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Abstract 
Current parallel programming models suffer from the 

serious drawback that they have evolved from models 
intended to describe collections of concurrent processes 
competing for  common resources and services. The 
intention of concurrent systems is in conflict with the 
one of parallel programs, where processes cooperate to 
achieve a common goal rather than compete. It is 
therefore required to devise a sufficiently different 
programming model, that provides adequate abstraction 
over the problems related to parallel program'ng. 

We propose a new parallel programming model which 
adopts common, content-addressable storage structures. 
The model advocates nonnavigational manipulation of 
data, an aspect which has been widely recognized in the 
database community. We draw a comparison with more 
conventional models based on shared variables and 
message passing. As we will show, a model based on 
common, content-addressable storage provides a 
substantial improvement over more conventional models. 

1 Introduction 

Over the last twenty-five years concurrency has 
become one of the most active areas of research in 
computer science. Originally starting with the notion of 
coroutines and concurrent processes [9,14], concurrent 
programming models have been widely applied in the 
design of operating systems [13,18,20] and databases 
[11,23,24]. Moreover, as efficient implementations of 
high-level concurrent languages became available, 
software that was originally coded in  an assembly 
language could now be developed using high-level 
language constructs yielding well-structured, efficient, and 
portable implementations. The main focus of these high- 
level concurrent models was to provide the proper means 
for specifying intricate systems of processes competing 
for common resources and services. 
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With the introduction of commercially available 
multiprocessor computers, concurrency has become an 
even more prolific area of research. As insight in the 
behaviour of concurrent models grew, focus has gradually 
shifted from the problem of developing programs that 
behave in a well-defined manner, to that of developing 
programs that exploit parallelism to improve overall 
efficiency. An important aspect is that, contrary to the 
original concurrent programming models, exploitation of 
parallelism is achieved by developing programs in which 
processes cooperate to achieve a common goal. This shift 
of focus has brought us, somewhat surprisingly, to a 
stage comparable to the first stages of research in concur- 
rent models. At the moment, parallel applications are 
generally written in a highly machine-dependent manner 
and often violate basic rules of well-structured software in 
order to retain efficiency [ 161. 

We feel that these problems originate from the 
attempts to extend concurrent programming models to 
solve problems in a domain for which these models are 
not suited. Rather than extending these models, new ones 
should be devised that are tailored to the specific 
problems related to parallel application development. In 
this paper, we present the specification language Vista, 
which incorporates a new parallel programming model 
strongly influenced by concepts originating in the field of 
database programming. Before introducing Vista, we first 
give a brief overview of the problems related to existing 
parallel programming models, and show that support for 
a higher level of abstraction is necessary. Following the 
presentation of Vista, we present a comparison to related 
research, including a discussion on the Linda parallel 
programming model that has also successfully 
incorporated concepts from the field of database 
programming. We conclude with some indications of 
future research. 

2 Parallel programming models 

organized into a scheme of two global classes [2,22]: 
Current parallel programming models can be generally 
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models in which communication is based on 
shred variables, and 
models in which communication is based on 
message-passing . 

A finer classification can be made by considering the 
way communication and synchronization is supported. In 
this way, Bal et al. alone distinguish ten different 
programming paradigms for distributed systems [21. 
Moreover, nearly all of the approximately 100 languages 
they discuss are based on direct-addressable memory, the 
most notable exception being Linda [6]. 

Concurrent programming models have originally been 
devised for developing resource management systems 
such as qerating systems and database systems. As such, 
progranis based on these models reflect the physical 
architecture of a system in which a collection of 
concurrent processes compete for shared resources and 
services. The competition between processes has always 
been formulated in terms of the two classes of 
communication mentioned above. 

Current models that exploit parallelism have evolved 
from these concurrent programming models. However, 
parallel solutions to problems are by nature not at all 
related to the physical architecture of a (parallel) machine. 
Instead, they merely describe how problems can be solved 
by using a collection of cooperating processes aimed at 
achieving a common goal. The explicit existence of an 
underlying machine architecture in concurrent 
programming models enforces the particularities of a 
specific machine in parallel program development to be 
taken into account. What is required, instead, is a means 
to exclusively capture the solution to a problem and its 
inherent parallelism, which is completely independent of 
machine architectural features. 

