Formalizing A Design Technique For Distributed Programs

Mark Polman
Erasmus University, Rotterdam
polman@few.eur.nl

Maarten van Steen
Vrije Universiteit, Amsterdam
steen@cs.vu.nl

Ariede Bruin
Erasmus University, Rotterdam
adebruin@few.eur.nl

Abstract

ADL-disa graphical designtechniquefor parallel and dis-
tributed software, in which communicationmodeling playsa
central part. Recently, we have used formal methods to de-
fine ADL-d's semantics. The original objective was to pro-
vide well-defined guidelines for future implementations of
ADL-d’'s communication constructs, but, as it turned out,
significant feedback resulted to the notation itself. We give
an outline of the ADL-d notation and itsintuitive semantics.
Also, we introduce the formal semantics, and discuss what
impact this formalization has had on the original notation.

1 Introduction

Withtheincreasing popularity of off-the-shelf networked
hardware asaplatformfor distributed computing, arenewed
interest can be observed in design support for paralel and
distributed software. We have developed ADL-d, agraphical
distributed design technique, with ease of usage, e egance,
compl eteness, and suitability for automated code generation
asitsmain objectives.

ADL-d offers notations to model an application in terms
of a process hierarchy, in which processes communicate
through gates over channels by message passing. A wide
range of communication constructs and facilities for mod-
eling dynamic process creation belong to its features. In
Section 2, we discussthe ADL-d technique, avoiding details
(which can befoundin [11, 9, 10]) to save space and to re-
main focused on the main theme (see below).

At afairly advanced stage in ADL-d's development, we
started using forma methods in describing the semantics
of the ADL-d notations, primarily as a basis for automated
code generation. Asit turnsout, the use of forma methods
has helped in meeting all four of the af orementioned objec-

tives. In Section 3, we give a brief introduction to the for-
mal method we have used, an ‘ operational semantics' spec-
ified through atransition system. Wethen explainhow ADL-
d diagrams can be fitted into this method. In Section 4, we
discuss the forma ADL-d semantics in greater detail, and
explain how the use of formal methods has been helpful
in further developing ADL-d, revealing unrealistic assump-
tions, unelegant constructs, and, very importantly, providing
amodel for an ADL-d runtime system implementation.

Section 5 discusses related work, whereas in Section 6,
we briefly state our conclusions and discuss future research
directions.

2 ADL-d

In ADL-d, an application is modeled as a process, which
can consist of subprocesses, consisting of other subpro-
cesses, etc. For each complex process, theinternal structure
ismodel ed through a set of subprocesses, communicating to
each other through gates over channels.

Whenever a process wants to send a message, it places
the message in one of its output gates. The output gate is
attached to a communication channel, which, according to
some agorithm (see below), alows attached output gates
to communicate to attached input gates. An input gate is
opened by its owner, whenever the owner wantsto receive
a message through it. Notice that with opening an input
(output) gate, nothing is specified about the intended sender
(receiver). Channels are responsible for the distribution of
messages. |n Figure 1(a), the communication structure is
modeled of an application Appl, describing a popular com-
munication pattern. One process, the Contractor, is sup-
posed to generate work and distributeit over Workers, which
process the work and send the results back. To this end,
Contractor communicates through output gate c_out (small
square) over channel Chan_cw. On the receiving end of
Chan_cw are three Worker processes, with input gates w_in.
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Figure 1. (a) Example ADL-d application structure; (b) Semantical equivalent of (a) with expansion;
(c) Internal structure of Worker process; (d) State-transition diagram for Contractor process; (e)

State-transition-diagram for Analyzer process




From within a Worker process, output can be sent back to
Contractor through w_out over Chan_wc.

The integer bel ow the Worker processindicatesitsinitia
multiplicity. An equivalent diagram is given in Figure 1(b).

