
Design Level Support for Parallel and Distributed
Applications

Mark Polman
Erasmus University, Rotterdam
e-mail: polman@cs.few.eur.nl

Maarten van Steen
Vrije Universiteit, Amsterdam

e-mail: steen@cs.vu.nl

Abstract

The growing interest in using a cluster of workstations as
the target platform for high-performance applications, has
again emphasized the need for support tools that can be
used during application design. In this paper we present
a graphical technique, called ADL-D, that allows a devel-
oper to construct an application in terms of communicat-
ing processes. The technique distinguishes itself from oth-
ers by its use of highly orthogonal concepts, and the sup-
port for automated code generation. Developers are en-
couraged to concentrate on designing components in iso-
lation, making the complex design space more manage-
able than would otherwise be the case. ADL-D can be used
from the early phases of application design through phases
that concentrate on algorithmic design, and final imple-
mentation on some target platform. Rather than present-
ing details of ADL-D, we use it here as a vehicle for a more
general discussion on design level support for parallel and
distributed applications.

1 Introduction

There is a growing interest in clusters of worksta-
tions (COWs) as the target platform for parallel and
distributed applications. Unfortunately, these net-
works impose the same problems on application de-
velopment as parallel distributed memory machines
did before. With the low-level communication sup-
port through message-passing, the development pro-
cess remains relatively hard and time-consuming.
Traditionally, support tools are offered that make
problem analysis with respect to communication
easier, such as monitors and debuggers. But rather
than focusing on how to correct distributed appli-
cations, support should be provided to prevent poor
designs and implementations. We advocate that this
support should be provided during the phases of log-
ical and technical design, and that it should continue
in a seamless way down to and through the imple-
mentation phase. To that end, a clear and simple

communication model is needed that can easily be
mapped to target platforms.

In this paper we start with presenting the basic re-
quirements for such a model and its implementation.
In Section 3 we present a technique, called ADL-D,
which is based on such a model. We conclude this
paper by briefly comparing our work to that of oth-
ers.

2 Distributed application design

2.1 The basic model

The two basic elements of a model for parallel, dis-
tributed programs are its unit of execution and its
communication form. In practice, we observe that
the unit of sequential execution is almost invariably
chosen to that of a process, and parallelism is ex-
ploited by having several processes run simultane-
ously.1

Process interaction is determined by the chosen
communication model. Communication through
shared data [5] has demonstrated to be a relatively
easy model to work with, given the proper synchro-
nization abstractions. However, deriving efficient
applications is hard if the target system does not sup-
port this model as well.

An alternative is to use message-passing, which is
supported by many platforms, notably COWs, allow-
ing for straightforward derivation of efficient imple-
mentations. This model, however, is at a low level of
abstraction, requiring more effort from the designer.

This problem is partly offset in an object-based
model, where self-contained objects communicate
through method invocation, with semantics similar
to ordinary procedure/function calls. This approach
has been advocated for long by language designers,

1Finer grained parallelism, such as expressed at the level of
statements, is often advocated for developing algorithms, which
we are not concerned with in this paper.

1



but how to actually incorporate concurrency into an
object-oriented language is still a subject of much
debate [7, 8]. The object-oriented model itself seems
to be too restrictive when it comes to supporting ex-
ploitation of parallelism for the sake of efficiency.
We feel this is at least partly caused by the fact that
not objects, but the data they encapsulate, should be
the starting point for parallelization. Distribution of
data may easily conflict with the requirement that it
is also to be encapsulated into (non-distributed) ob-
jects.

Mainly for these reasons, we advocate a message-
passing model when COWs are to be used as the tar-
get platform. The difficulties related to this model
can, in our opinion, be tackled at the design level,
where an emphasis should be put on designing com-
munication structures. Thus communication be-
comes the main issue instead of the processes.

2.2 Designing communication

All aspects of communication in a message-passing
model together form quite a complex design space
for a developer to handle. This complexity can be re-
duced by distinguishing many orthogonal modeling
concepts. Communication structure versus (commu-
nicative) behavior of individual processes is one ex-
ample. Other communication aspects include mes-
sage transfer semantics, message data types, and
dynamic changes in the communication structure.
Below, we discuss how we can equip a message-
passing model with the proper features to implement
the above orthogonalities.

