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Abstract. Within the ESPRIT project Hamlet, we have developed a graphical-based
Application Design Language (ADL). This language allows a developer to primarily
focus on the high-level design of parallel applications in terms of processes commu-
nicating by means of message-passing. ADL has been tailored to allow for automated
generation of efficient parallel target code. In most cases, this goal can be relatively
easily met. However, ADL also supports some high-level communication constructs
which may be quite difficult to implement in the general case. In this paper, we dis-
cuss one particular implementation aspect, namely that of synchronous channels that
allow communication between multiple senders and multiple receivers. Our attention
focuses on a distributed, scalable solution for transputer-based systems. This solu-
tion is, in fact, also applicable to occam-like languages that permit guarded output
statements.

1. Introduction

1.1. Background

The graphical Hamlet Application Design Language (ADL) has been developed to support the
construction of parallel applications [4, 5, 7]. The language is based on a notion of processes
communicating by means of message-passing. Its primary goal is to support the logical and
physical design of applications that are to be executed on transputer-based systems. In par-
ticular, advanced constructs are provided by which a developer can easily devise the intricate
communication structures that are inherent to parallel applications, without being limited
to specific support for expressing communication by the actual target language. Among
these constructs are so-called replicators for specifying geometrically structured collections
of communicating processes and various communication media with rich semantics for
expressing the exchange of messages between processes.

Although focusing on the design rather than the implementation of a parallel application
may be important from a software engineering point of view, it does not alleviate develop-
ment problems if there is hardly or no support for deriving efficient implementations. To
that aim, ADL has been carefully tailored to allow efficiently executable code to be derived
automatically from a design. This is particularly easily established in those cases when com-
munication constructs have an evident counterpart in target languages. Automated generation
of efficient code may become a problem when the relation between an ADL construct and
the target language is less obvious. In the case of ADL, this problem arises with the general
implementation of so-called synchrounous channels for transputer-based systems.

Synchronous channels in ADL are very similar to occam channels [2], with the exception
that in ADL a channel can be shared between multiple senders and multiple receivers. As we
shall explain, this in fact is equivalent to allowing alternative selection of output channels,



which is not permitted in occam. In this paper, we describe an efficient distributed solution
of these synchronous channels for transputer-based systems. In the remainder of this section
we shall first specify the semantics of ADL synchronous channels, and show that most forms
can indeed be implemented efficiently. The core of the paper is presented in Section 2 where
we outline a distributed implementation as a general solution. The computational complexity
of our solution is discussed in an informal manner in Section 3. We conclude by putting our
present research into context in Section 4.

1.2. Problem description

An ADL synchronous channel connects a collection S of senders to a collection R of receivers.
The semantics of synchronous channels are such that if at time instant T, M = jSTj senders
and N = jRTj receivers want to communicate, minfM, Ng (sender,receiver)-pairs are selected
nondeterministically and a message is transferred from sender to receiver. If a process
cannot immediately communicate, it will block until communication is possible (assuming
that the process is willing to communicate only by means of a single synchronous channel).
Consequently, if M > N a total of M � N nondeterministically selected senders will remain
blocked, and likewise, if M < N a total of N �M nondeterministically selected receivers will
remain blocked.

The relationship between these semantics and those of occam channels is more obvious
than one might intitially suspect. For example, when M = N = 1, there is no difference
between the two languages. This also means that we can efficiently implement ADL channels
directly by means of occam channels. When M > 1 and N = 1, our semantics are the same
as that of an occam program in which a single receiver can alternatively select amongst M
input channels, one for each sender. The opposite situation occurs when M = 1 and N > 1:
in that case, a single sender should select betweeen N output channels, one for each receiver.
An implementation in this case requires only two channels per receiver, adding up to a total
of 2N occam channels. Per receiver, there is one channel from the sender to the receiver
for passing the actual message, and one channel from the receiver to the sender by which
the receiver can announce its willingness to communicate. The sender then first selects the
communicating receiver by means of an alt-statement on the channels for announcements,
and then proceeds by sending its message through the regular channel which connects it to
the selected receiver.

