
Designing Highly Parallel Applications
Using Database Programming Concepts

Maarten R. van Steen
TNO Institute of Applied Computer Science

P.O.Box 6032
NL-2600 JA, Delft, The Netherlands

Abstract
Current parallel programming models suffer from the

serious drawback that they have evolved from models
intended to describe collections of concurrent processes
competing for common resources and services. The
intention of concurrent systems is in conflict with the
one of parallel programs, where processes cooperate to
achieve a common goal rather than compete. It is
therefore required to devise a sufficiently different
programming model, that provides adequate abstraction
over the problems related to parallel program'ng.

We propose a new parallel programming model which
adopts common, content-addressable storage structures.
The model advocates nonnavigational manipulation of
data, an aspect which has been widely recognized in the
database community. We draw a comparison with more
conventional models based on shared variables and
message passing. As we will show, a model based on
common, content-addressable storage provides a
substantial improvement over more conventional models.

1 Introduction

Over the last twenty-five years concurrency has
become one of the most active areas of research in
computer science. Originally starting with the notion of
coroutines and concurrent processes [9,14], concurrent
programming models have been widely applied in the
design of operating systems [13,18,20] and databases
[11,23,24]. Moreover, as efficient implementations of
high-level concurrent languages became available,
software that was originally coded in an assembly
language could now be developed using high-level
language constructs yielding well-structured, efficient, and
portable implementations. The main focus of these high-
level concurrent models was to provide the proper means
for specifying intricate systems of processes competing
for common resources and services.

Edwin de Jong
Dept. of Computer Science

University of Leiden
P.O.Box 9512

NL-2300 RA, Leiden, The Netherlands

With the introduction of commercially available
multiprocessor computers, concurrency has become an
even more prolific area of research. As insight in the
behaviour of concurrent models grew, focus has gradually
shifted from the problem of developing programs that
behave in a well-defined manner, to that of developing
programs that exploit parallelism to improve overall
efficiency. An important aspect is that, contrary to the
original concurrent programming models, exploitation of
parallelism is achieved by developing programs in which
processes cooperate to achieve a common goal. This shift
of focus has brought us, somewhat surprisingly, to a
stage comparable to the first stages of research in concur-
rent models. At the moment, parallel applications are
generally written in a highly machine-dependent manner
and often violate basic rules of well-structured software in
order to retain efficiency [161.

We feel that these problems originate from the
attempts to extend concurrent programming models to
solve problems in a domain for which these models are
not suited. Rather than extending these models, new ones
should be devised that are tailored to the specific
problems related to parallel application development. In
this paper, we present the specification language Vista,
which incorporates a new parallel programming model
strongly influenced by concepts originating in the field of
database programming. Before introducing Vista, we first
give a brief overview of the problems related to existing
parallel programming models, and show that support for
a higher level of abstraction is necessary. Following the
presentation of Vista, we present a comparison to related
research, including a discussion on the Linda parallel
programming model that has also successfully
incorporated concepts from the field of database
programming. We conclude with some indications of
future research.

2 Parallel programming models

organized into a scheme of two global classes [2,22]:
Current parallel programming models can be generally

0-8186-2295-4/91$01.00 Q 1991 IEEE 38

models in which communication is based on
shred variables, and
models in which communication is based on
message-passing .

A finer classification can be made by considering the
way communication and synchronization is supported. In
this way, Bal et al. alone distinguish ten different
programming paradigms for distributed systems [21.
Moreover, nearly all of the approximately 100 languages
they discuss are based on direct-addressable memory, the
most notable exception being Linda [6].

Concurrent programming models have originally been
devised for developing resource management systems
such as qerating systems and database systems. As such,
progranis based on these models reflect the physical
architecture of a system in which a collection of
concurrent processes compete for shared resources and
services. The competition between processes has always
been formulated in terms of the two classes of
communication mentioned above.