2.1 Models based on common content- 
addressable storage 

Recent developments in the area of concurrency have 
led to a third and totally different programming model, 
referred to as tuple space [15], shared dataspace [lo], or 
blackboard [4]. In essence, the model is based on 
concurrent processes that exchange data through common 
content-addressable storage structures. By absence of 
explicit communication patterns between concurrent 
processes, the latter act in a highly decoupled manner, 
which makes the parallel programming task considerably 
less complex [51. 

Although the model has only been introduced recently 
in the area of concurrent programming, it has in fact, 
already received much attention within the database 
community. The concept of content-addressable storage 
structures has been studied and applied extensively in the 
form of relational data models ever since their 
introduction by Codd in the early seventies [8]. 

An important feature of a programming model based 
on content-addressable storage is that data can be 
manipulated by powerful, yet simple declarative 
languages which concentrate on expressing which data is 
needed by a process, rather than how the data is to be 
retrieved. The importance of this nonnavigational 
manipulation of data has been widely recognized within 
the database community and has led to a vast amount of 
research, exemplified in the field of deductive and 
knowledge-based systems (see e.g. [23]). Illustrative is 
the fact that even in the area of object-oriented database 
systems to which navigational access of objects seems 
inherent, support for declarative object manipulation in 
the form of relational-like query languages is growing 
WI.  

The communication scheme supported by common, 
content-addressable storage has two important 
consequences. In the first place, there is no need for a 
process to be aware of the existence of other processes. 
This avoids the need to adopt communication and 
synchronization constructs such as shared variables, 
message-passing operations, (remote) procedure calls, etc, 
which are all based on assumptions concerning machine 
architectural features. In the second place, as processes act 
completely independent, parallelism can be exploited in 
abundance by replicating processes. 

2.2 An example 

To illustrate the implications of the various parallel 
programming models, we consider a parallel solution to 
the well-known single-source shortest path problem. The 
problem is to find the lengths of the shortest paths in a 
weighted, directed graph from a given source node s to all 
other nodes in the graph. Let w ( u , v )  denote the 
(non-negative) weight of the link from node U to node v; 
if no such link exists then w(u,v) = 00. 

An initial solution to this problem proceeds as 
follows. Let v.Zen denote the length of a path from node s 
to node v. Initially, we set v.len = w(s,v) for each node 
v.  The algorithm replaces, for each pair of nodes U and v,  
v.Zen by min{v.len,u.Zen+w(u,v)) until no further 
changes in the value of each v.len can occur. At that 
point, v.Zen is known to contain the length of a shortest 
path from s to v.  

The issue now becomes to improve the algorithm in 
such a way that it can be efficiently executed on any 
sequential or parallel machine. Let us first consider the 
problem of detecting when the shortest paths have been 
found. A standard solution originally proposed by Moore 
[19], is to maintain a set S of nodes that need to be 
inspected. Initially, S = (s) . The algorithm proceeds by 
removing a node U from S and examining each outgoing 
edge (u,v). If v.Zen > d e n  + w(u,v),  v is added to S 
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and v.len is replaced by u.len + w(u,v). The algorithm 
terminates as soon as S is empty. 

2.3 A parallel solution based on shared 
variables 

Let us now consider a parallel solution to the single- 
source shortest path problem, starting with a solution 
based on shared variables. Parallelism is obtained by 
creating a number of p > 1 asynchronous processes 
Pi , . .  . ,P, that act in parallel on the set S and all nodes of 
the graph. Both the set S and the nodes of the graph are 
implemented as shared variables, which requires that two 
additional concerns are addressed. 

First, exclusive access to the shared variables must be 
arranged. Otherwise, the same node might be removed 
from S or inserted into S by more than one process, or 
any v.len might be simultaneously updated by multiple 
processes, yielding erroneous values. 

The second concern to be addressed consists of 
properly detecting termination of all processes P i , .  . . ,P,. 
Clearly, it is not appropriate to stop when a process finds 
the set S to be empty, since other processes may still be 
examining nodes. Instead, it must be globally recorded 
which processes are waiting to remove a node from S. 
Only if all processes P 1 ,... ,Pp  are waiting, the 
computation is known to be terminated. 