Decomposition

In Figure 1(c), the interna structure of a Worker processis
given. Apparently, Workersconsist of an Analyzer and aCal-
culator, communicating over Chan_ac. The associationwith
Figure 1(a) liesin the Worker gates: while on a higher ab-
straction level, only w_in and w_out are seen to be attached
to Chan_cw and Chan_wc, respectively, we see that, in fact,
a_in of Analyzer is attached to Chan_cw and c_out of Calcu-
lator is attached to Chan_wc.

Dynamic Behavior

On the lowest level of the decomposition hierarchy are the
simple(i.e. nondecomposed) processes, that actualy display
dynamic behavior. In ADL-d, this behavior is modeled in
state-transitiondiagrams (STDS) per simpleprocess. Theno-
tations used in these diagrams are derived from those used
insbL [2], but have different semantics.

ADL-d distinguishesbetween processing states and gate
actionsinitsstps. In Figure 1(d), the dynamic behavior of
the Contractor is given. Roughly, the Contractor executes a
loop of generating work, sending it away and receiving the
results back. From itsinitial state (ellipsis), it proceeds by
entering the processing state generate work. After that, it
opens c_out for sending the work and c_in for receiving the
results, and blocks for an event on one of the two gates. If
this has happened, it can check what it was by means of a
test, which has two possible outcomes, success or timeout.
First, c_in is tested. In case communication over c_in was
successful, the solid transition is taken, and the message is
processed in process result. Otherwise, the dashed transi-
tion fires. Finaly, c_out istested. If the message on c_out
could actually be sent, the process startsall over. Otherwise,
no new work is generated; instead, anew attempt ismade to
send the old work.

Figure 1(e) models the dynamic behavior of an Ana-
lyzer process, in which it executes aloop of receiving work
through a_in, analyzing it, and forwarding it through a_out.
Without actually giving the STD, we assume that a Calcula-
tor process performsasimilar loop.

Intuitive Communication Semantics

The annotationsto channels in Figure 1(a), (b) and (c), and
to blocking actions in Figure 1(d) and (€) are used to es-
tabli sh the semantics of communi cation, which becomesin-
creasingly important as a design moves on from logica to
more technical phases.

The annotations within the channel symbols refer to the
channd’s buffering capacity. For example, the symbol 3 in
Chan_cw indicatesabuffer size of three messages. Roughly,
achannel accepts a message from an open output gate, only
if the buffer isnot full, and copies amessage fromits buffer
to an open input gate, only if its buffer isnot empty. For the
open gate, communication then succeeds. If a channel has
zero buffering capacity (e.g. Chan_wc), it getsthe semantics
of a synchronous channel: communication succeeds only if
input and output gates are open simultaneously.

Annotationsbel ow channel symbolsrefer tothedistribu-
tion semantics of the channel, i.e. how many receivers each
sent message must reach. In the figure, all channels have
‘= 1" asan annotation, meaning that communi cationiscom-
pleted if and only if a message has been delivered to onere-
celver. However, other annotations are possible as well. In
Figure 2 afew of them are listed. In case each message is

criterion | meaning

=1 exactly onereceiver must be reached

>1 at least one receiver must be reached

=50% fifty procent of al potential receivers
must be reached

=100% | al potentia receivers must be reached

Figure 2. Example success criteria

possibly intended for multiplereceivers, adistinctioncan be
made between postmedium and premedium replication se-
mantics. In case of postmedium semantics, a sufficiently
large number of attached input gates must be open simulta
neously, beforeamessageistransferred to al of them. With
premedi um semantics, open input gates can get the message
one by one, until a sufficiently large number of them re-
ceivedit. Thesymbolsfor pre- and postmediumaregivenin
Figure3. Finally,in Figure 1(d) and (€), annotationsare pro-
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Figure 3. Pre- and postmedium

vided with blocking actions. These indicate the maximum
amount of timethat a processis prepared to block for com-
muni cation through the corresponding gateto succeed (oo in
our example). When an event (success or timeout) occurson
at least one gate in a blocking state, the rest of the gates are
retimed to zero, in order to end communication as soon as
possible(i.e. to make them timeout). Thisway, after leaving
ablocking state, every gateinvolved has either succeeded or
failed.