Current models that exploit parallelism have evolved
from these concurrent programming models. However,
parallel solutions to problems are by nature not at all
related to the physical architecture of a (parallel) machine.
Instead, they merely describe how problems can be solved
by using a collection of cooperating processes aimed at
achieving a common goal. The explicit existence of an
underlying machine architecture in concurrent
programming models enforces the particularities of a
specific machine in parallel program development to be
taken into account. What is required, instead, is a means
to exclusively capture the solution to a problem and its
inherent parallelism, which is completely independent of
machine architectural features.

2.1 Models based on common content-
addressable storage

Recent developments in the area of concurrency have
led to a third and totally different programming model,
referred to as tuple space [15], shared dataspace [lo], or
blackboard [4]. In essence, the model is based on
concurrent processes that exchange data through common
content-addressable storage structures. By absence of
explicit communication patterns between concurrent
processes, the latter act in a highly decoupled manner,
which makes the parallel programming task considerably
less complex [51.

Although the model has only been introduced recently
in the area of concurrent programming, it has in fact,
already received much attention within the database
community. The concept of content-addressable storage
structures has been studied and applied extensively in the
form of relational data models ever since their
introduction by Codd in the early seventies [8].

An important feature of a programming model based
on content-addressable storage is that data can be
manipulated by powerful, yet simple declarative
languages which concentrate on expressing which data is
needed by a process, rather than how the data is to be
retrieved. The importance of this nonnavigational
manipulation of data has been widely recognized within
the database community and has led to a vast amount of
research, exemplified in the field of deductive and
knowledge-based systems (see e.g. [23]). Illustrative is
the fact that even in the area of object-oriented database
systems to which navigational access of objects seems
inherent, support for declarative object manipulation in
the form of relational-like query languages is growing
WI.

The communication scheme supported by common,
content-addressable storage has two important
consequences. In the first place, there is no need for a
process to be aware of the existence of other processes.
This avoids the need to adopt communication and
synchronization constructs such as shared variables,
message-passing operations, (remote) procedure calls, etc,
which are all based on assumptions concerning machine
architectural features. In the second place, as processes act
completely independent, parallelism can be exploited in
abundance by replicating processes.

2.2 An example

To illustrate the implications of the various parallel
programming models, we consider a parallel solution to
the well-known single-source shortest path problem. The
problem is to find the lengths of the shortest paths in a
weighted, directed graph from a given source node s to all
other nodes in the graph. Let w (u , v) denote the
(non-negative) weight of the link from node U to node v;
if no such link exists then w(u,v) = 00.

An initial solution to this problem proceeds as
follows. Let v.Zen denote the length of a path from node s
to node v. Initially, we set v.len = w(s,v) for each node
v. The algorithm replaces, for each pair of nodes U and v,
v.Zen by min{v.len,u.Zen+w(u,v)) until no further
changes in the value of each v.len can occur. At that
point, v.Zen is known to contain the length of a shortest
path from s to v.

The issue now becomes to improve the algorithm in
such a way that it can be efficiently executed on any
sequential or parallel machine. Let us first consider the
problem of detecting when the shortest paths have been
found. A standard solution originally proposed by Moore
[19], is to maintain a set S of nodes that need to be
inspected. Initially, S = (s) . The algorithm proceeds by
removing a node U from S and examining each outgoing
edge (u,v). If v.Zen > d e n + w(u,v), v is added to S

39

and v.len is replaced by u.len + w(u,v). The algorithm
terminates as soon as S is empty.

2.3 A parallel solution based on shared
variables

Let us now consider a parallel solution to the single-
source shortest path problem, starting with a solution
based on shared variables. Parallelism is obtained by
creating a number of p > 1 asynchronous processes
Pi , . . . ,P, that act in parallel on the set S and all nodes of
the graph. Both the set S and the nodes of the graph are
implemented as shared variables, which requires that two
additional concerns are addressed.

First, exclusive access to the shared variables must be
arranged. Otherwise, the same node might be removed
from S or inserted into S by more than one process, or
any v.len might be simultaneously updated by multiple
processes, yielding erroneous values.

