ABOUT THE TEACHER MAARTEN VAN STEEN

UNIVERSITY OF TWENTE. INSTITUTE

INTRODUCTION **MAARTEN VAN STEEN**

- Professor in Computer Science
- Scientific Director of **Digital Society Institute**
- Large-scale distributed computer systems
- Wireless sensor networks for crowd monitoring

Computers & networks

Large-scale distributed systems

Complex networks

UNIVERSITY DIGITAL SOCIETY OF TWENTE. INSTITUTE

INTRODUCTION

- Professor in Computer Science
- Scientific Director of
 Digital Society Institute
- Large-scale distributed computer systems
- Wireless sensor networks
 for crowd monitoring

DISTRIBUTED SYSTEMS A LESS TRADITIONAL COURSE

• WHAT'S THE ISSUE?

- On effective knowledge transfer
- On the complexity of distributed systems
- On training cognitive competences

• WHAT'S THE SOLUTION?

- You will be trained in understanding complex problems in distributed systems
- Training by explaining: you cannot explain a problem or solution you do not understand well
- If you understand one complex problem of today, you'll be able to understand problems of tomorrow

• APPROACH

- I will discuss briefly a number of controversial problems in distributed systems
- In small groups, you'll dig into a problem of your choice
- You will train yourself in critical thinking...
 - ... by explaining solutions to each other
 - ... by explaining solutions to the entire group
- You will be supervised in your explanation sessions (group-wise appointments)

DISTRIBUTED SYSTEMS

Maarten van Steen Andrew S. Tanenbaum

THIRD EDITION - VERSION OF

www.distributed-systems.net

DISTRIBUTED SYSTEMS

Andrew 5. ranenbau

THIRD EDITION - VERSION OF

800

1000

• ROUGH SCHEDULE

- After week 1:
 - Groups have been formed
 - Topic has been selected
- After week 3: Per-group appointments
 - Studied the problem (by existing material)
 - Prepared an annotated group presentation
- After week 5: Per-group appointments
 - Each member studied a specific subproblem
 - Each member prepared an annotated presentation

• ROUGH SCHEDULE

- After week 7:
 - Groups have prepared an advice (as an essay)
 - Groups have prepared a 20-minute presentation
- After week 9:
 - Each group studied material from one other group
 - Each group prepares a set of questions to act as opponent
- After week 10:
 - Each group has delivered a plenary presentation
 - Each student has read a number of essays
 - Each student has prepared 1-2 questions per essay

UN OF

LESSONS LEARNED SO FAR

- Most students don't study material from the DS book.
 Material indicated to be relevant is obligatory, and I will check with each of you individually that you have studied that material (most likely through a quiz).
- Supervision by the teacher should be improved: students didn't feel guided enough.
 - I have scheduled a weekly 2-hour consultation slot.
 - Each group sends a brief progress report every week.
 - I will schedule bi-weekly meetings with each group.

A FEW TIPS

- There are guidelines for essays on the site.
- There are three journals that may help find your way:
 - ACM Computing Surveys
 - IEEE Communications Surveys & Tutorials
 - Computer Science Review
- Google scholar
 - Check articles, their publication date, how often they have been cited, and by whom.
- Keep a good pace, don't postpone things.
 - If you get stuck, you get in touch!

DISTRIBUTED SYSTEMS INTRODUCTION

OF TWENTE. INSTITUTE

The glue between applications and operating systems

UNIVERSITY DIGITAL SOCIETY OF TWENTE. INSTITUTE

DISTRIBUTED APPLICATIONS BUILT ON TOP OF A DISTRIBUTED SYSTEM

NETELIX

Dropbox

Whatsapp

UNIVERSITY DIGITAL SOCIETY OF TWENTE. INSTITUTE

• IN THE MIDDLE LAYER

- Communication services: calling procedures at remote locations (RPC), multicasting, contentbased matching of senders and receivers.
- Reliability services: ensuring consistent backups or hot stand-by's.
- Resource sharing: enabling easy-to-deploy cloud-based file sharing (e.g., Dropbox) or peerto-peer networking.
- Security services: single sign-on, mixing unix & windows file systems (Samba).

• NO FREE LUNCH

- Scalability: in size, across locations, across administrative boundaries
- Data consistency in the face of replication: keeping copies the same
- Fault tolerance: a distributed system is subject to partial failures, no all-or-nothing failures
- Distribution transparency: what you need to know about the distribution of the system
- Security: distribution of processes and data, notably across multiple organizations, increases vulnerability

A FEW CONTROVERSIA ISSUES

UNIVERSITY OF TWENTE. **DIGITAL SOCIETY** INSTITUTE

• **BLOCKCHAINS**

- A lot of buzz: it allows transaction processing without the use of a trusted third party (?)
 - fully decentralized: no TTP
 - everyone agrees on a transaction
 - scalable
- There are some issues:
 - complete agreement, scalability, processing capability (speed), total democracy may not be possible to combine.

BLOCKCHAIN TECHNOLOGY

• OPEN PEER-TO-PEER SYSTEMS

- A lot of buzz: publicly sharing files across the Internet without a centralized service: disruption by tearing down the central service is not going to help you (e.g., Pirate Bay).
- There are some issues:
 - Sybil attack: creating so many malicious peers such that they control the network.
 - Eclipse attack: creating enough malicious peers to isolate a single benign peer.
 - Effect: the network is significantly disrupted.

• EDGE COMPUTING

- A lot of buzz: with the Internet-of-Things exponentially growing, we deploy an infrastructure at the edge of the Internet. This opens a whole (research) can of worms: how to balance what's going on at the edge and what in the cloud?
- There are some issues:
 - There are few compelling reasons to run things at the edge.
 - Perhaps the problem is much smaller than what we (are suppose to) envisage.

• VIRTUAL MACHINES VS CONTAINERS

- A lot of buzz: when Docker entered the game of cloud computing, their containers turned out to be the lightweight (and thus much better) competitors of virtual machines.
- There are some issues:
 - Lots of people claim that containers are much more efficient than virtual machines, but is this really true?
 - The next claim is that they are also highly portable. When you understand some technicalities, you may doubt this claim.

• THE BEAUTY OF PUBLISH-SUBSCRIBE

- A lot of buzz: instead of direct communication, we can match a sender and a receiver based on the content of messages: decoupling to the max.
- There are some issues:
 - Scalability can be easily at stake: how to do decentralized and scalable matching if you don't know where to match?
 - Secure communication between decoupled and mutually independent processes?

UNIVERSITY DIGITAL SOCIETY OF TWENTE. INSTITUTE