �gi(chan) = c (4)8i : �gi(stat) =� (5)
where �0c = �cfchop(�c(buf))=bufg (6)8i : �0gi = �gif
=stat; m=messg (7)

If there are sufficiently many (3) open (5) input gates on
postmedium (1) channel c, and c has a nonempty message
buffer (2), then all input gates succeed simultaneously and
get the first message from c’s buffer (7),

4.3 Dynamic Creation and Connections

Up to now, we have omitted the notations for dynamic
creation and connection-oriented communication that ADL-
d includes. We did this, because the additional constructs,
needed in our formalization to include these features, are
complicated and space-consuming, but not very interesting
from a ‘formal semantics’ point of view. Below, we explain
why.

Creation

As the footnote in the previous section suggested, the nota-
tions in the ADL-d diagrams represent prototypes of struc-
ture and behavior, of which, at runtime, multiple instances
can exist, and additional instances can be created. We could,
for example, enable a Contractor to create Worker instances,
which is depicted in figure 6.

Here, Chan cr is a creation channel, for the creation of
Workers, on which Contractor has an output gate. Whenever
the Contractor outputs on Chan cr, a new instance of Worker
is instantly created, including a creation of everything in its
substructure (i.e. Analyzer, Chan ac, and Calculator). This
is what we want the semantics of dynamic creation to be.
In our formal description, the corresponding transformation
rule looks like this:

Rule 6 (concept): Sending on a Creation Channelf(c;�c); (g;�g); rg ! f(c;�c); (g;�0g); r0g
if �g(chan) = c (1)�g(stat) = � (2)�c(type) = creation (3)
where �0g = �gf�=statg (4)r0 = r[ new instances (5)
As can be seen, we introduced a new type (creation) for
channels. If open gate g (2) outputs on its (1) creation



Appl

Chan_cw

Chan_cr

Chan_wc

0

0

=1

c_out w_in w_outc_in
Worker 

=1

cr

Contractor

c_cr

3

Figure 6. Example structure with creation channel

channel (3) c, then new instances are added to the existing
application set (5). This set of instances is a function of the
the process prototype that c refers to (which is kept in an
additional, not previously shown, channel variable proc),
and the application structure such as modeled in the ADL-d
diagrams, which has to be copied among the new instances.

This copying of the applicationstructure between new in-
stances is a fairly complex matter, but nevertheless some-
thing that is modeled using a function executing in zero time
(i.e. by the firing of one transformation rule). This latter
property makes it less interesting when it comes to the in-
teraction between notation and formalization (see below):
we wanted dynamic creation of (complex) processes to be
atomic, and we formalized it straightforwardly.

Connections

A similar reasoning goes for setting up connections between
gates of ADL-d processes, which implies, in fact, nothing
more than the dynamic creation of channels, dedicated to a
select group of processes (or more exactly, gates). These
creations are, in our formalization, also modeled by func-
tions, executing atomically.

4.4 Results

Implementation

All in all, we need approximately 20 transition rules to
specify the entire communication semantics of ADL-d, none
of which is much more complicated than rule 5 specified
above. Thus, we have a compact and simple set of guide-
lines to verify ADL-d implementations.

The above set of transition rules that we have chosen to
illustrate matters shows a clear distinction between process-
gate interaction and gate-channel interaction, with messages
flowing between these objects. This, in fact, goes for the en-
tire system, which, as was stated before, is an indication that
straightforward distributed implementation is feasible. Cur-

rently, a distributed implementation is operational, serving
as a testbed for new ideas, algorithms, added features etc.

What is not shown in the examples (because of space lim-
its) is that some forms of communication require quite an
amount of administration. For example, with premedium
message distribution to multiple receivers, in order to pre-
vent receivers from getting the same message more than
once, records have to be kept showing which processes have
received which messages. This is what, in our formaliza-
tion, we use the recvrs field in our messages for. In our se-
mantics, we have been careful not to overspecify the transi-
tion rules in the direction of one implementation or another,
where it comes to keeping this administration. Specifying
semantics in a declarative manner, in terms of state-changes
in gates, allows for many implementations. It also keeps the
number of transition rules down, making the system simpler,
and allowing us to focus mainly on the interaction aspects.

With these results, our main objective, to generate imple-
mentation guidelines that are nonrestrictive towards details
on the algorithmic level, is met.

Feedback

As far as the interaction between formalizing the ADL-d se-
mantics and the notation itself is concerned there are several
results to be reported, the most important of which are listed
below.