The second concern to be addressed consists of
properly detecting termination of all processes P i , . . . ,P,.
Clearly, it is not appropriate to stop when a process finds
the set S to be empty, since other processes may still be
examining nodes. Instead, it must be globally recorded
which processes are waiting to remove a node from S.
Only if all processes P 1 ,... ,Pp are waiting, the
computation is known to be terminated.

In designing a parallel solution based on shared
variables, we experience that attention concentrates on
preventing simultaneous updates on shared variables. By
introducing some sort of mutual exclusion, focus
subsequently shifts to the problem of how to prevent the
shared variables from becoming a bottleneck in
communication. Note that we do not address the latter
issue in the solution outlined above. In addition, we see
that termination detection must be explicitly hardwired
into the parallel solution. It is clear that neither the latter
nor the problem of mutual exclusion have anything in
common with the originally proposed solution.

2.4 A parallel solution based on message-
passing

A parallel solution that employs message-passing
instead of shared variables, can be devised as follows.
Again a number of p identical processes are created. This
time, the set of nodes is partitioned into p subsets
N I , ... I N p such that process P i is responsible for
maintaining the current information on all nodes in
subset Ni. Furthermore, a separate process Ps is created
for managing the set S. Again two additional concerns
must be explicitly addressed in this parallel solution.

The first concern is to set up an appropriate
communication pattern between the processes. This
might be done as follows. Process P s receives messages

from each process Pi that either contain a request for a
node from S, or that contain a node v to be added to S.
Conversely, upon receipt of a node U from Ps, process Pi
inspects each outgoing edge (u,v). If v E Ni, Pi directly
updates v.len if necessary and sends v to process PS for
insertion into S. Otherwise, if v E Nj, i # j, Pi sends
the value of u.len + w(u,v) to process Pj so that the
latter can in turn update v.len and send v to process PS if
necessary.

The second concern is again to detect termination of
all processes. To that end, process P S records which
processes are waiting for a node to be sent from S. If all
processes P i are waiting, process PS broadcasts
termination.

In designing a parallel solution based on message
passing, we notice that attention shifts to the problem of
devising appropriate communication patterns between
asynchronous processes. Again we must conclude that the
related concerns have nothing in common with the
originally proposed solution.

TRANSACTION Ti:
remove a node U from S;
select a node v where v.len > u.len + w(u,v);
if selection succeeded then

v.len t u.len + w(u,v);
if v B S then insert v into S;

endif;

Figure I . A solution to the single-source shortest path
problem by multiple transitions.

2.5 A parallel solution based on common
content-addressable storage

As we have seen, exploring a parallel solution based
on shared variables or message-passing, leads to a
significant divergence from the originally proposed
solution. If, on the other hand, we adopt the notion of a
common, content-addressable storage structure, a
considerably more faithful and elegant parallel solution is
obtained, as we shall illustrate below.

A solution to the single-source shortest path problem
can be formulated in terms of a transaction T that
consists of two parts: (1) a query requesting nodes U and v
that satisfy the constraint v.len > u.len + w(u,v), and
(2) a subsequent update of v.len. A parallel solution is
obtained by simply introducing multiple instances of
transaction T, concurrently acting on the set S and the
nodes of the graph. Using pseudo-code, each transaction
Ti can be defined as indicated in Figure 1. This solution
can be specified even more concisely by omitting any
details concerning the set S as shown in Figure 2.

40

In the solutions presented in Figure 1 and 2, we make
explicit use of the atomicity property of transactions,
meaning that [3]:

transactions access shared data without mutual
interference, and
upon normal termination, all effects of a
transaction are made permanent, otherwise the
transaction has no effect whatsoever.

We argue that these simple semantics of transactions,
combined with the notion of common, content-
addressable storage, provide a powerful means for
expressing highly parallel solutions. Also important is
the fact that the parallel solutions are not biased towards
machine architectural features, so that they can be
expressed at an adequate level of abstraction.