In designing a parallel solution based on shared 
variables, we experience that attention concentrates on 
preventing simultaneous updates on shared variables. By 
introducing some sort of mutual exclusion, focus 
subsequently shifts to the problem of how to prevent the 
shared variables from becoming a bottleneck in 
communication. Note that we do not address the latter 
issue in the solution outlined above. In addition, we see 
that termination detection must be explicitly hardwired 
into the parallel solution. It is clear that neither the latter 
nor the problem of mutual exclusion have anything in 
common with the originally proposed solution. 

2.4 A parallel solution based on message- 
passing 

A parallel solution that employs message-passing 
instead of shared variables, can be devised as follows. 
Again a number of p identical processes are created. This 
time, the set of nodes is partitioned into p subsets 
N I ,  ... I N p  such that process P i  is responsible for 
maintaining the current information on all nodes in 
subset Ni. Furthermore, a separate process Ps is created 
for managing the set S. Again two additional concerns 
must be explicitly addressed in this parallel solution. 

The first concern is to set up an appropriate 
communication pattern between the processes. This 
might be done as follows. Process P s  receives messages 

from each process Pi that either contain a request for a 
node from S, or that contain a node v to be added to S. 
Conversely, upon receipt of a node U from Ps, process Pi 
inspects each outgoing edge (u,v). If v E Ni, Pi directly 
updates v.len if necessary and sends v to process PS for 
insertion into S. Otherwise, if v E Nj, i # j, Pi  sends 
the value of u.len + w(u,v)  to process Pj so that the 
latter can in turn update v.len and send v to process PS if 
necessary. 

The second concern is again to detect termination of 
all processes. To that end, process P S  records which 
processes are waiting for a node to be sent from S. If all 
processes P i  are waiting, process PS broadcasts 
termination. 

In designing a parallel solution based on message 
passing, we notice that attention shifts to the problem of 
devising appropriate communication patterns between 
asynchronous processes. Again we must conclude that the 
related concerns have nothing in common with the 
originally proposed solution. 

TRANSACTION Ti: 
remove a node U from S; 
select a node v where v.len > u.len + w(u,v); 
if selection succeeded then 

v.len t u.len + w(u,v);  
if v B S then insert v into S; 

endif; 

Figure I .  A solution to the single-source shortest path 
problem by multiple transitions. 

2.5 A parallel solution based on common 
content-addressable storage 

As we have seen, exploring a parallel solution based 
on shared variables or message-passing, leads to a 
significant divergence from the originally proposed 
solution. If, on the other hand, we adopt the notion of a 
common, content-addressable storage structure, a 
considerably more faithful and elegant parallel solution is 
obtained, as we shall illustrate below. 

A solution to the single-source shortest path problem 
can be formulated in terms of a transaction T that 
consists of two parts: (1) a query requesting nodes U and v 
that satisfy the constraint v.len > u.len + w(u,v),  and 
(2)  a subsequent update of v.len. A parallel solution is 
obtained by simply introducing multiple instances of 
transaction T, concurrently acting on the set S and the 
nodes of the graph. Using pseudo-code, each transaction 
Ti can be defined as indicated in Figure 1. This solution 
can be specified even more concisely by omitting any 
details concerning the set S as shown in Figure 2. 
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In the solutions presented in Figure 1 and 2, we make 
explicit use of the atomicity property of transactions, 
meaning that [3]: 

transactions access shared data without mutual 
interference, and 
upon normal termination, all effects of a 
transaction are made permanent, otherwise the 
transaction has no effect whatsoever. 

We argue that these simple semantics of transactions, 
combined with the notion of common, content- 
addressable storage, provide a powerful means for 
expressing highly parallel solutions. Also important is 
the fact that the parallel solutions are not biased towards 
machine architectural features, so that they can be 
expressed at an adequate level of abstraction. 

TRANSACTION Ti: 
select nodes U and v where 

if selection succeeded then 
v.len > u.len + w(u,v);  

replace v.len by d e n  + w(u,v); 

Figure 2. A solution to the single-source shortest path 
problem without explicit use of a set S .  