Other Features

ADL-d has a number of additiona features, which are im-
portant from asoftware engineering point of view, but which
are dightly beyond the scope of this paper (see aso Sec-
tion 3). They include the ability to model dynamic cre-
ation of both complex and simple processes, which isdone
by means of creation channels, and the ability to model
connection-oriented communication, using which request-
reply and other forms of directed communication can be
captured. For thislatter feature, so-called connection chan-
nels and gates are used. Details with regard to these con-
cepts can be found in [11].

3 Operational Semantics

Aswas stated intheintroduction, the use of formal meth-
odsto describe the semantics of ADL-d was primarily moti-
vated by the need for rigid implementation guidelines. This
implied that the forma description had to be on alevel of
abstraction that:

o hidesimplementation details, but

o isstill easy to derive implementations from.

A first consequence of thisis the choice for an ‘ operational
semantics' as opposed to denotational semantics[1]. Using
an operational semantics has the advantage over an actual
implementation, that we are free to abstract from many im-
plementation details that are of less importance, or that we
simply do not want tofill inyet. Still, we can choose alevel
of abstraction that is till sufficiently closeto ‘redity’ tore-
veal problemsaswell as opportunitiesfor distributedimple-
mentation.

3.1 Basic Concepts

In our operationa semantics, adistributed applicationis
modeled as a set of objects, some of which execute a se-
guence of statements in some language. An object is de-
scribed by atuple (p, s,, 0,), wWhere p is a unigque object
identifier, s, (optional) isthelist of statements still to be ex-
ecuted by p, and o, is afunction of p's variables to values
insome domain, i.e. o, defines p's state.

As an example, a simple language for objects
could be defined as follows:

s == w:=el|skip] ifethenselsesfi|

while e do s od | (s;s) | E

implying that a statement can be an assignment to
avariable (v denotes a variable name and ¢ de-
notes an expression), a skip, a conditiona state-
ment, a conditiona loop, a sequence of state-
ments, or the empty statement E.

A paralldl, distributed application at some pointinitsexecu-
tion can now be described as a set of tuplesaccording to the
above sketch. How the application executes from there is
determined by a set of transitionrules, which fire dependent
on the state of the application (or a subset thereof), thereby
bringing one or more objects into a different state and pos-
sibly a step further in the execution of their statements.

As an example, consider the following transition
rule

{(p, if e then s; else s; fi,o)} — {(p,s1,0)}
if V(e)(o) =1t

whichtellsusthat if thereisan object intheappli-
cation set willingto execute astatement s, , condi-
tional on an expression e, and if, given the state of
p, e evaluatesto it (=true), then thisrule can fire,
causing p to move on to executing s .

Concurrency in an applicationiis, in fact, modeled through
the possibility of multiple transitions (concerning different
objects) being enabled at the same time.

The following rule formalizes this:

] = T2
riUr — roUr

Tranglated into English this rule tells us, that if
any subset (r1) of objectsinarunning application
matches the |eft side of atransition rule, resulting
inr,, thenthisrule can fire, leaving therest of the
objects (r) unaffected.

Roughly, a run of a paralel and distributed application,
modeled in the above way, is determined by repestedly se-
lecting nondeterministically one of the enabled transitions.
The set of al possible runs, generated in this way, can be
seen as ‘the semantics' of the application.

Obviously, a formalism as introduced above is most in-
teresting when the objects interact, in other words, when
there are transition rules involving tuples of more than one
object. Thisis discussed later.

3.2 Trandating DiagramsInto Object Structures

From Diagram Objectsto Formal Objects

If we are going to translate ADL-d diagrams into objectsin
the forma notation introduced above, we have to ask our-
selves which conceptsin the ADL-d notation domain should
return as concurrent objects (tuples) in the trandation. A
simple oM T-like ([12]) analysis of the ADL-d domain gives
us the diagram of Figure 4. Obvious candidates for concur-
rent objects are channels and processes. However, from the
informal descriptionsof ADL-d, it appears that gates have a
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Figure 4. Simple OMT diagram of ADL-d domain

state as well (open, closed, succeeded, etc.), which can be
modified by both processes and channels. For this reason,
we model gates as tuples as well, despite the fact that they
seem to be so closaly linked to processes. Finaly, we have
also chosen to model messages astuples. However, thiswas
primarily driven by a search for elegance.