In order to clearly separate the behavior of a pro-
cess from communication between processes, it is
necessary to use explicit interfaces. To that end,
we advocate the use of communication endpoints.
They allow us to model process behavior using just
two basic components: (internal) computations, and
communication through communication endpoints.
In particular, behavior models can be constructed on
a pure per-process basis, i.e. in isolation from other
processes.

Similar reasoning holds for modeling the overall
communication structure, which can also be treated
separately. Modeling interprocess communication
becomes, in fact, nothing else but modeling the com-
munication between communication endpoints. In
order to capture the full semantics of this communi-
cation, channels can be introduced. A communica-
tion channel connects one group of endpoints to an-
other, and thus provides for the transport of messages
between members of both groups.

The outlined structural framework now provides

the hooks to incorporate the modeling of actual mes-
sage transfer semantics, such as blocking, multicast
and buffering semantics. Since it is the channels
that are responsible for distribution of messages over
receivers, they should carry the multicast seman-
tics, resulting in, for example, unicast and broadcast
channel forms. Also, by giving each channel a cer-
tain capacity, we can model buffer semantics. Fi-
nally, the time that a process is prepared to block for
communication to succeed is a question that mainly
concerns processes. Hence, blocking semantics are
carried by the interfaces, resulting in a timer per end-
point, that indicates the maximum blocking time for
that endpoint.

The data types of messages is something that
could be modeled as part of an endpoint or as part of
a channel (or perhaps both). In any case, data types
should be made available to the endpoints, since they
must be known to the processes.

2.3 Runtime Structure Changes

In distributed applications the communication struc-
ture itself can be subject to runtime changes, due to
a need to dynamically load functionality, or to repli-
cate components for increased parallelism or relia-
bility. When adopting a model of processes that are
connected through channels as explained so far, run-
time structure changes can easily be expressed in
terms of creating and deleting processes and chan-
nels. This approach has at least one implication: the
description of a process is actually the description of
a process class. A process is then to be seen as a class
instance. A similar reasoning holds for channels.

We distinguish three independent aspects in mod-
eling dynamic creation, namely modeling parent-
child relationships between processes, modeling cre-
ation as a part of application behavior, and modeling
the kind of structures that emerge during runtime.
Parent-child relationships can be captured in the ap-
plication structure model. Likewise, if dynamic cre-
ations are initiated by processes, the moment of cre-
ation can be captured in the process behavior model.
The difficult part is the description of a dynamically
changing communication graph. Here, we think that
graph rewriting grammars [1] are too complicated to
use in a design technique. An alternative approach is
discussed below.

2.4 Code generation

Design support should not end with providing a de-
signer with an application structuring tool. Instead,

2



the designer should be relieved from as much as pos-
sible of the burden of translating a design into an im-
plementation, through automated code generation.
A condition to be satisfied is that the generated code
is efficient. Here, we see another reason to maintain a
message-passing model. First, it is sufficiently low-
level to allow for a straightforward mapping on the
platforms it is intended for. Second, the orthogonal-
ity of modeling concepts allows us to independently
determine the most efficient implementation of each
individual concept.

3 ADL-D

In this section, we introduce ADL-D, a graphical de-
sign technique, based on the model outlined in the
previous section. ADL is an abbreviation of Appli-
cation Design Language. As a design technique for
parallel software, ADL has existed for several years.
ADL-D extends ADL by adding higher-level commu-
nication and dynamic creation concepts, thus mak-
ing it more suitable for distributed software design.
Below, we will describe ADL-D’s communication
features, its behavior model, and dynamic creation
model.

3.1 The Communication Graph

ADL-D’s communication graph notation consists of
symbols for processes, gates, and channels. Pro-
cesses and channels are as described above. Gates
are the communication endpoints that form the inter-
face between processes and channels. In Figure 1 we
see how processes A1, A2, and A3 each have an out-
put gate on channel Chan, whereas processes B1, B2,
and B3 have input gates on Chan.