But when M > 1 and N > 1, we may find ourselves in a difficult spot. When M and
N are not too large, a centralized solution by which an additional process is responsible for
(1) selecting a (sender,receiver)-pair, and (2) subsequently forwarding the message, may be
acceptable (see [1] for further details). But as soon as the number of senders and receivers
increase, the central process may turn out to be a bottleneck. Our goal at this point, is therefore
to present a completely distributed and scalable solution that is suited for transputer-based
systems.

2. A distributed solution

In order to come to an efficient distributed implementation of the semantics of ADL syn-
chronous channels, we organize the senders and receivers into a logical ring and essentially
adopt a token-based protocol for exchanging data. In particular, we let an envelope circulate
counter-clockwise around the ring, whereas a process that requires the envelope will issue a
request clockwise around the ring. The envelope can either be full or empty. This global
architecture is shown in Figure 1.

Each process essentially consists of two components. The subprocess (called the main
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Figure 1: The global architecture of a distributed implementation for ADL synchronous
channels.

thread) represents the global behavior of either a sender or a receiver. The second component
consists of two subprocesses (referred to as respectively the put thread and the get thread)
and is responsible for getting the envelope and forwarding it at the appropriate time. These
three subprocesses communicate by means of shared memory instead of links for reasons to be
explained further below. For the sake of clarity, we shall denote each subprocess as a thread
(as this is actually the way they are implemented), jointly comprising an actual process.

2.1. The behavior of a process

The global behavior of our solution can now be explained by taking a closer look at a receiver
and sender, respectively. To that aim, we say that a process becomes active if it wants to
either send or receive data. Otherwise, the process is said to be inactive.

2.1.1. A receiver

When a receiver becomes active, it is prepared to accept any incoming data. In our solution,
this means that the receiver should get a hold of a full envelope. Assuming that the envelope is
currently not at the receiver, the receiver will issue a request for a full envelope to its lefthand
neighbor. From that moment on, it simply waits until the envelope eventually arrives. As
soon as the envelope arrives, or when the envelope was already located at the receiver, we
need to distinguish two situations:

1. The envelope is full: in this case, the receiver can empty the envelope, and communi-
cation is considered to be finished. As soon as it knows that there is someone waiting
for an empty envelope, the envelope is forwarded to its right-hand neighbor.

2. The envelope is empty: in this case, the receiver is in possession of an envelope that
needs yet to be filled by a sender. Hence, it will first need to wait for a request from its
right-hand neighbor, and then subsequently forward the envelope. In order to ensure
that the envelope will eventually return, the receiver marks it.

The mechanisms for forwarding an envelope will be described below. An important ob-
servation is that we never forward the envelope unless there is a good reason to do so. In
particular, the receiver should know for certain that there is a sender on the ring willing to fill
the envelope. In this way, we avoid the situation of a continuously circulating envelope – a
solution generally adopted for many token-based protocols.

2.1.2. A sender

The sender’s situation is almost symmetrical to that of a receiver. When becoming active,
a sender should get hold of an empty envelope. Again, if we assume that the envelope is



not at the sender’s site, the sender will issue a request for the empty envelope to its lefthand
neighbor and wait until the envelope arrives. When the envelope arrives, or when it was
already available when the sender became active, two situations are to be considered:

1. The envelope is empty: in this case, the sender may fill the envelope, and subsequently
wait until it receives a request for a full envelope (which can only come from a
receiver). As soon as the sender is certain that there is a receiver on the ring, it forwards
the envelope and the communication is considered to be finished.

2. The envelope is full: this can only happen when there was another sender on the ring
as well and which had previously filled the envelope. In that case, the sender should
forward the envelope to its righthand neighbor. Similar to the case of a receiver, the
sender marks the envelope and passes it on.