From STDsto Statements

The next thing to do isto providethe ADL-d process, chan-
nel, and gate tupleswith statements, and after that with vari-
ables and state functions.

Obviously, the statement s, in aprocesstuple (p, s,, o)
should be atextual representation of p’s STD. To this end,
we adopt the language definition from the previous section
for representing what can be done in processing states, and
make extensions to represent gate actions:

Gset ::=¢|(g,t) | (9,¢,%) |

(9,1),Gset| (g,¢,1),Gset
Block ::= block(Gset)

Test ::=test(g,v) succ s fail s |
test(y) succ s fail s
s n=wv:=e|skip| if e then s else s fi |

while e do s od | (s;s) | Block | Test

As can be seen, we extended the definition of s with block
and test statements. The block statement has a sequence of
tuples as its arguments, where each tuple consists of a gate
identifier and atimer value, and, in case of an output gate,
the expression to be sent. A test hasagateidentifier and, in
case of an input gate, a variable name as its arguments (for
storing a received value). The success and timeout transi-
tions from the STDs are given their textua representations
aswell.

For channels and gates (and aso messages), we do not
give statements in some language to express their behav-
ior. The reason for this is that doing so would come too
close to providing an actua implementation, which, as we

stated above, was something we wanted to avoid. Instead,
the semantics of communication are expressed by transition
rules that transform the states of (sets of) gates and chan-
nels. This, infact, resembles adeclarativeway of specifying
things: for atransition ruleto fire, channels and gates must
bein state X; afterwards, they will bein state Y.

From Attachments and Annotations to Variables and
States

Thethirdentry inan object tupleisitsstatefunction, assign-
ing avalueto each of itsvariables. We distinguish between
two types of variables: the ones that refer to other objects,
and the onesthat do not. Thefirst group isused to define the
structure of the application (the attachements from gates to
channels, from gates to processes, etc.). For example, ev-
ery gate has avariable proc, which, through the gate's state
function, refersto theidentifier of the process object that the
gate belongsto. Likewise, it hasachan variablepointingto
the channel that it is attached to L.

These and the other variablesaregivenin Figure5, where
aprocess, achannel, agate and amessage are given as object
classes with attributes. Notice that all annotations used for
implementing the communication semantics, as discussed
in the previous section, are represented here. For example,
channels have a capacity variable, and gates have a timer
(which is set in blocking actions). Notice also the stat at-
tributeof gates. The possiblevauesrepresent open, closed,
succeeded, and failed for input gates and output gates, re-
spectively.

1Actually, since ADL-d supports dynamic creation of processes, the
system is more complicated than suggested here. More specifically, in
real ADL-d, processesin ADL-d diagrams are process prototypes, which,
through their structure variables, describe an application’s structure on a
meta level, such that every prototype and the structure between them can
be instantiated. Here, we have abstracted from this to simplify matters.
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gl..gn gate ID buf list of mess ID
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Figure 5. Conceptual ADL-d objects

4 Transtion Rules and Results

Now that we have aformal tuple representation of ADL-
d diagrams, both structure models and sTDs, we can de-
scribe ADL-d semantics through a set of transition rules as
discussed above. In order to keep the system elegant and
easy to derive implementationsfrom, we strive to:

o keep thenumber of objectsinvolvedin any singletran-
sitionrule as low as possible, and

o Kkeep thetotal number of transitionsaslow as possible.