3 Vista: a query-based parallel 
specification language 

We introduce the specification language Vista, which 
has been devised for the design of highly parallel 
applications. In Vista we employ common, content- 
addressable storage structures in a way strongly influenced 
by database languages. In this section, we give a brief 
introduction to Vista; for a more thorough introduction, 
the reader is referred to [ 121. 

Vista is a visually oriented language, which means 
that its language constructs are graphical components, 
sometimes annotated by a textual representation. The 
total number of language constructs is small and concise. 
Giving a tutorial introduction to the various language 
constructs, we return to the single-source shortest path 
problem as discussed in the previous section. 

A Vista program that employs a solution to the 
single-source shortest path problem similar to the one 
outlined in the previous section, is presented in Figure 3. 
In fact, the Vista program is a formal representation of 
the transaction given by pseudo-code in Figure 2. As in 
every Vista program, its basic ingredients consist of data, 
processing,  and query-based communication. In 
accordance to these three categories, we elucidate the 
program in Figure 3, which in fact, contains all basic 
language constructs provided by Vista. 

3.1 Data and storage 

In Vista the data manipulated in a program always 
resides at storage places. The program in Figure 3 
features a single storage place named “graph,” containing 
the nodes of a graph for which the shortest paths have to 
be found. Generally a storage place may contain an 
arbitrary but finite amount of data. A storage place is 
content-addressable, which means that data is retrieved 
from a storage place based on selected properties, rather 
than by direct addressing. 

Each type of data manipulated in a program is 
represented by a unique data descriptor. Specifying data 
descriptors is analogous to the definition of a conceptual 
scheme in database systems. Figure 3 contains a data 
descriptor named “node” which represents a node in the 

A data descriptor strongly resembles the notion of a 
relation in the relational data model, in the sense that 
attributes can be attached. For example., the data 
descriptor “node” is attributed a pair of fields named “id” 
and “len” respectively. Attribute “id“ identifies the 
corresponding node in the graph, whereas attribute “len” 
indicates the length of a path originating in the source 
node s. The main difference with the relational data model 
is that attributes in Vista may also range over complex 
domains, such as the set (Rn+R I n 2 0 )  of real- 
valued functions, or the power set @(N) of natural 
numbers. Vista allows only value-oriented data 
modelling; there is no support for identifying objects as 
offered, for example, in hierarchical and network-based 
data models. 

graph. 

Figure 3. A Vista program for solving the single-source 
shortest path problem. 
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Data descriptors are used to derive the actual data items 
manipulated in a program. A data item inherits the 
attributes from its associated data descriptor, and assigns a 
specific value to each attribute. The program in Figure 3 

Figure 3 selects a shorter path by means of the constraint 
“v.len > u.len + w(u.id, v.id).” 

3.4 The execution model 
contains a collection of data items, corresponding to the 
nodes V I ,  ..., v,, of a given graph. The nodes are 
generically specified as a replicated data item. Replication 
is indicated by an ellipsis, annotated by a typed variable 
called the replication index. In this case, replication index 
i ranges over nodes vl, ..., vn. Initially, attribute “id” of 
each data item is set equal to a unique node in the graph, 
whereas attribute “len” is set equal to w(s,i), the weight 
of the link from source s to node i. 

3.2 Processing 

The computation or processing performed by a 
program is represented by operations. The program in 
Figure 3 contains an operation named “find” which 
updates the length of a path to a given node v. The 
computation performed by an operation is modelled as an 
atomic transformation from input into output. The input 
is accepted through a (possibly empty) set of input ports. 
Likewise, the output is generated by a (possibly empty) 
set of output ports. In Figure 3, operation “find” consists 
of a pair input ports labelled “v” and “U,” and a single 
output port labelled “v’.” 

The actual computation performed by an operation is 
expressed by an associated set of constraints. A constraint 
is represented as a first-order formula which specifies a 
relation between input and output. The free variables that 
occur in the formula are of the form p a ,  where p is the 
name of a port, and a is an attribute. For instance, the 
update performed on the length of a path to node v by 
operation “find” is expressed by the constraint 
“v’.len = u.len + w(u.id, v.id).” 

3.3 Query-based communication 

A means of communication between storage places 
and operations is established by links. A link always 
extends from a storage place to an input port, or 
conversely, from an output port to a storage place. The 
program in Figure 3 features a total of three links 
connecting operation “find” to storage place “graph.” 