Again, note that we only forward the envelope if it is really needed. Another point that we
shall explain further below, is that the sender will not issue a request when it finds the envelope
already filled. Instead, the envelope is marked.

2.1.3. An inactive process

Of course, a process need not be active at all. In that case, the envelope is simply forwarded
if there is a need to do so. In other words, if the envelope is empty there should be a sender
on the ring, or when it is full forwarding only takes place when there is a receiver. Note, by
the way, that an active process will always forward the envelope: the only reason it got to the
process was because there was a request for it.

2.2. Forwarding the envelope

Let us now take a closer look at the way the envelope is circulated across the ring. To that
aim, we consider how requests are forwarded, and how the envelope is forwarded. Also, we
consider the actual acceptance of an envelope.

2.2.1. Forwarding requests

As we have mentioned, a process can issue two types of requests: one for an empty envelope,
and one for a full envelope, respectively. Whenever a process receives a request (which can
only come from its righthand neighbor), it will forward this request if and only if (1) the
process currently does not have the envelope in its possession, and (2) it had not previously
forwarded a similar request. In this way, it is seen that requests are not accumulated through
the ring, but instead, if a process has recorded that the envelope is requested, there may be
several processes actually requiring the envelope.

2.2.2. Forwarding the envelope

Whenever a process wants to forward the envelope, a necessary and sufficient condition is
that the process is certain that someone is actually in need for the envelope. Let us first
assume that this is the case so that the process will forward the envelope. The following three
situations need to be distinguished.

Case 1: The process itself is currently inactive. Assume the envelope is empty (the case
of a full envelope is analogous), and that the process knows there is a sender in need of
the envelope. If a request has arrived at the process for a full envelope, the envelope is
marked by setting a boolean variable requestFull to true. This variable is located on the
envelope. Likewise, there is also a boolean variable requestEmpty which is set whenever a



full envelope is forwarded, but when there is also an outstanding request at the forwarding
process for an empty envelope. The envelope is then forwarded, and all administration local
to the forwarding process regarding previously issued requests is cleared.

Case 2: The process is an active receiver. Again, let us first assume that the envelope is
empty. In this case, the process will forward the envelope when it knows that there is a sender
on the ring. However, it should also ensure that the envelope eventually returns, preferably
having been filled in the meantime. To that aim, it increments a counter numOfRcvrs located
on the envelope, indicating the number of active receivers that have passed the envelope while
it was empty. Consequently, as long as this counter is non-zero, it is known that there is a
receiver somewhere on the ring, and which is in need of a full envelope.

When the envelope is full when it got to the receiver, the receiver will first empty it, and
subsequently inactivate. Consequently, forwarding proceeds according to situation (1).

Case 3: The process is an active sender. The special situation that we need to consider here,
is when the sender has received an already filled envelope. This can only happen if there was
already a receiver on the ring so that the envelope should always be forwarded. However, the
sender should also indicate that it is still in need of an empty envelope. Analogously to the
situation of an active receiver with an empty envelope, the sender will increment a counter
numOfSndrs which is located at the envelope. This counter reflects the number of senders
that have passed a filled envelope, but which are in need of an empty one.

When an empty envelope was passed to the sender, it will subsequently fill it and wait for
a receiver. The envelope is then forwarded and the process becomes inactive again.

The necessary and sufficient conditions for forwarding an envelope can now be stated more
explicit: (1) the envelope is empty, and either numOfSndrs is non-zero, or requestEmpty is
true, or (2) the envelope is full, and either numOfRcvrs is non-zero, or requestFull is true.
After possibly updating the values for the four markers on the envelope, the envelope is
forwarded and local administration with respect to outstanding requests is cleared.