K eeping the number of different object tuples per transition
rulelow hastheadvantage of simplicity. But moreimportant
isthat itisasuccesstest for the modul arity of the approach.
Thefewer objectsper transitionrule, thelessinformationon
variousobjectsisneeded for ittofire. Thisisclearly benefi-
cia for astraightforward distributed implementation. Con-
versaly, if we can find no such el egant way of describingthe
intended ‘intuitive’ semanticsof aconcept, e.g. postmedium
broadcast, then this might be a reason to reconsider thein-
tuitive semantics themselves. Wewill look at an exampl e of
thislater.

Below, we first state and explain some of the transition
rules, and use these to illustrate the subsequent discussion
on the benefits of our forma method.

41 GateActions

Rule 1: Blocking on a Gate

We start off simple, with the opening of and blocking for an
output gate:
{(p,block((gvar,e,t),Gset),0,),(9,04)} —
{(p, block(Gset), 0'1’,), (g, 0';), (m,om)}
if Up(gvar) =49 (1)
o4(proc) =p 2
og4(stat) € {B K, B} 3

where o}, = o, { (0, (blockset) U{g})/blockset } 4
o, = 0g{0/stat, m/mess, V(t)(op)/timer} (5)
om(val) = a (6)
o = Vi) (o) )
om(sender) =g (8)

Thisruletellsusthat if p blocks on one of its gate variables
pointingto (1,2) output (3) gate g, trying to send « (7), then
g isadded to p'sblockset (4), and changes state to opened
(5). Also, a new message object is created with val o (6),
and sender g (8).

Condition(4) should beread asfollows: o, equalstheold
o, with the exception of the blockset variable, which gets g
added to it. A similar reading goes for condition (5).

Therulefor blockingon aninput gateisvery similar, only
with the value of theinput gate's variable stat changing to
O, and without generating a new message object. Also, re-
opening a succeeded gate has no effect. First, the delivered
message has to be processed (see below).

Rule2: Unblocking on a Gate

When an event has occurred on &t least one of the gatesin
aprocess blockset, then ADL-d semantics prescribe that an
effortismade to close al still open gates as soon as possible
(for reasons discussed below):

{(p,block(),a,) } U Uiz {(gi,09,)} —
{(p,block(), o)} U UL {(gi,05,)}

if Vi: o4 (proc)=p Q)
Jj(1<j<n): ag(stat) ¢ {O,0} 2
U {g:} = op(blockset) 3

where g, = oy, { (0, (blockset) \ {g;})/blockset } 4

Vi(i#j): oy = a4 {0/timer} (5)

Tranglated to Englishthisrulesaysthat if for process p there
isat least (2) onegate g; inp'sblockset (3) that is not open
anymore, then al g, are retimed to zero (5), so that they can
timeout quickly. Gate g; isremoved from p'sblockset (4).

After thistransition, at some point inthefuture, for every
gatein p'sorigind blockset, we have that it has either suc-



ceeded or timed out. At that moment, another rule can fire
causing p'sblock() statement to end, enabling p to continue
with the next statement.

Rule3: Testing

After going through a bl ocking phase, a process can, one by
one, test the gatesinvol ved for success or timeout, and make
the appropriate transition. The transition rulefor successful
input is as follows:

{(p,test(gvar,v) succ s, fail s5,0,),(g,04), (Mm,0m)} —

{(p’sl’ 1/7) (g,aé),(m,am)}

if 05 (gvar) =9 D
o4(proc) = p 2
og4(stat) = 3
o4(mess) =m 4
om(val) = a (5)
where o, = op{a/v} (6)
o, = 0,{@/stat} (7

As can be seen, if process p testson its (1,2) succeeded (3)
input gate ¢, which pointsto a message m (4) with vaue a
(5), then p'svariable v will get value  (6), and g is closed
(@)

4.2 Channd Semantics

Transition rules for channels' distribution semantics al
bring one or more attached gates into a different state. How
many depends on the channel’s success criteriaand whether
it ispost- or premedium.