The links connected to the input ports of an operation 
are grouped into a single channel, that serves as a guard 
to the operation. Channels exploit the content-addressable 
nature of storage places by communicating data items on 
the basis of selected properties. Similar to operations, a 
set of constraints can be associated with a channel, which 
strongly resembles the notion of queries used in database 
programming. Only data items that satisfy the constraints 
are considered suitable candidates for communication. For 
instance, the channel connected to operation “find” in 

Having outlined the basic language constructs that 
comprise a Vista program, we now turn to its underlying 
execution model. The execution model as we present it 
here, is based on non-deterministic interleaving, and was 
partially inspired by [71. 

The execution of a Vista program can be briefly stated 
as follows. Execution starts from the initial data items. 
On each execution step, an operation is selected non- 
deterministically and executed. This step is repeated 
indefinitely, subject to the restraint that selection is fair, 
that is, each operation is selected for execution infinitely 
often. 

An operation is executed as follows. A distinct data 
item is selected at the source of each link connected to an 
input port of the operation. The selected data items must 
satisfy the constraints attached to the channel in which 
the links are grouped. If sufficient data items cannot be 
selected, then execution of h e  operation is simply 
skipped. Otherwise, the selected data items are deleted, 
and a new data item is inserted at the destination of each 
link connected to an output port of the operation. It is 
required that the newly inserted data items satisfy the 
constraints attached to the operation. Note that generally 
an operation exhibits non-deterministic behaviour, since 
the attached condition need not define a unique relation 
between input and output. 

Termination of a Vista program is defined as a side- 
effect of the execution model. Execution is said to be 
terminated if each operation must be skipped for 
execution. In that case selection continues indefinitely, 
but will, from that moment on, never result in actual 
execution. Note that in accordance to the execution 
model, the program in Figure 3 terminates when the 
lengths of all shortest paths have been found, as can be 
readily deduced from the query “v.len > u.len + 
w(u.id, v.id).” 

3.5 Parallelism by replication 
Parallelism inherent to the solution represented by the 

program in Figure 3, can be fully exploited by 
introducing multiple instances of operation “find.” This 
is similar to the notion of having multiple transactions 
as earlier presented in Figure 2. 

In Vista, multiple instances of an operation are 
indicated by drawing a “stacked“ operation. In Figure 3 
this notation is used to denote multiple instances of 
operation “find,” which act asynchronously and in parallel 
on the nodes of the graph. Also other types of replication 
are supported by Vista to actuate a large number of 
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identical operations acting in synchronised fashion on a 
shared datastructure. 

We emphasize that the Vista program in Figure 3 is 
strictly declarative in nature. It merely states the 
computations to be performed on a common storage 
structure and their respective antecedents. In particular, 
the program does not state how the operations retrieve 
and store parts of the data structure, nor in what order. 
Due to this nonnavigational manipulation of data, 
potential parallelism in the solution represented by the 
program is fully preserved and uncovered. 

4 Related research 
The notion of a common, content-addressable storage 

is recently receiving somewhat more attention from 
researchers in the field of parallel processing. The most 
successful model so far is that of the Linda tuple space 
introduced by Gelemter et al. [1,5,151, and recently 
publications have appeared on the Swarm model 
[10,21,22]. In this section we concentrate on the Linda 
programming model, and compare this model to the 
approach followed by Vista. 

4.1 The Linda tuple space model 

In Linda, processes interact by reading, removing, and 
inserting tuples into a common storage called tuple 
space. A tuple is an ordered collection of typed fields. For 
example, the tuple (“str”, 3.14, 2) consists of a string, a 
real, and an integer. When a process executes the 
statement out(“str”, 3.14, 2), the tuple is generated and 
added to the tuple space without blocking the process. 
Tuples can be removed from tuple space by the operation 
in. For example, if a process executes the statement 
in(“str”, ? x ,  2) the tuple space is searched for a tuple 
with three elements which matches exactly on the first 
and third element, and which matches on the type of the 
second element. If no such tuple is found, the process 
blocks until a matching tuple appears. The statement 
rd(“str”, ? x ,  2) works similar to the in statement except 
that a matching tuple is copied rather than removed from 
the tuple space. 