TRANSACTION Ti:
select nodes U and v where

if selection succeeded then
v.len > u.len + w(u,v);

replace v.len by d e n + w(u,v);

Figure 2. A solution to the single-source shortest path
problem without explicit use of a set S .

3 Vista: a query-based parallel
specification language

We introduce the specification language Vista, which
has been devised for the design of highly parallel
applications. In Vista we employ common, content-
addressable storage structures in a way strongly influenced
by database languages. In this section, we give a brief
introduction to Vista; for a more thorough introduction,
the reader is referred to [121.

Vista is a visually oriented language, which means
that its language constructs are graphical components,
sometimes annotated by a textual representation. The
total number of language constructs is small and concise.
Giving a tutorial introduction to the various language
constructs, we return to the single-source shortest path
problem as discussed in the previous section.

A Vista program that employs a solution to the
single-source shortest path problem similar to the one
outlined in the previous section, is presented in Figure 3.
In fact, the Vista program is a formal representation of
the transaction given by pseudo-code in Figure 2. As in
every Vista program, its basic ingredients consist of data,
processing, and query-based communication. In
accordance to these three categories, we elucidate the
program in Figure 3, which in fact, contains all basic
language constructs provided by Vista.

3.1 Data and storage

In Vista the data manipulated in a program always
resides at storage places. The program in Figure 3
features a single storage place named “graph,” containing
the nodes of a graph for which the shortest paths have to
be found. Generally a storage place may contain an
arbitrary but finite amount of data. A storage place is
content-addressable, which means that data is retrieved
from a storage place based on selected properties, rather
than by direct addressing.

Each type of data manipulated in a program is
represented by a unique data descriptor. Specifying data
descriptors is analogous to the definition of a conceptual
scheme in database systems. Figure 3 contains a data
descriptor named “node” which represents a node in the

A data descriptor strongly resembles the notion of a
relation in the relational data model, in the sense that
attributes can be attached. For example., the data
descriptor “node” is attributed a pair of fields named “id”
and “len” respectively. Attribute “id“ identifies the
corresponding node in the graph, whereas attribute “len”
indicates the length of a path originating in the source
node s. The main difference with the relational data model
is that attributes in Vista may also range over complex
domains, such as the set (Rn+R I n 2 0) of real-
valued functions, or the power set @(N) of natural
numbers. Vista allows only value-oriented data
modelling; there is no support for identifying objects as
offered, for example, in hierarchical and network-based
data models.

graph.

Figure 3. A Vista program for solving the single-source
shortest path problem.

41

Data descriptors are used to derive the actual data items
manipulated in a program. A data item inherits the
attributes from its associated data descriptor, and assigns a
specific value to each attribute. The program in Figure 3

Figure 3 selects a shorter path by means of the constraint
“v.len > u.len + w(u.id, v.id).”

3.4 The execution model
contains a collection of data items, corresponding to the
nodes V I , ..., v,, of a given graph. The nodes are
generically specified as a replicated data item. Replication
is indicated by an ellipsis, annotated by a typed variable
called the replication index. In this case, replication index
i ranges over nodes vl, ..., vn. Initially, attribute “id” of
each data item is set equal to a unique node in the graph,
whereas attribute “len” is set equal to w(s,i), the weight
of the link from source s to node i.

3.2 Processing

The computation or processing performed by a
program is represented by operations. The program in
Figure 3 contains an operation named “find” which
updates the length of a path to a given node v. The
computation performed by an operation is modelled as an
atomic transformation from input into output. The input
is accepted through a (possibly empty) set of input ports.
Likewise, the output is generated by a (possibly empty)
set of output ports. In Figure 3, operation “find” consists
of a pair input ports labelled “v” and “U,” and a single
output port labelled “v’.”

The actual computation performed by an operation is
expressed by an associated set of constraints. A constraint
is represented as a first-order formula which specifies a
relation between input and output. The free variables that
occur in the formula are of the form p a , where p is the
name of a port, and a is an attribute. For instance, the
update performed on the length of a path to node v by
operation “find” is expressed by the constraint
“v’.len = u.len + w(u.id, v.id).”