Rule4: Sending on an Asynchronous Channel

{(C’UC)’ (g,O'g)} - {(C’Ué)’ (g,o‘é)}

if o4(chan)=c¢ Q)
og4(stat) =0 2
size(oc(buf)) < oc(cap) (3)

where o), = 0y {X/stat } 4

o, = o.{append(o.(buf),o4(mess))/buf} (5)

Thistransition rule describes what happens if a message on
an open output gate is accepted by a channel with nonzero
capacity. If gate g on channd ¢ (1) is open (2), and thereis
roomin ¢'s buffer (3), then ¢ succeeds (4), and its message
is appended to ¢’s buffer (5).

Rule5: Receiving on a Postmedium Channel

{(e.oe)} U UL {lg' 0g)} —

{(e,00)} U U {(9",07:)}

if oc(type) = post Q)
front(o.(buf)) =m 2
oc(erit) ='=n’ 3
Vi: o4i(chan) =c 4
Vi: oi(stat) = 0O (5)

where o/, = o.{chop(c.(buf))/buf} (6)

Vi O';i =0,i{®/stat, m/mess} (7

If there are sufficiently many (3) open (5) input gates on
postmedium (1) channel ¢, and ¢ has a nonempty message
buffer (2), then dl input gates succeed simultaneously and
get the first message from ¢’'s buffer (7),

4.3 Dynamic Creation and Connections

Up to now, we have omitted the notations for dynamic
creation and connection-oriented communication that ADL-
d includes. We did this, because the additiona constructs,
needed in our formalization to include these features, are
complicated and space-consuming, but not very interesting
froma‘formal semantics' point of view. Below, we explain
why.

Creation

As the footnote in the previous section suggested, the nota
tionsin the ADL-d diagrams represent prototypes of struc-
ture and behavior, of which, at runtime, multiple instances
can exist, and additional instances can be created. We could,
for example, enable aContractor to create Worker instances,
whichisdepicted in figure 6.

Here, Chan_cr is a creation channel, for the creation of
Workers, on which Contractor hasan output gate. Whenever
the Contractor outputson Chan_cr, anew instance of Worker
isinstantly created, including a creation of everythinginits
substructure (i.e. Analyzer, Chan_ac, and Calculator). This
is what we want the semantics of dynamic creation to be.
In our formal description, the corresponding transformation
rulelookslikethis:

Rule 6 (concept): Sending on a Creation Channel
{(e,0¢),(g,09), 7} = {(c,00),(g,05), 7"}

if o4(chan)=c¢ Q)
og4(stat) =0 2
oc(type) = creation 3

where o), = 0y {&/stat } 4

r’ = rU new instances (5)

As can be seen, we introduced a new type (creation) for
channels. If open gate ¢ (2) outputs on its (1) creation
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Figure 6. Example structure with creation channel

channd (3) ¢, then new instances are added to the existing
application set (5). Thisset of instancesisafunction of the
the process prototype that ¢ refers to (which is kept in an
additional, not previously shown, channel variable proc),
and the application structure such as modeled in the ADL-d
diagrams, which has to be copied among the new instances.

Thiscopying of theapplicationstructure between new in-
stances is a fairly complex matter, but neverthel ess some-
thing that is model ed using afunction executing in zero time
(i.e. by thefiring of one transformation rule). This latter
property makes it less interesting when it comes to the in-
teraction between notation and formalization (see below):
we wanted dynamic creation of (complex) processes to be
atomic, and we formalized it straightforwardly.

Connections

A similar reasoning goesfor setting up connections between
gates of ADL-d processes, which implies, in fact, nothing
more than the dynamic creation of channels, dedicated to a
select group of processes (or more exactly, gates). These
creations are, in our formalization, also modeled by func-
tions, executing atomically.

44 Results

Implementation

All in al, we need approximately 20 transition rules to
specify the entire communi cation semantics of ADL-d, none
of which is much more complicated than rule 5 specified
above. Thus, we have a compact and simple set of guide-
linesto verify ADL-d implementations.

The above set of transition rules that we have chosen to
illustrate matters shows aclear distinction between process-
gateinteraction and gate-channel interaction, with messages
flowing between these objects. This, infact, goesfor theen-
tiresystem, which, aswas stated before, isan indicationthat
straightforward distributed implementationisfeasible. Cur-

rently, a distributed implementation is operational, serving
as atestbed for new ideas, algorithms, added features etc.