2.2.3. Acceptance of an envelope

The last behavioral aspect we need to consider is the actual acceptance of the envelope and
updates of its markers. Again, we make a distinction between receivers and senders. If a
filled envelope arrives at a receiver, the receiver will first decrement the counter numOfRcvrs
if it had previously incremented it. Also, the marker requestFull is set to false if no request for
a filled envelope had arrived from its righthand neighbor. The envelope can then be emptied,
after which forwarding is considered as described above. Likewise, if an empty envelope
arrives at a sender, the process will decrement numOfSndrs if it had previously incremented
it, and also clear the marker requestEmpty when there are no outstanding requests. Then, the
envelope is filled and behavior proceeds as mentioned above.

2.3. Implementation aspects

As mentioned, the distributed solution can be implemented by distinguishing three threads
per process, cooperating by means of shared data. The main thread represents the general
behavior of a sender or receiver, whereas the two threads named put thread and get thread,
respectively, form the core of the algorithm. The put thread is responsible for transmitting any
information on the ring. In particular, it takes care of forwarding requests and the envelope.
By contrast, the get thread is reponsible for accepting the envelope from the process’ lefthand
neighbor, or for receiving requests from its righthand neighbor. The reason for making an



explicit distinction between the two has everything to do with the synchronous nature of the
communication links of our target language. To explain, consider the following situation.

Suppose a process Pi has just become active to which end it decides to issue a request
for the envelope by sending a request to its lefthand neighbor Pi�1. If, by that time, process
Pi�1 has the envelope which it should forward on account of the fact that either numOfRcvrs
or numOfSndrs was non-zero, Pi�1 may simultaneously decide to forward the envelope to
Pi. We will then find ourselves in the situation that Pi and Pi�1 want to simultaneously
send information to each other. Because we are dealing with synchronous communication,
we will have created a deadlock. Deadlock in this case can be avoided if we implement a
form of asynchronous communication by allowing a separate thread to deal with all incoming
information.

The algorithm has been implemented as a state-transition machine on a per-process basis
of which state information is maintained by cooperation of the get and put thread. The
state-transition diagram is depicted in Figure 2. The shaded states represent the situation
that a process has the envelope in its possession; the other states reflect that the envelope is
somewhere else.
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Figure 2: The state-transition diagram for a process.

The following states and most important transitions are distinguished:

� NULLNODE: This represents an inactive process that will generally only forward re-
quests and the envelope. The NULLNODE state is also the initial state of a process. Only
one process will, of course, start in the situation that it possesses the envelope.

� SNDR-I: A process enters this state the instant it becomes an active sender. The process
remains in this state until the envelope is in its possession, and it is suited to be filled
by the main thread.

� SNDR-II: A sending process currently filling the envelope, or otherwise waiting for a
receiver to announce itself will remain in this state. This state can only be entered from
state SENDER-I. As soon as a filled envelope can be forwarded to a receiver, will the
process continue in state NULLNODE.

� RCVR-I: Similar to state SENDER-I, a receiver will enter this state the instant it becomes
active. It will remain in state RECEIVER-I until the filled envelope has arrived.

� RCVR-II: While the envelope is being emptied, an active receiver will remain in this
state. Regardless if the envelope can be forwarded or not, the process will continue in
one of the two NULLNODE states.

The actual implementation of the algorithm is now straightforward. The only aspect that
needs some attention is how we can combine the communication between threads (which is



through shared data), and the communication between processes (which is across links by
means of message-passing). More specifically, we need to find a way by which a get thread
in a particular process can synchronize by means of a single mechanism on (1) information
from one of the other threads in that process, and (2) information from other processes. A
solution is found by using a local channel between the main thread and the get thread. This
channel is used to inform the get thread that the main thread wants to either communicate, or
that it is finished with communication. Using an alt-statement, it is then possible for the get
thread to selectively wait on any incoming information.

We shall not further discuss implementation details, as these are now straightforward.
Instead, the interested reader is referred to [6] where detailed skeleton code is presented1.