3.3 Query-based communication

A means of communication between storage places
and operations is established by links. A link always
extends from a storage place to an input port, or
conversely, from an output port to a storage place. The
program in Figure 3 features a total of three links
connecting operation “find” to storage place “graph.”

The links connected to the input ports of an operation
are grouped into a single channel, that serves as a guard
to the operation. Channels exploit the content-addressable
nature of storage places by communicating data items on
the basis of selected properties. Similar to operations, a
set of constraints can be associated with a channel, which
strongly resembles the notion of queries used in database
programming. Only data items that satisfy the constraints
are considered suitable candidates for communication. For
instance, the channel connected to operation “find” in

Having outlined the basic language constructs that
comprise a Vista program, we now turn to its underlying
execution model. The execution model as we present it
here, is based on non-deterministic interleaving, and was
partially inspired by [71.

The execution of a Vista program can be briefly stated
as follows. Execution starts from the initial data items.
On each execution step, an operation is selected non-
deterministically and executed. This step is repeated
indefinitely, subject to the restraint that selection is fair,
that is, each operation is selected for execution infinitely
often.

An operation is executed as follows. A distinct data
item is selected at the source of each link connected to an
input port of the operation. The selected data items must
satisfy the constraints attached to the channel in which
the links are grouped. If sufficient data items cannot be
selected, then execution of h e operation is simply
skipped. Otherwise, the selected data items are deleted,
and a new data item is inserted at the destination of each
link connected to an output port of the operation. It is
required that the newly inserted data items satisfy the
constraints attached to the operation. Note that generally
an operation exhibits non-deterministic behaviour, since
the attached condition need not define a unique relation
between input and output.

Termination of a Vista program is defined as a side-
effect of the execution model. Execution is said to be
terminated if each operation must be skipped for
execution. In that case selection continues indefinitely,
but will, from that moment on, never result in actual
execution. Note that in accordance to the execution
model, the program in Figure 3 terminates when the
lengths of all shortest paths have been found, as can be
readily deduced from the query “v.len > u.len +
w(u.id, v.id).”

3.5 Parallelism by replication
Parallelism inherent to the solution represented by the

program in Figure 3, can be fully exploited by
introducing multiple instances of operation “find.” This
is similar to the notion of having multiple transactions
as earlier presented in Figure 2.

In Vista, multiple instances of an operation are
indicated by drawing a “stacked“ operation. In Figure 3
this notation is used to denote multiple instances of
operation “find,” which act asynchronously and in parallel
on the nodes of the graph. Also other types of replication
are supported by Vista to actuate a large number of

42

identical operations acting in synchronised fashion on a
shared datastructure.

We emphasize that the Vista program in Figure 3 is
strictly declarative in nature. It merely states the
computations to be performed on a common storage
structure and their respective antecedents. In particular,
the program does not state how the operations retrieve
and store parts of the data structure, nor in what order.
Due to this nonnavigational manipulation of data,
potential parallelism in the solution represented by the
program is fully preserved and uncovered.

4 Related research
The notion of a common, content-addressable storage

is recently receiving somewhat more attention from
researchers in the field of parallel processing. The most
successful model so far is that of the Linda tuple space
introduced by Gelemter et al. [1,5,151, and recently
publications have appeared on the Swarm model
[10,21,22]. In this section we concentrate on the Linda
programming model, and compare this model to the
approach followed by Vista.

4.1 The Linda tuple space model

In Linda, processes interact by reading, removing, and
inserting tuples into a common storage called tuple
space. A tuple is an ordered collection of typed fields. For
example, the tuple (“str”, 3.14, 2) consists of a string, a
real, and an integer. When a process executes the
statement out(“str”, 3.14, 2), the tuple is generated and
added to the tuple space without blocking the process.
Tuples can be removed from tuple space by the operation
in. For example, if a process executes the statement
in(“str”, ? x , 2) the tuple space is searched for a tuple
with three elements which matches exactly on the first
and third element, and which matches on the type of the
second element. If no such tuple is found, the process
blocks until a matching tuple appears. The statement
rd(“str”, ? x , 2) works similar to the in statement except
that a matching tuple is copied rather than removed from
the tuple space.