Linda can also be used to create so-called live data 
structures. Each process in a live data structure program 
computes a part of the data structure to be built and 
subsequently transforms itself into a passive element of 
the intended data structure (see [5] for further details). 
Live data structures can be created by using the eval 
statement. For instance, the statement eval(“su”, i ,  
compute(i)) creates a process that eventually adds a tuple 
(“str”, i, res) to the tuple space, where res is the result of 
the function compute(& 

Linda has been successfully implemented on a number 
of parallel machines, including shared-memory as well as 

distributed-memory configurations. The model has been 
added to several standard languages such as C, Fortran, 
but also to object-oriented languages such as Eiffel, and 
functional languages such as Scheme. 

Figure 4 .  A Vista program for adding a sequence of 
numbers. 

4.2  A comparison between Vista and Linda 

Like Vista, the Linda programming model strongly 
resembles relational database programming models. The 
tuple space can be viewed as a relational database in 
which queries and updates are formulated in terms of the 
operations rd, in, and out. However, despite the fact that 
the simplicity of the model provides a powerful means to 
construct parallel applications in which architectural 
features of the target machine can be neglected, the model 
lacks some important features that are essential to 
programming models based on a common, content- 
addressable storage. 

In essence the problems with Linda originate from the 
fact that processes cannot query more than one tuple from 
tuple space at a time. To illustrate this, we consider the 
simple problem of adding a sequence of numbers 
a(l), ..., a@). A Vista program to solve this problem is 
given in Figure 4. The sequence is stored as a collection 
of data items of type “number,” neglecting the particular 
order of the sequence. The replicated operation “add” 
repetitively inquires a pair of numbers from storage place 
“sequence.” after which it reinserts their sum. Eventually 
the computation terminates, leaving exactly one number 
at storage place “sequence,” which value equals the sum 
of the given sequence. 

An obvious comparable implementation in Linda 
would be to create a total of k-1 processes, each 
executing the following sequence of statements. 
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in(”number”, ? x);  
in(”number”, ? y);  
out(”number”, x + y )  

A serious obstacle in this simple Linda program is the 
immediate dependence of the number of processes on the 
length of the sequence of numbers. For instance, a 
potential deadlock results if the number of processes 
created is chosen larger or equal than the length of the 
sequence. This might pose a serious problem if the 
length of the sequence is not known in advance but rather 
depends on other computations to be carried out. Of 
course, various solutions can be devised to correct this 
problem, but none of these will be inherent to the Linda 
model. It is our opinion that this simple example 
illustrates a serious shortcoming in the expressive power 
of Linda. For instance, the Vista program in Figure 3 to 
solve the single-source shortest path problem cannot be 
directly expressed in Linda. Instead, we are again forced to 
explicitly search for shorter paths, and to devise a 
solution for detecting program termination. 

5 Concluding remarks 
Current parallel programming models have evolved 

from models devised for specifying systems in which a 
collection of concurrent processes compete for common 
resources and services. This view on the behaviour of a 
concurrent system conflicts the one of a parallel system 
in which processes cooperate rather than compete. This 
conflicting view has resulted in parallel programs in 
which it is extremely difficult to combine efficiency, 
portability, and well-structuredness. These difficulties can 
only be overcome if parallel programming models are 
devised that allow a higher level of abstraction. 

We proposed to adopt a parallel programming model 
based on common, content-addressable storage, a model 
which has already been used within the database 
community for a number of decades. The model advocates 
a nonnavigational approach towards data retrieval, which 
we have shown to preserve and uncover inherent 
parallelism. We introduced the visually oriented 
specification language Vista to express highly parallel 
applications, using a programming style similar to many 
database programming languages currently in use. 

Our current research concentrates on developing 
efficient implementation techniques for parallel programs 
expressed in Vista. Some small experiments have been 
conducted in implementing Vista programs on sequential 
architectures using logic-based and object-oriented 
languages. Our main focus, however, is to develop 
efficient distributed algorithms for retrieving data items 
on the basis of selected properties. The first results based 
on a 16-node transputer system are promising, but much 
research is yet to be done. 
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