3. Complexity analysis

In this section we come to an informal and experimental complexity analysis of the algorithm.
To that aim, we make a distinction with respect to the number of processes that are willing to
communicate at a certain time. As we have explained above, we assume that each process
generally resides in either a state in which it has no need to send or receive a message, or
in a state in which it requires to communicate. When most processes are not willing to
communicate, there will hardly be any network traffic. On the other hand, when the behavior
of processes is predominated by the fact that they want to communicate, network traffic will
be considerable but also rather unpredictable. For example, when there are many senders
and receivers on the ring, it can be expected that the number of hops that a filled envelope
has to make in order to deliver a message from a sender to a receiver is relatively low.
Likewise, the number of hops an empty envelope has to make before it reaches a sender that
can subsequently fill it, can also be expected to be low.

3.1. Analysis of a lightly loaded system

In the case when processes are hardly ever willing to send or receive a message, the analysis
of the complexity of the algorithm is rather straightforward. To that aim, denote by Nproc

the total number of processes, which, of course, is also the length of the ring. Denote by
loc(E) the location of the envelope on the ring when there are initially no processes willing
to communicate. Locations on the ring are clockwise numbered 0 . . . Nproc � 1. Similarly,
we use the notations loc(S) and loc(R) to denote the locations of a sender and a receiver,
respectively. We make a further distinction between the following two situations:

receiver

sender envelope

SRE

envelope
receiver

sender

SER

(a) (b)

Figure 3: The two possible situations in a lightly loaded system: SRE (a) and SER (b).

SRE: In this case, we assume that, if we travel the ring clockwise starting at the sender, we
encounter the receiver before the envelope, as shown in Figure 3(a).

1The report is available on ftp-site ftp.cs.few.eur.nl.



SER: In this case, we assume the envelope is located between the sender and the receiver, as
shown in Figure 3(b).

Let �
+(R � E) (��(R � E)) denote the distance between the receiver and the envelope,

expressed in the number of links that need to be crossed when we travel (counter-)clockwise
from the receiver to the envelope. Similarly, we use the notations �+(S � R) (��(S � R)) and
�

+(S � E) (��(S � E)) to denote the (counter-)clockwise measured distance from the sender
to the receiver, and from the sender to the envelope, respectively. Because we are assuming
that there are initially no senders and receivers on the ring, the envelope at first instance will
be empty.

Let us first consider situation SRE. SRE reflects that both the sender and the receiver are
now on the ring and that the envelope was originally, i.e. when there were no communicating
processes on the ring, located between the receiver and the sender. Because the locations of
either sender, receiver, and envelope are arbitrary (provided the ordering dictated by SRE),
we may assume that

�
+(R � E) = �

+(E � S) = �
+(S � R) =

1
3

Nproc

Two cases need to be considered further:

� SRE-a: The sender arrived before the receiver. In this case, we may assume that the
envelope reached the sender before the receiver entered the ring. This implies that the
sender’s request for the envelope needed to travel a distance of �

+(S � E) = 2
3Nproc,

whereas the receiver’s request for the envelope traveled a distance of �
+(R � S) =

2
3Nproc. Consequently, the two requests jointly traveled a total distance of 4

3Nproc links.
The envelope, on the other hand, needed to travel a total distance of ��(E � S) = 2

3Nproc

from its original location to the sender, and, after the receiver entered the ring, another
distance of ��(S � R) = 2

3Nproc links from the sender to the receiver.

� SRE-b: The receiver arrived before the sender. In this case, the receiver’s request (for
a full envelope) will first have to travel a distance of �+(R � E) = 1

3Nproc links where it
arrives at the location of the envelope. At that point, nothing further happens due to the
fact that the envelope is still empty. As soon as the sender enters the ring, its request
for the empty envelope will have to travel a total distance of �+(S � E) = 2

3Nproc. As
soon as the request arrives, the envelope will be transferred over a total distance of
�
�(E � S) = 2

3Nproc, marked with a request to forward it to the receiver as soon as it
has been filled. After this has been done, it travels another ��(S � R) = 2

3Nproc links to
the receiver adding up to a total distance of 4

3Nproc.