What isnot shown inthe examples (because of spacelim-
its) is that some forms of communication require quite an
amount of administration. For example, with premedium
message distribution to multiple receivers, in order to pre-
vent recelvers from getting the same message more than
once, records have to be kept showing which processes have
received which messages. This iswhat, in our formaiza-
tion, we use the recvrs field in our messages for. In our se-
mantics, we have been careful not to overspecify thetransi-
tion rulesin the direction of oneimplementation or another,
where it comes to keeping this administration. Specifying
semanticsin adeclarative manner, interms of state-changes
in gates, allowsfor many implementations. It also keepsthe
number of transition rulesdown, making thesystem simpler,
and allowing usto focus mainly on the interaction aspects.

With these results, our main objective, to generateimple-
mentation guidelines that are nonrestrictive towards details
on theagorithmiclevel, is met.

Feedback

Asfar asthe interaction between formalizing the ADL-d se-
mantics and the notation itself isconcerned there are several
resultsto be reported, the most important of which arelisted
bel ow.

Single Select State Originally, the block and the test ac-
tionsin ADL-d were integrated into one blocking state
with two outgoing transitions: one for success and one
for timeout. Also, ADL-d included a construct called
thesinglesalect state, which was devised to enable pro-
cesses to block for communication over severa gates
simultaneoudly, with the guarantee that after leaving
the blocking state, at most one gate had succeeded.
Clearly, we did not succeed in incorporating such a
construct in our transition system, sincesuccess for dif-
ferent open gates is determined independently by dif-
ferent objects in the system. Suppose process P has



opened gates p_1 and p_2. If these gates are attached
to different channels, then guaranteeing that only one
of them succeeds would require some intricate coor-
dination between the channels involved, when the sit-
uation on the channels is such, that p_1 and p_2 can,
in principle, both succeed. In fact, any attempt to in-
corporate such semantics without enormous commu-
nication overhead or highly centralized solutions was
feeble. A compromise was found using the language
building blocks that were aready present in our for-
malism: block and test, and make them explicit in the
ADL-d notation. The only guarantee that is given af-
ter leaving ablocking state, isthat none of the gatesin-
volvedisopenanymore. Consequently, they haveto be
tested one by one for success at alater stage. A prob-
lem that remained was the possibility of an input gate
succeeding and not being tested before being opened
again, alowing the old vaue to be overwritten. We
have blocked this by a rule specifying that a block on
agaein state ® leaves thisstate intact (see the remark
below Rule 1).

Unicast and Broadcast From the start, ADL-d distin-
guished only between unicast and broadcast in its
distribution semantics, and included special channel
symbols for these. However, in searching for an
elegant model to capture both, we came up with
success criteria in terms of receivers reached. But
this construct allowed for far more possibilities for
channel semantics than just unicast and broadcast (i.e.
various types of multicast), which all made sense, too.
Hence, we decided to incorporate explicit notations
for success criteria in ADL-d, thus covering a more
compl ete range of communication patterns.

Nonblocking Opening A similar phenomenon can be ob-
served with the gate states open, closed succeeded, and
faled. After identifying these states from the intu-
itive ADL-d semantics, it is only natura to incorpo-
rate explicit commands in our process language that
use/manipul ate these states (in the form of block and
test). However, the semantics of block can till be
split into a separate open, just for opening the gate,
followed by a block, for just blocking. This separate
opening could then be incorporated as a gate action
in ADL-d's STD notation, allowing processes to open
gates without immediately blocking for them. Cur-
rently, we are investigating the consequences of incor-
porating a separate gate action to open gates.

Group Communication A weak point of ADL-d usedtobe
its lack of group communication facilities. However,
athough only briefly discussed above, ADL-d doesin-
clude constructsto model connection-oriented commu-
nication, in which a connection is established between

a number of senders and receivers over one or more
channels, before actual datatransfer starts.