Single Select State Originally, the block and the test ac-
tions in ADL-d were integrated into one blocking state
with two outgoing transitions: one for success and one
for timeout. Also, ADL-d included a construct called
the single select state, which was devised to enable pro-
cesses to block for communication over several gates
simultaneously, with the guarantee that after leaving
the blocking state, at most one gate had succeeded.
Clearly, we did not succeed in incorporating such a
construct in our transition system, since success for dif-
ferent open gates is determined independently by dif-
ferent objects in the system. Suppose process P has



opened gates p 1 and p 2. If these gates are attached
to different channels, then guaranteeing that only one
of them succeeds would require some intricate coor-
dination between the channels involved, when the sit-
uation on the channels is such, that p 1 and p 2 can,
in principle, both succeed. In fact, any attempt to in-
corporate such semantics without enormous commu-
nication overhead or highly centralized solutions was
feeble. A compromise was found using the language
building blocks that were already present in our for-
malism: block and test, and make them explicit in the
ADL-d notation. The only guarantee that is given af-
ter leaving a blocking state, is that none of the gates in-
volved is open anymore. Consequently, they have to be
tested one by one for success at a later stage. A prob-
lem that remained was the possibility of an input gate
succeeding and not being tested before being opened
again, allowing the old value to be overwritten. We
have blocked this by a rule specifying that a block on
a gate in state
 leaves this state intact (see the remark
below Rule 1).

Unicast and Broadcast From the start, ADL-d distin-
guished only between unicast and broadcast in its
distribution semantics, and included special channel
symbols for these. However, in searching for an
elegant model to capture both, we came up with
success criteria in terms of receivers reached. But
this construct allowed for far more possibilities for
channel semantics than just unicast and broadcast (i.e.
various types of multicast), which all made sense, too.
Hence, we decided to incorporate explicit notations
for success criteria in ADL-d, thus covering a more
complete range of communication patterns.

Nonblocking Opening A similar phenomenon can be ob-
served with the gate states open, closed succeeded, and
failed. After identifying these states from the intu-
itive ADL-d semantics, it is only natural to incorpo-
rate explicit commands in our process language that
use/manipulate these states (in the form of block and
test). However, the semantics of block can still be
split into a separate open, just for opening the gate,
followed by a block, for just blocking. This separate
opening could then be incorporated as a gate action
in ADL-d’s STD notation, allowing processes to open
gates without immediately blocking for them. Cur-
rently, we are investigating the consequences of incor-
porating a separate gate action to open gates.

Group Communication A weak point of ADL-d used to be
its lack of group communication facilities. However,
although only briefly discussed above, ADL-d does in-
clude constructs to model connection-oriented commu-
nication, in which a connection is established between

a number of senders and receivers over one or more
channels, before actual data transfer starts.

This can be considered a case of static group commu-
nication: a group is established, data transfer occurs,
and the group disintegrates. However, formalizing the
semantics of connections has revealed possibilities to
let gates dynamically join and leave connections. This
would be another example of successful feedback.

5 Related Work

Any design notation striving to be a candidate for auto-
mated code generation is likely to have some sort of formal-
ization of its semantics. The idea of having your semantics
defined in natural language or by an actual implementation
in some programming language is not very appealing.

There are numerous formalisms to choose from, each
with its own strong points and weaknesses. An important
factor in the selection of a formalism is what the formaliza-
tion is used for. For example, our operational semantics has
the advantage of its intuitive appeal, which makes it easy
to see what communication patterns are generated by ADL-
d channels. Also, deriving channel implementations from
these semantics is straightforward. These were exactly the
properties we were looking for. However, transformation
systems are hard to execute directly for verification and sim-
ulation purposes, which is possible when using Petri nets.

PARSE

A technique similar to ADL-d is PARSE [3]. PARSE’s no-
tations are formalized using Petri nets. Its BSL programs,
which are used to specify individual process behavior, are
easily converted to Petri nets. Coupling these Petri nets
according to what is specified in PARSE’s process graphs,
which define an application’s structure, renders a net de-
scribing an entire application. This can subsequently be
used for verification and simulation on the level of abstrac-
tion that Petri nets provide.

A problem with Petri nets is their static structure, which
renders difficulties when modeling applications with dy-
namically changing/expanding structures. This was one of
the reasons we stuck to an operational semantics description
of our notations.