In a completely analogous way we can derive the complexity for the SER situation. Using
the same distinction between cases SER-a (when the sender arrives before the receiver) and
SER-b (when the receiver arrives before the sender), we can summarize our analyses as shown
in Table 1.

Either of the four cases (SRE-a, SRE-b, SER-a, and SER-b) can occur with equal proba-
bility. We can then draw the following conclusion:

Each message exchange between a sender and a receiver in a lightly loaded
system, requires on average a total of Nproc request transfers, and Nproc envelope
transfers.



Table 1: Average number of hops for requests and the envelope per message exchange.

total traveling distance
requests envelope

SRE-a: 4
3Nproc

4
3Nproc

SRE-b: Nproc
4
3Nproc

total traveling distance
requests envelope

SER-a: 2
3Nproc

2
3Nproc

SER-b: Nproc
2
3Nproc

3.2. Analysis of heavily loaded systems

In the case of heavily loaded systems, we come to a completely different situation. On
average, we may expect that the number of request and envelope transfers will decrease as
more senders and receivers enter the ring. The reason is quite simple. In the first place, a
request for an envelope need not always be forwarded to its initial destination. Instead, as
soon as it reaches a process that had issued a similar request, its transfer halts. Likewise,
the envelope may be successfully intercepted by a process that had entered the ring after
the envelope had started to travel towards its initial destination. Rather than providing a
mathematical analysis, we have run a number of simulations in order to get an impression of
the behavior of the algorithm. How these simulations have been conducted is discussed in
[6]. Here, we shall only briefly discuss their results.
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Figure 4: Simulation results for various loaded systems with sendprob = 0.50.

Figure 4 shows the result of our simulations when the number of senders and receivers
was equally balanced. In Figure 4(a) we have visualized how many links the envelope will, on
average, travel per message exchange between a sender and a receiver. The curve marked “A”
shows the situation in a lightly loaded system. As can be seen, this result corresponds with
our informal analysis given above. Curves “B” and “C” reflect the situation when network
traffic increases. Note that in extremely heavily loaded systems, the number of envelope
transfers per link tends to be almost constant. Figure 4(b) shows a similar case for the number
of request transfers per link, for each message exchange.

4. Discussion

In this paper we have concentrated on the implementation of synchronous channels that
are shared between multiple senders and receivers. In particular, attention has focused



on a distributed, scalable solution for transputer-based systems. This solution is, in fact,
also a solution for an implementation of occam-like languages that support guarded output
statements. In particular, it is not difficult to see that if our target lanaguage supported the
alternative selection of output statements, we could have easily derived an implementation in
the form of the following skeleton code (we adopt an occam-like notation; the pseudo-variable
self refers to the identity of the process in which it is used):

process receiver ( [M][N] chan of message channel )
alt i = 0 for M

channel[i][self] ? data

process sender ( [M][N] chan of message channel )
alt j = 0 for M

channel[self][j] ! data

The question whether or not guarded output statements are to be provided by a language has
generally been a difficult one to answer. Due to the fact that a general efficient implementation
is hard to derive, most language designers have omitted them. To date, only a few languages
support guarded output statements (e.g. Joyce [3]). The reason for including a similar concept
in ADL is motiviated by the fact that from the perspective of application design, the availability
of high-level communication constructs is a desirable feature. Later, when a developer is
putting more effort into the derivation of an efficient implementation, he or she might choose
to alter a design in such a way that communication constructs that are difficult to implement
are avoided all together. This is the right thing to do during the implementation; it is not
something that should bother a developer during the design phase.

A first version of ADL has been implemented as part of the Hamlet Design Entry System.
This version allows for full generation of simulation code, by which the overall behavior
of an application can be simulated for various hardware configurations. At present, our
attention is directed towards the generation of actual parallel target code. Because many
implementation decisions are application-dependent, code generation is supported in such a
way that a developer can highly influence the generation process. The solution presented
in this paper for the implementation of synchronous channels, will thus only be one out of
several that can be selected when generating code.
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