Linda can also be used to create so-called live data
structures. Each process in a live data structure program
computes a part of the data structure to be built and
subsequently transforms itself into a passive element of
the intended data structure (see [5] for further details).
Live data structures can be created by using the eval
statement. For instance, the statement eval(“su”, i ,
compute(i)) creates a process that eventually adds a tuple
(“str”, i, res) to the tuple space, where res is the result of
the function compute(&

Linda has been successfully implemented on a number
of parallel machines, including shared-memory as well as

distributed-memory configurations. The model has been
added to several standard languages such as C, Fortran,
but also to object-oriented languages such as Eiffel, and
functional languages such as Scheme.

Figure 4 . A Vista program for adding a sequence of
numbers.

4.2 A comparison between Vista and Linda

Like Vista, the Linda programming model strongly
resembles relational database programming models. The
tuple space can be viewed as a relational database in
which queries and updates are formulated in terms of the
operations rd, in, and out. However, despite the fact that
the simplicity of the model provides a powerful means to
construct parallel applications in which architectural
features of the target machine can be neglected, the model
lacks some important features that are essential to
programming models based on a common, content-
addressable storage.

In essence the problems with Linda originate from the
fact that processes cannot query more than one tuple from
tuple space at a time. To illustrate this, we consider the
simple problem of adding a sequence of numbers
a(l), ..., a@). A Vista program to solve this problem is
given in Figure 4. The sequence is stored as a collection
of data items of type “number,” neglecting the particular
order of the sequence. The replicated operation “add”
repetitively inquires a pair of numbers from storage place
“sequence.” after which it reinserts their sum. Eventually
the computation terminates, leaving exactly one number
at storage place “sequence,” which value equals the sum
of the given sequence.

An obvious comparable implementation in Linda
would be to create a total of k-1 processes, each
executing the following sequence of statements.

43

in(”number”, ? x);
in(”number”, ? y);
out(”number”, x + y)

A serious obstacle in this simple Linda program is the
immediate dependence of the number of processes on the
length of the sequence of numbers. For instance, a
potential deadlock results if the number of processes
created is chosen larger or equal than the length of the
sequence. This might pose a serious problem if the
length of the sequence is not known in advance but rather
depends on other computations to be carried out. Of
course, various solutions can be devised to correct this
problem, but none of these will be inherent to the Linda
model. It is our opinion that this simple example
illustrates a serious shortcoming in the expressive power
of Linda. For instance, the Vista program in Figure 3 to
solve the single-source shortest path problem cannot be
directly expressed in Linda. Instead, we are again forced to
explicitly search for shorter paths, and to devise a
solution for detecting program termination.

5 Concluding remarks
Current parallel programming models have evolved

from models devised for specifying systems in which a
collection of concurrent processes compete for common
resources and services. This view on the behaviour of a
concurrent system conflicts the one of a parallel system
in which processes cooperate rather than compete. This
conflicting view has resulted in parallel programs in
which it is extremely difficult to combine efficiency,
portability, and well-structuredness. These difficulties can
only be overcome if parallel programming models are
devised that allow a higher level of abstraction.

We proposed to adopt a parallel programming model
based on common, content-addressable storage, a model
which has already been used within the database
community for a number of decades. The model advocates
a nonnavigational approach towards data retrieval, which
we have shown to preserve and uncover inherent
parallelism. We introduced the visually oriented
specification language Vista to express highly parallel
applications, using a programming style similar to many
database programming languages currently in use.

Our current research concentrates on developing
efficient implementation techniques for parallel programs
expressed in Vista. Some small experiments have been
conducted in implementing Vista programs on sequential
architectures using logic-based and object-oriented
languages. Our main focus, however, is to develop
efficient distributed algorithms for retrieving data items
on the basis of selected properties. The first results based
on a 16-node transputer system are promising, but much
research is yet to be done.