A1

A2

A3

B1

B2

B3

Chan
10

int

a1

a2

30

b2

a3

b1

b3

30

Figure 1: ADL example communication graph

The contents of the gate symbols indicate their
maximum blocking time: indefinitely for A1 and B1,
no time at all for A2 and B2, and 30 seconds for B3 and
C3. An annotation to a channel symbol reveals its
buffer capacity (synchronous channels have capac-
ity 0). A full buffer implies that additional senders

get blocked according to the timing of their output
gates. From each channel, multicast variants exist
as further described in [11]. An ADL-D channel is
unidirectional, stateless and non-deterministic. That
means that for each message from a sender, a chan-
nel makes a new decision about the receiver. This
decision can, in principle, not be influenced by the
designer.

3.2 Process decomposition

ADL-D provides a hierarchical view on an applica-
tion through process decomposition. For example,
process B2 from Figure 1 could be decomposed into
C1, C2 and C3 shown in Figure 2. Here, gate b2 of
B2 returns as an external gate in the decomposition
diagram of B2.

b2

B2

b2 c3_in

c1_out

c1_in

c2_outc2_in

C3

C1

C2

Figure 2: Decomposition of process B2.

3.3 The Behavior Model

Sequential behavior modeling per process in ADL

is done through state-transition diagrams (STDs) of
simple, i.e. non-decomposed processes. Emphasis is
put on communicative behavior by supporting sepa-
rate communication states. An example STD is given
in Figure 3 which shows the dynamic behavior of
process C 2.

c2_out

c2_in

C2

Figure 3: State-transition diagram of process C2

from Figure 2.

From its initial state (left), it proceeds to receive
over gate c2 in in a so-called input state (also named
c2 in). If communication succeeds, a transition oc-
curs along the solid arc to a computation state, af-
ter which the process terminates. Otherwise, in the

3



case of communication failure, the transition along
the dotted line is followed, leading to the output state
c2 out in which it communicates through output gate
c2 out. After that, the process terminates. Notice that
no direct interaction with channels or other processes
occurs: everything is modeled in terms of gates.

3.4 High-level Communication

A consequence of the use of unidirectional, state-
less and non-deterministic channels is that model-
ing the sending of multiple messages to the same re-
ceiver and request-reply modeling are hard to real-
ize. ADL-D solves these problems by introducing
the connection channel and the two-way channel.

The two-way channel, shown in Figure 4(a), is a
combination of two unidirectional channels to which
processes are connected by two-way gates. A two-
way gate is nothing but a combination of one input
and one output gate. The semantics of the channels
and gates that underlie the two-way channel are ex-
actly as explained above.

A connection channel (see Figure 4(b)) consists
of three channels: connect (the ‘=’ symbol denotes a
synchronous channel) for establishing a connection
between two processes, data for the actual data trans-
mission, and disconnect for disconnecting the com-
municating parties. The semantics are, that once A

and B have communicated over connect, data will be-
have to them as if they were the only processes con-
nected to it. Disconnecting is done by communica-
tion over disconnect. A precise description of these
semantics can be found in [9]. ADL-D also supports
multiplexed connection channels, which can main-
tain several connections simultaneously.

By making data in the figure an ordinary message
queue, the sending of multiple messages to the same
receiver can be easily modeled. By making data a
two-way channel, request-reply behavior can be cap-
tured. The advantage of modeling connections using
three different channels is that we hardly need to add
new semantics to ADL-D as it is. In our STDs we do
not even need new notations: ordinary input and out-
put states can be used to model communication over
(dis)connection gates.

As a final remark, we note that for relatively sim-
ple forms of two-way communication traffic, such as
RPC, using the full syntax for connection channels
and gates can be rather cumbersome. To overcome
this problem, we propose the use of macros: abbre-
viated notations for design situations that occur fre-
quently. At the moment, the only macro that exists
in ADL-D is a simpler notation for RPC communica-
tion, but others are possible as well. Again, we refer

to [9] for more details. Note that macros are purely
a notational issue. Nothing is added that could not
already be modeled in ADL-D as it was.