This can be considered a case of static group commu-
nication: a group is established, data transfer occurs,
and the group disintegrates. However, formalizing the
semantics of connections has revealed possibilitiesto
let gates dynamically join and leave connections. This
would be another example of successful feedback.

5 Reéated Work

Any design notation striving to be a candidate for auto-
mated code generationislikely to have some sort of formal-
ization of its semantics. Theidea of having your semantics
defined in natural language or by an actual implementation
in some programming language is not very appesaling.

There are numerous formalisms to choose from, each
with its own strong points and wesknesses. An important
factor in the selection of aformalism iswhat theformaliza-
tionisused for. For example, our operationa semantics has
the advantage of its intuitive appeal, which makes it easy
to see what communication patterns are generated by ADL-
d channels. Also, deriving channel implementations from
these semantics is straightforward. These were exactly the
properties we were looking for. However, transformation
systemsare hard to execute directly for verification and ssim-
ulation purposes, which is possible when using Petri nets.

PARSE

A technique similar to ADL-d is PARSE [3]. PARSE'S no-
tations are formaized using Petri nets. Its BSL programs,
which are used to specify individua process behavior, are
easily converted to Petri nets. Coupling these Petri nets
according to what is specified in PARSE's process graphs,
which define an application’s structure, renders a net de-
scribing an entire application. This can subseguently be
used for verification and simulation on the level of abstrac-
tion that Petri nets provide.

A problem with Petri netsistheir static structure, which
renders difficulties when modeling applications with dy-
namically changing/expanding structures. This was one of
the reasons we stuck to an operational semantics description
of our notations.

Regisand Darwin

The configuration language Darwin [4] (with both a graphi-
cal and atextua representation), isused to describe the bind-
ing between self-contained components with well-defined
communication interfaces, as, for example, used in Regis
[5]. The language can be used to design dynamically evolv-
ing communication structures. Itsformal semantics are de-



scribed in Milner’'s w-calculus [7]. In the m-caculus, it
is possible to name communication channels and transmit
these names over other channels among processes so that
new bindings can be formed.

SDL

Aswas pointed out, our notation for modeling behavior has
been derived from spL [2]. Infact, theroleof sDL statedia
gramsisvery similar tothat of our state transition diagrams.
In sDL, state diagrams are used to model a process that ap-
pears in a block diagram. A block diagram corresponds to
our notion of a (complex) process. A major distinction be-
tween sDL and ADL-d is that ADL-d emphasizes commu-
nication modeling between processes. It is for this reason
that we have different communication channels, and strictly
separate processing from communi cation by means of gate-
based interfaces.

SDL has been formalized using the Meta-1V language, a
very complete language, with a ‘programming like' nota-
tion. Assuch, Meta-|V is very much oriented towards im-
plementation, which was the objective of the formalization
inthefirst place.

Besides PARSE, Darwin and sbL, many other model-
ing and design techniques exist, but not as many are ex-
plicitly targeted towards development of parald and dis
tributed programs. Instead, what we observe is that dis-
tributed computing is often supported at the implementation
level by means of middleware solutionssuch as CORBA [8]
and bcowm [6], or advanced communication libraries like
MPI [13].

A research area related to ours is that of the object-
oriented modeling techniques. Here aso, work has been
done on the formalization of graphical notations. For an
overview, see [14].

6 Conclusonsand Future Work

Using only about 20 transition rules, we have been able
to formally define ADL-d's communication semantics. To-
gether, they form an implementation model, providing a
minimal set of criteriato which implementations must con-
form.

The maintai ned abstraction level hasturned out to be suf-
ficiently closeto a distributed implementation to revea sev-
eral flawsand unrealisticassumptionsinthe‘intuitive’ ADL-
d semantics. The formalization has even triggered changes
inthe original ADL-d notation itself.

Future work will include the testing of different algo-
rithmsfor internal channel behavior (of course conforming
to the semantics described here). Also, aswas stated before,
we are looking into possibilities for providing more com-
plete group communication facilities. The first results on

this subject are expected shortly.
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