Acknowledgements

The work described in this paper has been undertaken
as part of the ParTool project. ParTool is a collaborative
project of Dutch industry and universities aiming at the
development of a parallel programming environment. The
project is sponsored by the Dutch agency SPIN.

References

S . Ahuja, Carriero, N. and Gelemter, D., “Linda
and Friends.” Computer August (1986), pp. 26-
34.
H.E. Bal, Steiner, J.G. and Tanenbaum, A.S.,
“Programming Languages for Distributed
Computing Systems.” Computing Surveys 21, 3

P.A. Bemstein, Hadzilacos, V. and Goodman, N.,
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.
A. Brogi and Ciancarini, P., “The Concurrent
Language, Shared Prolog.” ACM Transactions on
Programming Languages and Systems 13, 1

N. Carriero and Gelernter, D., “How to Write
Parallel Programs: A Guide to the Perplexed.”
Computing Surveys 21, 3 (1989), pp. 323-358.
N. Carriero and Gelemter, D., “Linda in Context.”
Communications of the ACM 32, 4 (1989), pp.

K.M. Chandy and Misra, J., Parallel Program
Design: A Foundation. Addison-Wesley, 1989.
E.F. Codd, “A Relational Model of Data for Large
Shared Data Banks.” Communications of the

M. Conway, “A Multiprocessor System Design.”
In Proceedings AFIPS Fall Joint Computer
Conference, 1963, pp. 139-146.
H.C. Cunningham, “The Shared Dataspace
Approach to Concurrent Programming: The
Swarm Programming Model, Notation, and
Logic,” Ph.D. Thesis, Department of Computer
Science, Washington University, St. Louis, MO.,
1989.
C.J. Date, An Introduction to Database Systems.
Addison-Wesley, 1977.
E. de Jong, Kuijlman, F. and van Steen, M.R.,
“An Introduction to Vista.” Tech. Rep. TNO
Institute of Applied Computer Science, Delft,
1991.
H.M. Deitel, An Introduction to Operating
Systems. Addison-Wesley, 1984.

(1989), pp. 261-322.

(1991), pp. 377-387.

444-458.

ACM 13, 6 (1970), pp. 377-387.

44

[14] E.W. Dijkstra, “Cooperating Sequential
Processes.” In Programming Languages. Academic
Press, F. Genuys (ed.), 1968.
D. Gelernter, “Generative Communication in
Linda.” ACM Transactions on Programming
Languages and Systems 7, 1 (1985), pp. 80-112.

[16] A.H. Karp, “Programming for Parallelism.”
Computer May (1987), pp. 43-57.

[17] W. Kim, “Object-Oriented Databases: Definition
and Research Directions.” IEEE Transactions on
Knowledge and Data Engineering 2, 3 (1990), pp.

M. Maekawa, Oldehoeft, A.E. and Oldehoeft,
R.R., Operating Systems: Advanced Concepts.
BenjaminKummings , 1987.
E.F. Moore, “The Shortest Path Through a
Maze.” In Proceedings Inrernational Symposium
on the Theory of Switching, 1957, pp. 285-292.

[15]

327-34 1.
[18]

[19]

[20]

[21]

J.L. Peterson and Silberschatz, A., Operating
Systems Concepts. Addison-Wesley, 1983.
G.C. Roman and Cunningham, H.C., “A Shared
Dataspace Model of Concurrency - Language and
Programming Implications.” In Proceedings 9th
IEEE International Conference on Distributed
Systems, 1989, pp. 270-279.
G.C. Roman and Cunningham, H.C., “Mixed
Programming Metaphors in a Shared Dataspace
Model of Concurrency.” IEEE Transactions on
Software Engineering 16, 12 (1990), pp. 1361-
1373.

[23] J.D. Ullman, Principles of Database and
Knowledge-Base Systems. Computer Science
Press, Principles of Computer Science Series,
1989.
G. Wiederhold, Database Design. McGraw-Hill,
2nd ed. 1983.

[223

[24]

45

