
ABOUT THE TEACHER
MAARTEN VAN STEEN



• Professor in Computer 
Science
• Scientific Director of 

Digital Society Institute

• Large-scale distributed 
computer systems
• Wireless sensor networks 

for crowd monitoring

INTRODUCTION
MAARTEN VAN STEEN

Large-scale distributed systems

Computers & networks

Complex networks



• Professor in Computer 
Science
• Scientific Director of 

Digital Society Institute

• Large-scale distributed 
computer systems
• Wireless sensor networks 

for crowd monitoring

INTRODUCTION



DISTRIBUTED SYSTEMS
A LESS TRADITIONAL COURSE



• WHAT’S THE ISSUE?
• On effective knowledge transfer
• On the complexity of distributed systems
• On training cognitive competences

• WHAT’S THE SOLUTION?
• You will be trained in understanding complex 

problems in distributed systems
• Training by explaining: you cannot explain a 

problem or solution you do not understand well
• If you understand one complex problem of 

today, you’ll be able to understand problems of 
tomorrow 



• APPROACH
• I will discuss briefly a number of controversial 

problems in distributed systems
• In small groups, you’ll dig into a problem of your 

choice
• You will train yourself in critical thinking...
• ... by explaining solutions to each other
• ... by explaining solutions to the entire group

• You will be supervised in your explanation 
sessions (group-wise appointments) 



www.distributed-systems.net

http://www.distributed-systems.net/


> 70.000 downloads



• ROUGH SCHEDULE
• After week 1:
• Groups have been formed
• Topic has been selected

• After week 3: Per-group appointments
• Studied the problem (by existing material)
• Prepared an annotated group presentation

• After week 5: Per-group appointments
• Each member studied a specific subproblem
• Each member prepared an annotated presentation



• ROUGH SCHEDULE
• After week 7:
• Groups have prepared an advice (as an essay)
• Groups have prepared a 20-minute presentation

• After week 9: 
• Each group studied material from one other group
• Each group prepares a set of questions to act as 

opponent
• After week 10:
• Each group has delivered a plenary presentation
• Each student has read a number of essays
• Each student has prepared 1-2 questions per essay



LESSONS LEARNED SO FAR
• Most students don’t study material from the DS book.
• Material indicated to be relevant is obligatory, and I will 

check with each of you individually that you have 
studied that material (most likely through a quiz).

• Supervision by the teacher should be improved: students 
didn’t feel guided enough.
• I have scheduled a weekly 2-hour consultation slot.
• Each group sends a brief progress report every week.
• I will schedule bi-weekly meetings with each group.



A FEW TIPS
• There are guidelines for essays on the site.
• There are three journals that may help find your way:
• ACM Computing Surveys
• IEEE Communications Surveys & Tutorials
• Computer Science Review

• Google scholar
• Check articles, their publication date, how often they 

have been cited, and by whom.
• Keep a good pace, don’t postpone things.
• If you get stuck, you get in touch!



DISTRIBUTED SYSTEMS 
INTRODUCTION



The glue between applications and operating systems



Spotify

Whatsapp

DISTRIBUTED APPLICATIONS BUILT 
ON TOP OF A DISTRIBUTED SYSTEM

E-Mail



• IN THE MIDDLE LAYER
• Communication services: calling procedures at 

remote locations (RPC), multicasting, content-
based matching of senders and receivers.

• Reliability services: ensuring consistent backups 
or hot stand-by’s. 

• Resource sharing: enabling easy-to-deploy 
cloud-based file sharing (e.g., Dropbox) or peer-
to-peer networking.

• Security services: single sign-on, mixing unix & 
windows file systems (Samba).



• NO FREE LUNCH
• Scalability: in size, across locations, across 

administrative boundaries
• Data consistency in the face of replication: 

keeping copies the same
• Fault tolerance: a distributed system is subject 

to partial failures, no all-or-nothing failures
• Distribution transparency: what you need to 

know about the distribution of the system
• Security: distribution of processes and data, 

notably across multiple organizations, increases 
vulnerability



A FEW CONTROVERSIAL 
ISSUES



• BLOCKCHAINS
• A lot of buzz: it allows transaction processing 

without the use of a trusted third party (?)
• fully decentralized: no TTP
• everyone agrees on a transaction
• scalable

• There are some issues:
• complete agreement, scalability, processing 

capability (speed), total democracy may not 
be possible to combine.



• OPEN PEER-TO-PEER SYSTEMS
• A lot of buzz: publicly sharing files across the 

Internet without a centralized service: disruption 
by tearing down the central service is not going 
to help you (e.g., Pirate Bay).

• There are some issues:
• Sybil attack: creating so many malicious 

peers such that they control the network.
• Eclipse attack: creating enough malicious 

peers to isolate a single benign peer.
• Effect: the network is significantly disrupted.



• EDGE COMPUTING
• A lot of buzz: with the Internet-of-Things 

exponentially growing, we deploy an 
infrastructure at the edge of the Internet. This 
opens a whole (research) can of worms: how to 
balance what’s going on at the edge and what in 
the cloud?

• There are some issues:
• There are few compelling reasons to run 

things at the edge.
• Perhaps the problem is much smaller than 

what we (are suppose to) envisage.



• VIRTUAL MACHINES VS CONTAINERS
• A lot of buzz: when Docker entered the game of 

cloud computing, their containers turned out to 
be the lightweight (and thus much better) 
competitors of virtual machines.

• There are some issues:
• Lots of people claim that containers are 

much more efficient than virtual machines, 
but is this really true?

• The next claim is that they are also highly 
portable. When you understand some 
technicalities, you may doubt this claim.



• THE BEAUTY OF PUBLISH-SUBSCRIBE
• A lot of buzz: instead of direct communication, 

we can match a sender and a receiver based on 
the content of messages: decoupling to the max. 

• There are some issues:
• Scalability can be easily at stake: how to do 

decentralized and scalable matching if you 
don’t know where to match?

• Secure communication between decoupled 
and mutually independent processes?