3.5 Dynamic Creation

Support for modeling the dynamic creation of com-
munication structures is a difficult issue. In practice,
the number of instances of each component is of-
ten fixed at design time. ADL-D tackles the problem
by the use of creation channels, which determine
the parent-child relations in an application structure.
Figure 5(a) shows how instances of process A can
create instances of the (decomposed) process B. A
creation message is sent through an output gate of A,
but it is not explicitly received through an input gate.
Communication through the output gate fails if the
creation fails, leading to a normal failure transition
in A’s STD.

Dynamic creation can be applied to both simple
and decomposed processes. If a process is instan-
tiated, an instance is created of its whole internal
structure (if present), after which it is placed in the
communication graph, exactly as specified in the
structure model. In Figure 5(b), we see that after cre-
ation of two B instances, both instances of D get con-
nected to channel Chan.

Unfortunately, using the default insertion scheme,
we cannot model the creation of more complex com-
munication structures such as pipes, grids and trees.
For this, we need special notations. As we stated
before, a graph rewriting grammar is too complex
for our purposes. Instead, we propose the use of a
language in which we can describe the building of
a communication structure as a series of steps, sim-
ilar to many configuration languages. A difference
lies in the fact that our configuration language should
be interpretable during the execution of the applica-
tion. Any special input to the configuration program
is provided by a process, and transported over a cre-
ation channel. This also implies that creation chan-
nels can be annotated with data types as well.

The question is what this language should look
like. In our opinion, it should look upon a communi-
cation structure as a relational database of processes,
gates, and channels. By querying and manipulating
this database, new processes can be inserted into a
communication structure easily. As it turns out, Pro-
log can be used for this purpose (see [9] for further
details).

4



T

(b)

a
a

b
b

??A B
?
?

C
connect

disconnect

dataA B?

(a)

Figure 4: (a) Two-way channel; (b) Connection channel

ChanChan

A c A[1]

B

C

D

(b)(a)

B[1] B[2]

C[2]C[1]

D[1] D[2]

Figure 5: Creation channel and semantics

4 Discussion

An initial version of ADL-D has been operational for
some time now [12], and the current version which is
being targeted towards COWs is still being improved.
We are presently completing the implementation of a
runtime system to support network applications de-
rived from ADL-D. Our next major step concerns
research into efficient code generation for COWs.
So far, code generation has only been supported for
parallel distributed memory machines such as those
based on transputers and the PowerPC.

When placing our work in the context of support
for parallel and distributed application development,
it is surprising to see that relatively speaking, not
much research has been conducted in the area of sup-
porting the design of applications. Instead, most re-
search and development effort has concentrated on
the algorithmic level, often in the form of language
design and accompanying tools. Nevertheless, there
are a number of comparable projects.

Most notable is perhaps the work on modeling
applications through functional dependency graphs,
exemplified by HENCE [2] and CODE [3]. In this ap-
proach, an application is viewed as a collection of
functional and indivisible units, connected to each
other by pure input/output relations. Each unit can
be executed on a separate node, and parallelism is
achieved by scheduling independent units simulta-
neously on different nodes. Although attractive for
its simplicity, this model has a number of serious re-
strictions making it unsuitable as a general model for

distributed applications. The most serious restric-
tion is that units are indivisible. This implies that
no communication is assumed during the execution
of a unit. Consequently, a unit has to be decom-
posed whenever decisions based on computations af-
fect communication, possibly resulting in intricate
task graphs which need to be explicitly managed by
the designer.

Opposed to functional decomposition are ap-
proaches based on message-passing. In PARSE [4],
an application is structured in terms of processes
and communication arcs between them. However,
PARSE does not provide explicit interfaces between
processes and communication, and neither does it
provide support for runtime adaptations. Process
behavior should be expressed through a separate
language, or Petri nets. Automated code genera-
tion from a design is not supported at all. In a
sense, PARSE is more a specification mechanism
than a technique to support the design of parallel,
distributed applications.

More in line with our work is PAR-SDL [10]. It
is also a graphical technique for designing paral-
lel systems and has many similarities with ADL-
D. The most important distinction is that PAR-SDL

builds on state-transition machines and communica-
tion between them. In contrast, ADL-D uses the more
abstract concept of processes as its starting-point,
which are later refined with respect to their internal
behavior. A strict separation between communica-
tion and computation is much harder to maintain in

5



PAR-SDL. In fact, many semantical aspects of com-
munication are completely left for the designer to
cope with. Another drawback of taking communi-
cating state-transition machines as a starting-point is
that replication is much more difficult to incorporate.