Regis and Darwin

The configuration language Darwin [4] (with both a graphi-
cal and a textual representation), is used to describe the bind-
ing between self-contained components with well-defined
communication interfaces, as, for example, used in Regis
[5]. The language can be used to design dynamically evolv-
ing communication structures. Its formal semantics are de-



scribed in Milner’s �-calculus [7]. In the �-calculus, it
is possible to name communication channels and transmit
these names over other channels among processes so that
new bindings can be formed.

SDL

As was pointed out, our notation for modeling behavior has
been derived from SDL [2]. In fact, the role of SDL state dia-
grams is very similar to that of our state transition diagrams.
In SDL, state diagrams are used to model a process that ap-
pears in a block diagram. A block diagram corresponds to
our notion of a (complex) process. A major distinction be-
tween SDL and ADL-d is that ADL-d emphasizes commu-
nication modeling between processes. It is for this reason
that we have different communication channels, and strictly
separate processing from communication by means of gate-
based interfaces.

SDL has been formalized using the Meta-IV language, a
very complete language, with a ‘programming like’ nota-
tion. As such, Meta-IV is very much oriented towards im-
plementation, which was the objective of the formalization
in the first place.

Besides PARSE, Darwin and SDL, many other model-
ing and design techniques exist, but not as many are ex-
plicitly targeted towards development of parallel and dis-
tributed programs. Instead, what we observe is that dis-
tributed computing is often supported at the implementation
level by means of middleware solutions such as CORBA [8]
and DCOM [6], or advanced communication libraries like
MPI [13].

A research area related to ours is that of the object-
oriented modeling techniques. Here also, work has been
done on the formalization of graphical notations. For an
overview, see [14].

6 Conclusions and Future Work

Using only about 20 transition rules, we have been able
to formally define ADL-d’s communication semantics. To-
gether, they form an implementation model, providing a
minimal set of criteria to which implementations must con-
form.

The maintained abstraction level has turned out to be suf-
ficiently close to a distributed implementation to reveal sev-
eral flaws and unrealistic assumptions in the ‘intuitive’ ADL-
d semantics. The formalization has even triggered changes
in the original ADL-d notation itself.

Future work will include the testing of different algo-
rithms for internal channel behavior (of course conforming
to the semantics described here). Also, as was stated before,
we are looking into possibilities for providing more com-
plete group communication facilities. The first results on

this subject are expected shortly.

References

[1] J. d. Bakker and E. d. Vink. Control Flow Semantics. The
MIT Press, Cambridge, Massachusetts, 1996.

[2] CCITT Z.100. Specification and Description Language
SDL. Recommendation Z.100, Mar. 1993.

[3] I. Gorton, J. Gray, and I. Jelly. Object-Based Modelling of
Parallel Programs. IEEE Parallel and Distributed Technol-
ogy, 3(2):52–63, July 1995.

[4] J. Magee, N. Dulay, and J. Kramer. Structuring Parallel and
Distributed Programs. IEE Software Engineering Journal,
8(2):73–82, Mar. 1993.

[5] J. Magee, N. Dulay, and J. Kramer. A Constructive Devel-
opment Environment for Parallel and Distributed Programs.
IEE/IOP/BCS Distributed Systems Engineering, 1(5):304–
312, Sept. 1994.

[6] Microsoft Corporation. DCOM Technical Overview, 1996.
[7] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile

Processes. Technical Report ECS-LFCS-89-85 and -86, Lab.
for Foundationsof Computer Science,Edinburgh University,
Edinburgh, 1989.

[8] OMG. The Common Object Request Broker: Architecture
and Specification, revision 2.0. OMG Document 96.03.04,
Object Management Group, Mar. 1996.

[9] M. Polman and M. v. Steen. Design Level Support for Paral-
lel and Distributed Applications. In High-Performace Com-
puting and Networking, pages 812–819, Brussels, Belgium,
Apr. 1996. Springer-Verlag, Berlin.

[10] M. Polman and M. v. Steen. Designing Distributed Programs
with Dynamic Communication Structures. In Proceedingsof
ICA3PP’96, pages 271–278, Singapore, June 1996.

[11] M. Polman, M. v. Steen, and A. d. Bruin. A Structured De-
sign Technique For Distributed Programs. Technical Report
EUR-CS-96-04, Erasmus University of Rotterdam, Rotter-
dam, Nov. 1996.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, Englewood Cliffs, N.J., 1991.

[13] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI: The Complete Reference. MIT Press, Cam-
bridge, MA., 1996.

[14] R. Wieringa and G. Saake. A formal analysis of the Shlaer-
Mellor method: towards a toolkit for formal and informal
requirements specification techniques. Requirements Engi-
neering, 1:106–131, 1996.