Many of the requirements mentioned in Section 2
are met by the work on Regis [6], in which dis-
tributed applications are developed through config-
uration of components. A component may be hier-
archically constructed from other components and
corresponds to our notion of a process. Explicit
interfaces are also supported, making it possible
to develop components in isolation. Communica-
tion between components is handled through user-
definable communication objects that are placed at
components. This is a major distinction from our
work: in ADL-D interprocess communication is cap-
tured through channels, which are independent of
the processes that use them. In effect, Regis sup-
ports only point-to-point communication between
processes, and indeed, multicast facilities are only
provided in a rudimentary form through events. We
feel that our approach to modeling blocking, mul-
ticast, and buffering semantics through the use of
gates and channels is more elegant. It also makes the
semantics of dynamic creation of process instances
easier to model and understand.

References

[1] D.A. Bailey and J.E. Cuny. “An Approach
to Programming Process Interconnnection
Structures: Aggregate Rewriting Graph Gram-
mars”. In J.W. de Bakker and A.J. Nijman and
P.C. Treleaven, (ed.), PARLE: Parallel Archi-
tectures and Languages Europe, volume 2 of
Lecture Notes in Computer Science 259, pp.
112–123. Springer-Verlag, Berlin, 1987.

[2] A. Beguelin, J.J. Dongarra, G.A. Geist, and
V.S. Sunderam. “Visualization and Debugging
in a Heterogeneous Environment”. Computer,
26(6), June 1993.

[3] J.C. Browne, M. Azam, and S. Sobek. “CODE:
A Unified Approach to Parallel Programming”.
IEEE Software, pp. 10–18, July 1989.

[4] I. Gorton, J. Gray, and I. Jelly. “Object-Based
Modelling of Parallel Programs”. IEEE Par-
allel and Distributed Technology, (2):52–63,
July 1995.

[5] W.G. Levelt, M.F. Kaashoek, H.E. Bal, and
A.S. Tanenbaum. “A Comparison of Two

Paradigms for Distributed Shared Mem-
ory”. Software - Parctice and Experience,
22(11):985–1010, November 1992.

[6] J. Magee, N. Dulay, and J. Kramer. “A Con-
structive Development Environment for Paral-
lel and Distributed Programs”. IEE/IOP/BCS
Distributed Systems Engineering, 1(5):304–
312, September 1994.

[7] B. Meyer. “Systematic Concurrent Object-
Oriented Programming”. Communications of
the ACM, 36(9):56–80, September 1993.

[8] M. Papathomas. “Concurrency in Object-
Oriented Programming Languages”. In
O. Nierstrasz and D. Tsichritzis, (eds.),
Object-Oriented Software Composition, pp.
31–68. Prentice Hall, Englewood Cliffs, N.J.,
1995.

[9] M. Polman and M. van Steen. “ADL-D: A
Technique for Developing Parallel, Distributed
Software”. Technical Report, Erasmus Univer-
sity Rotterdam, Department of Computer Sci-
ence, 1995. to appear.

[10] C. Steigner, R. Joostema, and C. Groove.
“PAR-SDL: Software Design and Implementa-
tion for Transputer Systems”. In R. Grebe and
J. Hektor and S. Hilton and M.R. Jane and P.H.
Welch, (ed.), Transputer Applications and Sys-
tems, volume 2. IOS Press, Amsterdam, 1993.

[11] M.R. van Steen. “The Hamlet Application
Design Language, Introductory Definition Re-
port”. Hamlet Technical Report EUR-CS-
93-16, Erasmus University Rotterdam, Depart-
ment of Computer Science, December 1993.

[12] M.R. van Steen, A. ten Dam, and T. Vo-
gel. “The Hamlet Design Entry System: An
Overview of ADL and its Environment”. Ham-
let Technical Report EUR-CS-94-02, Depart-
ment of Computer Science, Erasmus Univer-
sity Rotterdam, April 1994.

6


